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• Feature Selection and Feature Construction

• Evolutionary Computation (EC) for Feature 

Selection

• Feature Selection Methods

• Feature Construction Methods

• Application on Images

• Application on Biology

• Issues and Challenges 
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• Monkeys performing 
classification task:
- Diagnostic features:
� Eye separation

� Eye height
- Non-Diagnostic features:
� Mouth height

� Nose length

- After Training: 72% 
(32/44) were selective 
to one or both of the 
diagnostic features (and 
not for the non-
diagnostic features)
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Feature Selection: Example from Biology

??

[Acknowledgement: Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. 
Nature Vol. 415(2002)]

??

Monkeys performing a classification task 
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Feature Selection: Example from Biology

??

[Acknowledgement: Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. 
Nature Vol. 415(2002)]

“The data from the present study indicate that neuronal 
selectivity was shaped by the most relevant subset of 

features during the categorisation training.”
—Nathasha Sigala, Nikos Logothetis
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Credit card application:

• 7 applicants (examples/instances/observations)

• 2 classes: Approve, Reject 

• 3 features/variables/attributes
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Data set (Classification) — Example 1

Job Saving Family Class

Applicant 1 true high single Approve
Applicant 2 false high couple Approve

Applicant 3 true low couple Reject

Applicant 4 true low couple Approve

Applicant 5 true high children Reject

Applicant 6 false low single Reject

Applicant 7 true high single Approve

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

7

Cancer Diagnosis— Example 2
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Feature Selection and Feature Construction

• Feature selection aims to 
pick a subset of relevant 
features to achieve similar 
or better classification 
performance than using all 
features.

• Feature construction is  to  
construct new high-level 
features using original 
features to improve the 
classification performance.
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• “Curse of the dimensionality”
- Large number of features: 100s, 1000s, even 

millions

• Not all features are useful (relevant) 

• Redundant or irrelevant features may reduce the 
performance (e.g. classification accuracy)

• Costly: time, memory, and money

• Feature selection 
- to select a small subset of relevant features from 

the original large set of features in order to 
maintain or even improve the performance

9

Why Feature Selection ?
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• The quality of input features can drastically affect the learning 
performance. 

• Even if the quality of the original features is good, 
transformations might be required to make them usable for 
certain types of classifiers. 

• A large number of classification algorithms are unable of 
transforming their input space. 

• Feature construction does not add to the cost of extracting
(measuring) original features; it only carries computational 
cost. 

• In some cases, feature construction can lead to 
dimensionality reduction or implicit feature selection. 

• Why Feature Selection ? what Feature Selection can do 
?
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Why Feature Construction?
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• Reduce the dimensionality (No. of features)

• Improve the (classification) performance

• Simplify the learnt model 

• Speed up the processing time

• Help visualisation and interpretation

• Reduce the cost, e.g. save memory 

• and  ?
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What can FS/FC do ?

Multi-objective	Problems	— challenging
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• Large search space: 2n possible feature subsets 
- 1990: n < 20
- 1998: n <= 50
- 2007: n ≈ 100s
- Now: 1000s, 1 000 000s

• Feature interaction
- Relevant features may become redundant 
- Weakly relevant or irrelevant features may 

become highly useful 
• Slow processing time, or even not possible

12

Challenges in FS and FC
GECCO,Dever, Colorado, 
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Challenges in FS and FC

COMP422 Feature Manipulation: 19

Search Strategy

Basically, many different search algorithms can be used (eg exhaus-

tive, random, GA).

Good representation of solutions (subsets) is very important. A

search algorithm can perform better by using the structural infor-

mation available to subsets of features: the lattice of subsets.

How would you use the lattice to perform a search?

COMP422 Feature Manipulation: 20

Forward Selection Algorithm

Forward Selection:

• Start with the empty set.

• At each step examine all individual features by tentatively

adding them to the current set of selected features. Choose the

feature that yields the highest improvement and add it to the set

of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to exhaustive search?

COMP422 Feature Manipulation: 21

Backward Selection Algorithms

Backward Selection:

• Start with the set of all available features.

• At each step examine all individual features by tentatively re-

moving them from the current set of selected features. Pick the

feature that its removal yields the highest improvement and re-

move it from the set of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to forward selection?

COMP422 Feature Manipulation: 22

Overcoming Computational Intensity in Feature
Selection

Things to do to make searching the exponentially-growing space of

subsets of features (with 2m elements) feasible:

• Don’t search the entire space; use some heuristics instead (e.g.

