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ABSTRACT
In EMO diversity of the obtained solutions is an important
factor, particularly for decision makers. NSGA-III is a re-
cently proposed reference direction based algorithm that was
shown to be successful up to as many as 15 objectives. In this
study, we propose a diversity enhanced version of NSGA-III.
Our algorithm augments NSGA-III with two types of local
search. The first aims at finding the true extreme points of
the Pareto front, while the second targets internal points. The
two local search optimizers are carefully weaved into the fab-
ric of NSGA-III niching procedure. The final algorithm main-
tains the total number of function evaluations to a minimum,
enables using small population sizes, and achieves higher di-
versity without sacrificing convergence on a number of multi
and many-objective problems.
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1. INTRODUCTION
Diversity preservation in EMO has evolved over the years.

Initially, Several diversity preservation approaches were bor-
rowed from single-objective evolutionary computation liter-
ature. Later, other algorithms like SPEA2 [8] and NSGA-II
[2] were proposed and dominated the field for years. They
were however unable to maintain diversity in more than
two objectives [5]. In the last 10 years decomposition has
been widely adopted as a means of maintaining diversity in
higher dimensions, as in MOEA/D [7] and more recently in
NSGA-III [3].
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Figure 1: Phases 1 and 2 of Div-NSGA-III

Ishibuchi’s IM-MOGLS [4] is considered the first attempt
to use mathematical optimization in the context of EMO.
Subsequent researchers followed his steps. The use of
Achievement Scalarization Functions (ASF) in EMO has also
been explored in a few studies among which are Bosman’s
[1] and the work of Sindhya et al. [6].

2. DIVERSITY-BASED NSGA-III
Our proposed approach, modifies the niching mechanism

of NSGA-III. Instead of continuously emphasising conver-
gence, our approach breaks this pattern every α generations.
The modified niching mechanism is outlined in Algorithm 1.
Initially, the algorithm seeks extreme points using a biased-
weighted-sum (BWS) local search (Equation 1). We call this
phase-1 (lines 1 to 4). We assume a number of extreme points
equal to the number of objectives M. If a better extreme point
is found, it will be used for later normalizations. Otherwise,
the algorithm temporarily assumes that the current extreme
points are the true ones, and switches to phase-2. phase-2
the algorithms tries to fill in the gaps found in the front at-
tained so far. And since BWS local search is unable to reach
non-convex sections of the front, we use an ASF-based lo-
cal search (Equation 2) along empty (having no associated
points) reference directions.

It is important to note that if a better extreme point is found
during evolution, the algorithm switches back to phase-1.
Consequently, our algorithm keeps alternating between the
two phases until the front reaches the maximum possible
stretch with the minimum number of gaps.

Unlike the usual niching procedure adopted by NSGA-II
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Figure 2: Median fronts of both algorithms (OSY)

and NSGA-III our algorithm selects the closest individual to
each reference direction (niche). Regardless of an individ-
ual’s rank, if it is the only representative of its niche, it will
be selected at the expense of – may-be – better ranked indi-
viduals which are already outperformed in their own niche
(line 4). See Figure 1.

Algorithm 1 Modified NSGA-III Niching

Input: merged population (G), population size (N), refer-
ence directions (D), ideal point (I), intercepts (T ), max-
imum number of function evaluations (FeMax), maxi-
mum number of local search operations per iteration β

Output: New Population P′

1: F ← getFeasible(P)
2: E← getExtremePoints(F)
3: E(i)← BWSi(FeMax), i = 1, . . . ,M % phase-1
4: P′← getBestInNiche(d,G),∀d ∈ D
5: if stagnant(E) then
6: for i = 1 to β do % phase-2
7: P′← ASF(choose(x), I,T,FeMax)
8: end for
9: end if

10: while |P′| ≤ N do
11: x← highestRank(G)
12: G← G\ x
13: P′← x,s.t.x /∈ P′

14: end while

Minimize
x

BWSi(x) = ε f̃i(x)+
M

∑
j=1, j 6=i

w j f̃ j(x),

subject to ε << minM
j=1, j 6=iw j

(1)

Minimize
x

ASF(x,zr,w) =
M

max
i=1

(
f̃i(x)−ui

wi

)
,

subject to g j(x)≤ 0, j = 1,2, . . . ,J.
(2)

3. RESULTS
Our test problems include ZDT-(1,2,3,4,6), TNK, BNH,

SRN, OSY, 3-obj. DTLZ-(1,2) and 10-obj. DTLZ-(1,2). Only
Figures 2 and 3 are shown for brevity. the superiority of our
proposed approach over the original NSGA-III is clear. The
advantages of using Div-NSGA-III surpass this speedup fac-
tor. It also allows using previously prohibitively small pop-
ulation sizes.

Figure 3: IGD vs. number of func. eval. (DTLZ2(10))

4. CONCLUSION
In this study, we propose an enhanced version of the re-

cently proposed NSGA-III. Our proposed approach focuses
on diversity without sacrificing convergence, through a care-
fully designed niching operator, where NSGA-III is aug-
mented with two local search mechanisms. The two mecha-
nisms keep alternating until the desired diversity is attained.
Our simulation results clearly show the superiority of our
approach compared to the the original NSGA-III over a wide
range of problems.
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