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ABSTRACT
The only parameter that dependency structure matrix ge-
netic algorithm II (DSMGA-II) requires is the population
size, and the practicability of DSMGA-II would be further
enhanced by removing the parameter. Existing parameter-
less schemes cannot be directly applied to DSMGA-II due
to the confliction with the back mixing—one of the major
operators of DSMGA-II. This paper focused on develop-
ing such parameterless schemes for DSMGA-II. Empirically
these scheme yields promising results.
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1. INTRODUCTION
The recently proposed dependency structure matrix ge-

netic algorithm (DSMGA-II) has shown its superior perfor-
mance to other existing evolutionary algorithms [4]. Never-
theless, the performance comparison was based on optimum
population sizes, which are empirically decided. To make
DSMGA-II parameterless, one may think of combining pa-
rameterless scheme work of Lobo and Harik [3] or P3 [2] with
DSMGA-II in similar ways that the former is combined with
hBOA [5] and the later is combined with LT-GOMEA [1].
However, these two schemes separate the population into
subpopulations or layer, and hence contradicts with the idea
behind the back mixing operator, one of the key to DSMGA-
II’s performance. As a result, directly applying them to
DSMGA-II impairs the performance. The purpose of this
paper is to introduce a parameterless scheme for DSMGA-
II. Similar to the idea of parameterless hBOA and P3, we
start with an extremely small population, and dynamically
increases the population as needed. Unlike Lobo and Harik’s
parameterless scheme and P3, we view the population as a
whole to ensure back mixing can work as the way it does.
As a result, parameterless DSMGA-II can be expected to
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perform similarly to the original DSMGA-II with optimal
population size.

2. DSMGA-II
DSMGA-II randomly chooses a chromosome as a receiver

of restricted mixing. If the restricted mixing succeeds, it use
the receiver as the donor of back mixing. The pseudo-code
is given in Algorithm 1, and details of each operator are
described below.

Algorithm 1: DSMGA-II

P: population, n: population size, `: problem size, R:
constant, s: selection pressure D: dependency structure
matrix, L: chosen mask from incremental linkage sat,

Randomly initialize population P
P ← GreedyHillClimbing (P)
while ¬ShouldTerminate (P) do
PS ← TouramentSelection (P, s)
D ← UpdateMatrix (PS)
for k = 1 to R do
I ← random shuffle |P|
for i = 1 to n do

(PIi , L)← RestrictedMixing (PIi)
P ← BackMixing (PIi , L)

return best instance in P

2.1 Dependency Structure Matrix (DSM)
DSM use mutual information as the dependency measure,

which is the same as that of DSMGA. For every bit in chro-
mosome, it use series of order set to build masks set which is
latter used by other operators. For example, a chromosome
consists of five bits, and for bit at position 3, the order of de-
pendency from the most relevant to the least is is (5, 1, 4, 2),
so the masks set is 〈(3), (3, 5), (3, 5, 1), (3, 5, 1, 4), (3, 5, 1, 4, 2)〉,
and this linkage model is called incremental linkage set (ILS).

2.2 Restricted Mixing
For the receiver chromosome, randomly choose a bit to

start building ILS. From the smallest mask to the largest
mask in ILS, consider the pattern of this mask in receiver. If
its complementary pattern exists in the current population,
evaluate this receiver chromosome with flipping segmenta-
tion according to the mask. The change is preserved and the
restricted mixing process terminate if the fitness of receiver
does not decrease.
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2.3 Back Mixing
After the changing of receiver by restricted mixing suc-

ceeds, launch back mixing. It takes the receiver of restricted
mixing as donor chromosome. The successful flipping pat-
tern of restricted mixing mixes to all chromosome in the
current population. The changing keeps on only if the fit-
ness is improved.

3. PARAMETERLESS SCHEME
We need proper initial size to collect enough information

to build model. Because we use the binary decoder, the
initial problem size is set to four times of log(problem size).
There are two schemes proposed. The first is incrementally
increasing population size. The second is double scheme.

3.1 Incrementally Increasing Scheme
First, implement original DSMGA-II on the current pop-

ulation, when we detect the population’s lack of model in-
formation, we introduce a randomly generated chromosome
after local search and expect it to be carrying fragments
of the global optimum. We perform crossover, which is re-
stricted mixing and back mixing in DSMGA-II, on the f
chromosome. When doing restricted mixing, we build mask
starting from every bit to make sure the new chromosome
is as good as current population. After that, we build new
models, so the new models will carry the new chromosome’s
information and do whole DSMGA-II to the entire popula-
tion. Taking advantage of the property of restricted mixing,
the new chromosome will have the information we already
got from the previous generation.

3.2 Double Scheme
Other than incrementally increasing population size, we

double the population size when needed, and when the cur-
rent population need new information, it is determined by
the number of successful restricted mixing operation on the
current population. If all restricted mixings failed, add new
population; if not, perform restricted mixing to the whole
population again. After adding new chromosomes, we do not
perform model building immediately after each new chromo-
some generated. Because after many generations of DSMGA-
II, the old population is much better than new ones. So
the model built by the old population is better. We refine
the nearly convergent population with new information by
using a correct model and new subsolutions segmentation
contributing to the old population.

4. EXPERIMENTS AND RESULTS
We consider four classic linkage-underlying problems and

two real-world problems. They are concatenated trap, cyclic
trap, folded trap, NK-landscape function, the maximum sat-
isfiability problem and the Ising spin-glass benchmark. The
result of NK-landscape problems with different degree of
overlapping is shown in Figure 1, and s is the step size.

When compared with P3, our schemes outperformed P3
with hBOA on the NK landscape problems with non-overlapping
and various degrees of overlapping structures. On the folded
trap, our schemes led by a factor of more than 10, which in-
dicated that our schemes with DSMGA-II handled plateaus
well. On the concatenated trap, our scheme did not outper-
form P3 in terms of function evaluations on smaller prob-
lems, but scaled better, and hence outperformed P3 on larger
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Figure 1: Scalability of incrementally-increasing,
double-scheme DSMGA-II, P3 and hBOA on NK-
landscape problems with various degree of overlap-
ping

problems. On other problems, our schemes performed simi-
larly to P3 except for the Ising spin glass problem. We be-
lieve that our schemes currently do not handle cross compe-
tition as nicely as P3, and that leaves an important task for
us to accomplish in the near future. To conclude, both dou-
bling and increasing-by-one scheme work well with DSMGA-
II. They both respect the nature of back mixing in DSMGA-
II, and hence preserve the most of its performance while in a
parameterless manner. For an unknown problem, we would
suggest the doubling scheme because it appeared more sta-
ble, while both should work well enough on most problems.

5. REFERENCES
[1] P. A. Bosman and D. Thierens. Linkage neighbors,

optimal mixing and forced improvements in genetic
algorithms. In Proceedings of the 14th annual
conference on Genetic and evolutionary computation,
pages 585–592. ACM, 2012.

[2] B. W. Goldman and W. F. Punch. Parameter-less
population pyramid. In Proceedings of the 2014
conference on Genetic and evolutionary computation,
pages 785–792. ACM, 2014.

[3] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In GECCO, volume 99, pages 258–267, 1999.

[4] S.-H. Hsu and T.-L. Yu. Optimization by pairwise
linkage detection, incremental linkage set, and
restricted/back mixing: Dsmga-ii. In Proceedings of the
2015 on Genetic and Evolutionary Computation
Conference, pages 519–526. ACM, 2015.

[5] M. Pelikan and T.-K. Lin. Parameter-less hierarchical
boa. In Genetic and Evolutionary
Computation–GECCO 2004, pages 24–35. Springer,
2004.

86