Forward Selection, GA, PSO, ...)

• Choose computationally cheap learning algorithms (e.g. Near-

est Centroid) or other measures (non-wrappers).

• Take a different approach (e.g. using GP to search the space

implicitly)

COMP422 Feature Manipulation: 23

Non-Wrapper (Filter) Approach

A feature selection system that does not adopt a wrapper approach

is considered adopting a non-wrapper or filter approach. It covers a

large number of feature selection algorithms:

1. Algorithms that use a search strategy and a surrogate classifier.

2. Algorithms that use single-feature ranking for feature selection.

3. Transformational dimensionality reduction (e.g. PCA and

LDA) (Note: these algorithms don’t perform selection over

original input variables)

4. A large number of other algorithms (e.g. RELIEF, ...)

COMP422 Feature Manipulation: 24

Feature Selection by Single Feature Ranking

To select m⋆ features out of m original features:

1. Use an algorithm to measure the importance (goodness) of each

feature individually.

2. Sort (rank) all the m features in the descending order of their

importance.

3. Choose m⋆ top (most important) features.

The importance of a feature is determined depending on their con-

tribution to prediction. Common measures of relevance:

• Pearson’s correlation

• Logistic Regression, Statistical testing (e.g. χ2 test)

• Information theory measure (e.g. IG and IGR)
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• Large search space 2n

• Feature interaction

- Weakly relevant or irrelevant features may become highly 
useful 

- Relevant features may become redundant
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Challenges in FS and FC
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• Avoid bias
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General FS/FC System

Constructed/Selec
ted Feature(s)

Evolutionary Feature 
Selection/Construction
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Colorado, USA. 20-24 
July 2016

• On training set:
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Feature FS/FC Process

Constructed/
Selected 
Feature(s)

Feature(s)
Evaluation

Results 
Evaluation
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• Based on Evaluation  ——— learning algorithm
- Three categories: Filter, Wrapper, Embedded
- Hybrid (Combined)

16

Feature Selection Approaches

Filter
Original 
Features

Selected 
Features

Wrapper
Selected 
Features

Original 
Features

Selected Features

Learnt Classifier
Embedded Method

Selected  
Features

Evaluation
(Measure)

Learning 
Classifier

Original 
Features

Selected  
Features
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• Generally:

17

Feature Selection Approaches

Classification
Accuracy

Computational 
Cost

Generality
(different classifiers)

Filter Low Low High

Embedded Medium Medium Medium

Wrapper High High Low

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016
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Feature Selection
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• Conventional approaches
- The Relief algorithm
� Feature ranking method

- The FOCUS algorithm 
- Sequential forward/backward selection 
- Sequential forward/backward floating selection

• Evolutionary Computation (EC) based approaches

19

Feature Selection Approaches
GECCO,Dever, 
Colorado, USA. 20-24 
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• A group of techniques inspired by the principles 
of biological evolution

20

Evolutionary Computation (EC)
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• Don't need domain knowledge 

• Don’t make any assumption
- e.g. differentiable, linearity, separability, equality

• Easy to handle constraints

• EC can simultaneously build model structures 
and optimise parameters

• Population based search is particularly suitable 
for multi-objective optimisation

21

Why Evolutionary Computation ? 
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• EC Paradigms

• Evaluation

• Number of Objectives 

22

EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", IEEE T

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Genetic algorithms (GAs), Genetic programming (GP)

• Particle swarm optimisation (PSO), ant colony 
optimisation(ACO)

• Differential evolution (DE), memetic algorithms, learning 
classifier systems (LCSs)

23

EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection",
IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015

GECCO,Dever, 
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EC for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection"
, IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• Over 25 years ago, first EC techniques
- Filter, Wrapper, Single Objective, Multi-objective

• Representation
- Binary string

• Search mechanisms
- Genetic operators

• Multi-objective feature selection
• Scalability issue  

25

GAs for Feature Selection

R. Leardi, R. Boggia, and M. Terrile, “Genetic algorithms as a strategy for feature selection,” Journal of Chemometrics, vol.
6, no. 5, pp. 267– 281, 1992.
Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, vol. 
40, no. 11,pp. 3236–3248, 2007.
W. Sheng, X. Liu, and M. Fairhurst, “A niching memetic algorithm for simultaneous clustering and feature selection,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 20, no. 7, pp. 868–879, 2008.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", 
IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• Implicit feature selection 
- Filter, Wrapper, Single Objective, Multi-objective

