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ABSTRACT
In this work we introduce a new method for solving multi-
objective optimization problems that involve a large number
of decision variables. The proposed Weighted Optimization
Framework (WOF) relies on variable grouping and weight-
ing to transform the original optimization problem and is
designed as a generic method that can be used with any
population-based algorithm. Our experiments use the WFG
benchmark problems with 2 and 3 objectives and 1000 vari-
ables. Using WOF on two well-known algorithms (NSGA-II
and SMPSO), we show that our method can significantly
improve their performance on all of the test problems.
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1. INTRODUCTION
In the area of multi-objective optimization a growing in-

terest in so called large-scale optimization can be observed
[6]. The performance of classic metaheuristic algorithms of-
ten deteriorates when the dimension of the decision space in-
creases. This work focuses on multi-objective optimization
problems that involve a large number of decision variables
(many-variable problems). In the recent years, a large vari-
ety of many-variable optimizers have been developed, most
of which involve cooperative coevolution (CC). A major in-
spiration for the presented WOF was the article by Yang et
al. [9]. They applied a CC variant using a special weighting
scheme to apply and optimize a weight to each CC subcom-
ponent, i.e. apply the same weight value to every variable
in the same subcomponent. The same principle of using CC
with weights has also been applied in [5, 8]. However, in the
mentioned works only single-objective problems have been
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handled. In the area of multi-objective CC, good perfor-
mance was reported in [1] for the ZDT [10] problems, com-
bining CC with differential evolution. The performance for
more complicated benchmark problems like the WFG toolkit
[3] has not been tested. Iorio and Li [4] combined the concept
of CC with the NSGA-II algorithm. However, they tested
only small instances of 10 and 30 variables and focused on
the ZDT problems. In this work we propose the Weighted
Optimization Framework (WOF) which is based on variable
grouping and optimizing weight variables for each group.
We show that the WOF can significantly enhance the per-
formance of population-based metaheuristic algorithms for
many-variable multi-objective optimization problems.

2. PROPOSED METHOD
In contrast to the CC-based studies mentioned above, our

proposed method is extending the concept of weighting the
variables from [9] to the case of multiple objectives. In WOF,
instead of optimizing the decision vector ~x, for any fixed
real values of ~x we optimize a smaller vector ~w (|~w| ≤ |~x|)
to approximate an optimal solution. For a fixed solution ~x′,
the variables are grouped together and a weight wi is applied
to each group. This process can be seen in Eq. 1.

~f(~w � ~x) = ~f(w1x1, ..., w1xl︸ ︷︷ ︸
w1

, ..., wkxn−l+1, ..., wkxn︸ ︷︷ ︸
wk

) (1)

The correct choice of ~x′ is crucial for the success of the op-
timization, as well as an appropriate grouping scheme. In
WOF, we alternate two different phases of optimization. (1)
The original problem is optimized with an arbitrary algo-
rithm for a fixed number of function evaluations. (2) A
number of q different solutions ~x′i (i = 1, 2, . . . , q) are drawn
from the current population. For every ~x′i, the problem is
optimized by using the reduced vector ~w as the new deci-
sion variables. The alternate optimization of variables and
weights will take place during the first 50% of the total func-
tion evaluations, after which a normal optimization process
is resumed. Different grouping strategies might be applied in
WOF. This work uses a rather naive approach which groups
variables together based on their absolute values. The se-
lection of the used ~x′i is based on a diversity indicator.
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Table 1: Average hypervolume values and standard
errors (50 runs) for 3-objective experiments.

WOF-
NSGAII

NSGAII WOF-
SMPSO

SMPSO

WFG1 0.3462*
(± 1.39e-03)

0.0706
(± 4.44e-04)

0.3808*
(± 1.18e-03)

0.3486
(± 4.87e-04)

WFG2 0.5259*
(± 6.88e-03)

0.3619
(± 4.94e-03)

0.8228*
(± 2.10e-03)

0.4433
(± 3.40e-03)

WFG3 0.4304*
(± 1.43e-03)

0.2619
(± 8.19e-04)

0.5020*
(± 1.20e-03)

0.2791
(± 7.37e-04)

WFG4 0.3721*
(± 4.26e-03)

0.1283
(± 4.09e-04)

0.4782*
(± 2.42e-03)

0.2109
(± 7.26e-04)

WFG5 0.2497*
(± 3.09e-03)

0.1052
(± 3.58e-04)

0.3613*
(± 3.31e-03)

0.1593
(± 5.44e-04)

WFG6 0.3529*
(± 1.10e-02)

0.1200
(± 5.53e-04)

0.5779*
(± 8.41e-04)

0.4391
(± 6.43e-04)

WFG7 0.3743*
(± 2.51e-03)

0.1530
(± 4.62e-04)

0.4489*
(± 1.89e-03)

0.2143
(± 5.20e-04)

WFG8 0.2716*
(± 2.80e-03)

0.1480
(± 3.72e-04)

0.4353*
(± 6.40e-03)

0.1928
(± 1.62e-03)

WFG9 0.3426*
(± 7.58e-03)

0.1747
(± 8.50e-04)

0.4754*
(± 3.54e-03)

0.3724
(± 3.53e-03)
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Figure 1: WFG2 problem with 1000 variables.

3. EXPERIMENTS
Due to page limitations, we report the experiments with-

out going into details about parameter settings. As WOF is
intended to work well for large-scale problems, we examine
its ability for 1000-variable instances of the WFG test prob-
lems 1 - 9 [3] (2 and 3 objectives). We use the NSGA-II [2]
and SMPSO [7] algorithms and compare each of them with
their WOF-enhanced version respectively. Average hyper-
volume values and standard errors (3 objectives) are given in
Table 1. Bold indicates superior performance, underlined in-
dicates overall best performance. An asterisk indicates sta-
tistical significance (p < 0.001). We can observe that both
WOF algorithms significantly outperformed the original al-
gorithms. Both convergence and diversity of the obtained
solution were improved significantly. The WOF-SMPSO al-
gorithm performed best among all four methods. The same
results were obtained for the 2-objective problems as exem-
plary shown in Figs. 1 and 2 (Runs shown are closest to
the median hypervolume). The same superior performance
of the the WOF algorithms was observed for the IGD indi-
cator.
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Figure 2: WFG7 problem with 1000 variables.
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