
Approximate BDD Optimization with Prioritized ε-Preferred
Evolutionary Algorithm

Saeideh Shirinzadeh1 Mathias Soeken2 Daniel Große1,3 Rolf Drechsler1,3
1 Department of Mathematics and Computer Science, University of Bremen, Germany

2 Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
3 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{saeideh,grosse,drechsle}@cs.uni-bremen.de, mathias.soeken@epfl.ch

ABSTRACT
Approximate computing has gained high attention in vari-
ous applications that can benefit from a reduction in costs by
lowering the accuracy. In this paper we present an optimiza-
tion approach for functional approximation of Binary Deci-
sion Diagrams (BDDs) which are known for their widespread
applications in electronic design automation and formal veri-
fication. We propose a three-objective ε-preferred evolution-
ary algorithm with the first objective set to the BDD size
which is given higher priority to the two other objectives set
to errors caused by approximation. This is highly demanded
by the application to ensure that the minimum size for the
approximated BDD is accessible when the error metrics meet
certain threshold values. While BDD size minimization is
guaranteed by incorporating priority, the use of ε in the pro-
posed approach ensures to guide the search towards desired
error values in parallel. Experiments confirm the efficiency
of the proposed approach by a size improvement of 64.24%
at a fair cost of 3.86% inaccuracy on average.

Keywords
BDD approximation; ε-preferred evolutionary algorithm

1. INTRODUCTION
Approximate computing is an emerging methodology that

provides higher efficiency with a loss of quality for applica-
tions which can tolerate acceptable error rates.

Minimization of Binary Decision Diagrams (BDDs) for
approximate computing applications has recently been pro-
posed [4]. BDDs are a graph based data structure for effi-
cient representation and manipulation of Boolean functions.
BDDs are widely used in CAD applications such as formal
verification, logic synthesis, and test generation [2]. All these
applications exploit BDD optimization that aims at finding
the BDD with the minimum number of nodes which is de-
noted by a permutation vector representing an order of input
variable indices.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908987

In this work we contribute to both approximation and
variable reordering to find approximated BDDs meeting user
defined error thresholds. We map the approximate BDD op-
timization problem to a multi-criteria problem1 with three
objectives including BDD size and two error metrics which
are error rate and the worst-case error. A solution to this
problem, i.e., an optimal BDD, is represented by a variable
ordering and an approximation vector designating the type
of operators and the level indices to which they are applied.
We propose an ε-preferred evolutionary algorithm with pri-
ority to the size of BDDs which highly corresponds to the
specific requirements of the problem, i.e., the size minimiza-
tion and satisfying error thresholds.

2. BDD APPROXIMATION
Approximate BDD Minimization [4] asks for a given func-

tion f , an error metric e, a threshold t, and a bound b,

whether there exists a function f̂ such that e(f, f̂) ≤ t and

the number of nodes in the BDD for f̂ is at most b.
In this paper, we consider the frequently used worst-case

error and error rate as error metrics for e. The worst-case
error

wc(f, f̂) = max{| int(f(x))− int(f̂(x))| ∀x ∈ Bn}, (1)

where ‘int’ returns the integer representation of a bit vector,
is the maximum difference between the approximate output
value and a correct version for all possible inputs. The error
rate

er(f, f̂) =

∑
x∈Bn

[f(x) 6= f̂(x)]

2n
(2)

is the ratio of the errors observed in the output value as a
result of approximation to the total number of input com-
binations. The product of error rate and the total number
of input combinations corresponds to the Hamming distance
when applied to single-output functions.

In order to approximate a BDD we use the operators that
have been presented in [4]. They can be efficiently used for
BDDs and reduce the size of the BDD while trying to keep
the error small.

3. PROPOSED APPROACH
When considering approximate BDD optimization we only

care about satisfying the error thresholds. In fact, we ensure
not to lose the minimum BDD size at a cost of finding er-
ror values smaller than required which is realized by giving

1It can also be considered as a lexicographic approach.

79

higher priority to the size of BDDs. For the error thresh-
old setting we use ε to allow large threshold values. This
guarantees that the algorithm will not get stuck in finding
invalid solutions violating the error thresholds, and at the
same time, the search is directed toward desired error values
considering limits for each error metric.

To fulfill the requirements of the approximate BDD opti-
mization problem we use the prioritized ε-preferred relation
proposed in [3]. Given two solutions x and y, x is ε-preferred
to y if the number of objective functions of x violating ε are
smaller than that of y. If both solutions violate ε for the
same number of times, the number of different objective
functions between both solutions is considered. In this case,
x is preferred to y if the number of objective functions of
x which are smaller than their corresponding values of y is
larger than the number of objective functions of y smaller
than the same components of x. Let p = {p1, p2, . . . , pm}
be a priority vector determining priorities assigned to an m-
objective problem. Each component pi, i ∈ {1, 2, . . . ,m}
can adopt values from the set {1, 2, . . . , n}, n ≤ m, where n
is equal to m in case that all objectives have different prior-
ities. Considering a minimization problem, we assume that
a lower value of pi means objective i is of higher priority.
Assuming x|j and y|j represent subvectors of x and y only
including objective functions with priority of j, prioritized
ε-preferred is defined as

x ≺prio-ε-pref y :⇔ ∃j ∈ {1, 2, . . . ,n} :

x|j ≺ε-preferred y|j ∧ ∀k < j : y|k ⊀ε-preferred x|k.
(3)

The relation defined above compares subvectors of objective
functions with equal priorities. x is prioritized ε-preferred
to y if there is a subvector of the objective functions in x
with priority value j that is ε-preferred to the corresponding
subvector in y, and at the same time x|j is not ε-preferred
by any subvector of priority higher than j in y.