• Embedded feature selection 

• Feature construction

• Computationally expensive

26

GP for Feature Selection

L. Jung-Yi, K. Hao-Ren, C. Been-Chian, and Y. Wei-Pang, “Classifier design with feature selection and feature extraction 
using layered genetic programming,” Expert Systems with Applications, vol. 34, no. 2, pp. 1384–1393, 2008.
Purohit, N. Chaudhari, and A. Tiwari, “Construction of classi- fier with feature selection based on genetic programming,” in 
IEEE Congress on Evolutionary Computation (CEC), pp. 1–5, 2010.
M. G. Smith and L. Bull, “Genetic programming with a genetic algorithm for feature construction and selection,” Genetic 
Programming and Evolvable Machines, vol. 6, no. 3, pp. 265–281, 2005.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 
2015

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Very popular in recent years
- Filter, Wrapper, Single Objective, Multi-objective

• Representation, continuous PSO vs Binary PSO
• Search mechanism 
• Fitness function

• Scalability 
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PSO for Feature Selection

E. K. Tang, P. Suganthan, and X. Yao, “Feature selection for microarray data using least squares SVM and particle swarm optimization,” 
in IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–8, 2005.
L. Y. Chuang, H. W. Chang, C. J. Tu, and C. H. Yang, “Improved binary PSO for feature selection using gene expression data,” 
Computational Biology and Chemistry, vol. 32, no. 29, pp. 29– 38, 2008.
C. L. Huang and J. F. Dun, “A distributed PSO-SVM hybrid system with feature selection and parameter optimization,” Application on 
Soft Computing, vol. 8, pp. 1381–1391, 2008.
B. Xue, M. Zhang, and W. N. Browne, “Multi-objective particle swarm optimisation (PSO) for feature selection,” in Proceeding of the 14th 
Annual Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 81–88, ACM, 2012.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", IEEE 
Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• Start from around 2003
- Filter, Wrapper, Single Objective, Multi-objective

• Representation
• Search mechanism 
• Filter approaches

• Scalability

28

ACO for Feature Selection

S. Kashef and H. Nezamabadi-pour, “An advanced ACO algorithm for feature subset selection,” Neurocomputing, 2014.
S. Vieira, J. Sousa, and T. Runkler, “Multi-criteria ant feature selection using fuzzy classifiers,” in Swarm Intelligence for Multi-
objective Problems in Data Mining, vol. 242 of Studies in Computational Intelligence, pp. 19–36, Heidelberg, 2009.
C.-K. Zhang and H. Hu, “Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster,” 
in International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1728–1732, 2005.
R. Jensen, “Performing feature selection with aco,” in Swarm Intelli- gence in Data Mining, vol. 34 of Studies in Computational 
Intelligence, pp. 45–73, / Heidelberg, 2006.
L. Ke, Z. Feng, and Z. Ren, “An efficient ant colony optimization approach to attribute reduction in rough set theory,” Pattern 
Recognition Letters, vol. 29, no. 9, pp. 1351–1357, 2008.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature Selection", 
IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 Nov 2015
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• DE: since 2008 
- potential for large-scale 

• LCSs: 
- implicit feature selection
- embedded feature selection 

• memetic: 
- population search + local search
- Wrapper + filter

29

DE, LCSs, and Memetic

A. Al-Ani, A. Alsukker, and R. N. Khushaba, “Feature subset selection using differential evolution and a wheel based 
search strategy,” Swarm and Evolutionary Computation, vol. 9, pp. 15–26, 2013.
Z. Li, Z. Shang, B. Qu, and J. Liang, “Feature selection based on manifold-learning with dynamic constraint handling 
differential evolution,” in IEEE Congress on Evolutionary Computation (CEC), pp. 332–337, 2014.
I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1424 –1437, 2004.
S. Palanisamy and S. Kanmani, “Artificial bee colony approach for optimizing feature selection,” International Journal of 
Computer Science Issues (IJCSI), vol. 9, no. 3, pp. 432–438, 2012.
Z. Zhu, S. Jia, and Z. Ji, “Towards a memetic feature selection paradigm [application notes],” IEEE Computational 
Intelligence Mag- azine, vol. 5, no. 2, pp. 41–53, 2010.
Y. Wen and H. Xu, “A cooperative coevolution-based pittsburgh learn- ing classifier system embedded with memetic 
feature selection,” in IEEE Congress on Evolutionary Computation, pp. 2415–2422, 2011.
Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, online on 30 Nov 2015
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• Biological and biomedical tasks 
- gene analysis, biomarker detection, cancer classification, and disease 

diagnosis
• Image and signal processing 

- image analysis, face recognition, human action recognition, EEG brain-
computer-interface, speaker recognition, handwritten digit recognition, 
personal identification, and music instrument recognition. 