Our proposed evolutionary algorithm uses relation prior-
itized ε-preferred to find the smallest approximated BDDs.
Each solution inside the population is represented by a per-
mutation of input variables of the Boolean function desig-
nating the exact BDD together with a vector consisting of
approximation operators and the BDD level indices where
each operator should be applied. For each solution, first
the exact BDDs are created according to the variable order-
ings, and then the approximation vectors are applied to the
corresponding BDDs to create the approximated ones.

4. RESULTS AND CONCLUSION
We have assessed the performance of our proposed algo-

rithm on 20 multiple-output benchmark set functions from
ISCAS89 [1]. For each benchmark, the population size is set
to three times the number of input variables but not larger
than 120. The algorithm terminates after 200 generations.
The maximum number of times that approximation opera-
tors are applied to any solution in the population is set to 3
during all experiments. The threshold values and ε values
for both error metrics are set to 25% and 10%, respectively.
For BDD representation of the benchmark functions and for
the implementation of the approximation operators we have
used the CUDD package [5].

Table 1 shows the results of the proposed approximate
BDD optimization approach. We have compared the BDD
sizes obtained by our approach with the non-optimized ini-

Table 1: Experimental Evaluation

Benchmark- #N -initial Prioritized ε-preferred
#I/O #N ER WC impr.

s208-18/9 1033 63 12.54% 0.19% 93.90%
s298-17/20 125 74 <0.001% <0.001% 40.80%
s344-24/26 206 127 6.25% 6.24% 38.35%
s349-24/26 206 112 6.25% 0.78% 45.63%
s382-24/27 168 122 23.52% 0.21% 27.38%
s386-13/13 281 117 0.39% 0.19% 58.36%
s400-24/27 168 130 <0.001% <0.001% 22.62%
s420-34/17 262227 137 3.12% <0.001% 99.95%
s444-24/27 226 127 <0.001% <0.001% 43.81%
s510-25/13 19076 170 0.39% 12.50% 99.11%
s526-24/27 232 128 <0.001% <0.001% 44.83%
s641-54/42 1352 537 7.59% <0.001% 60.28%
s713-54/42 1352 540 12.50% <0.001% 60.06%
s820-23/24 2651 241 0.09% 9.76% 90.91%
s832-23/24 2651 236 0.12% 15.62% 91.10%
s953-45/52 1723 383 <0.001% <0.001% 77.77%
s967-45/52 1755 395 5.07% <0.001% 77.49%
s1196-32/32 2295 605 1.22% <0.001% 73.64%
s1238-32/32 2295 654 2.92% <0.001% 71.50%
s1488-14/25 1016 325 1.95% >25% 68.01%

AVG 15051.9 261.15 4.20% 3.52% 64.24%

#I/O: number of inputs/outputs, #N -initial: exact BDD
size, #N : BDD size after approximation, ER: error rate,
WC: worst case error, improvement is calculated compared
to the initially ordered exact BDD

tially ordered BDDs indicated by #N -initial. The exper-
imental evaluations show a noticeable size reduction at a
small cost of error. More precisely, an average size improve-
ment of 64.24% has been achieved while the total average
inaccuracy of both error metrics is just 3.86% that is in-
significant compared to the achieved size improvement.

Acknowledgments
This research was supported by the University of Bremen’s
graduate school SyDe funded by the German Excellence Ini-
tiative, by the German Research Foundation within projects
MANIAC (DFG) (DR 287/29-1) and Reinhart Koselleck
(DFG) (DR 287/23-1), and by H2020-ERC-2014-ADG 669354
CyberCare.

5. REFERENCES
[1] F. Brglez, D. Bryan, and K. Kozminski. Combinational

profiles of sequential benchmark circuits. In ISCAS,
pages 1929–1934, 1989.

[2] R. E. Bryant. Binary decision diagrams and beyond:
enabling technologies for formal verification. In ICCAD,
pages 236–243, 1995.

[3] N. Drechsler, A. Sülflow, and R. Drechsler.
Incorporating user preferences in many-objective
optimization using relation ε-preferred. Natural
Computing, 14(3):469–483, 2015.

[4] M. Soeken, D. Große, A. Chandrasekharan, and
R. Drechsler. BDD minimization for approximate
computing. In ASP-DAC, pages 474–479, 2016.

[5] F. Somenzi. CUDD: CU Decision Diagram package
release 2.5.0. University of Colorado at Boulder, 2012.

80