• Network/web service
- Web service composition and development, network security, and email 

spam detection. 
• Business and financial problems

- Financial crisis, credit card issuing in bank systems, and customer churn 
prediction. 

• Others
- power system optimisation, weed recognition in agriculture, melting point 

prediction in chemistry, and weather prediction.
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Related Areas (Applications)

Bing Xue, Mengjie Zhang, Will Browne, Xin Yao. "A Survey on Evolutionary Computation Approaches to Feature 
Selection", IEEE Transaction on Evolutionary Computation, doi: 10.1109/TEVC.2015.2504420, published online on 30 
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Feature Selection
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PSO for FS: initialisation and updating

• Initialisation:
- Forward selection
- Backward selection
- Mixture of both

• Updating: 
- Consider the number of 

features in the pest and 
gbest updating

Bing Xue, Mengjie Zhang, Will N. Browne."Particle Swarm Optimisation for Feature Selection in Classification: Novel Initialisation and 
Updating Mechanisms". Applied Soft Computing. Vol 18, PP. 261--276, 2014

GECCO,Dever, Colorado, 
USA. 20-24 July 2016
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PSO for FS: initialisation and updating74CHAPTER 3. WRAPPER BASED SINGLE OBJECTIVE FEATURE SELECTION

Initialise the position and velocity of 
each particle

Update pbest and gbest

Termination ? 

Yes

Return the best solution (Selected features)

No

Collect the features selected by a particle

Evaluate the classification performance

Calculate the goodness of the particle 
according to fitness function

Transform 
training set

Update the velocity and position of 
each particle

Fitness 
Evaluation

Figure 3.2: The evolutionary training process of a PSO based feature selec-
tion algorithm.

The evolutionary training process of a PSO based wrapper feature se-
lection algorithm is shown in Figure 3.2. The key step is the goodness/fitness
evaluation procedure. The position of a particle represents a selected fea-
ture subset. By removing the features that are not selected, the training set
is transformed to a new training set. The classification performance of the
selected features is evaluated on the transformed training set. Based on
the classification performance, the fitness of the particle is then calculated
according to the predefined fitness function. After evaluating the fitness of
all particles, the algorithm updates the pbest and gbest, and then updates
the velocity and position of each particle. The algorithm stops when a pre-

• Initialisation: 
- Forward selection 
- Backward selection 
- Mixture of both 

• Updating:  
- Consider the number of 

features in the pest and 
gbest updating

Bing Xue, Mengjie Zhang, Will N. Browne."Particle Swarm Optimisation for Feature Selection in Classification: Novel Initialisation and 
Updating Mechanisms". Applied Soft Computing. Vol 18, PP. 261--276, 2014
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PSO FS: with backward elimination 

Bach Hoai Nguyen, Bing Xue, Ivy Liu and Mengjie Zhang."Filter based Backward Elimination in Wrapper based PSO for Feature Selection in Classification", 
Proceedings of 201 IEEE Congress on Evolutionary Computation. Beijing, China. 6-11 July, 2014. IEEE Press. PP.3111-- 3118. 2015
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• Introduce and 
develop the first 
multi-objective PSO 
approach to feature 
selection

- Simultaneously
minimise the 
number of features 
and the error rate

- ~105 citations since 

June 2013

34

Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm 
optimization for feature selection in classification: A multi-
objective approach, IEEE Transactions on Cybernetics, vol. 43, 
no. 6, pp. 1656-1671, 2013. [ARC/ERA Tier A, IF 3.783]
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• Introduce and develop the first multi-objective PSO approach 
to feature selection
- Simultaneously minimise the number of features and the 

error rate
- ~105 citations since June 2013
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Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective 
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013. [ARC/ERA Tier A, IF 3.783]
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Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective 
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013. [ARC/ERA Tier A, IF 3.783]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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Fig. 4. Comparisons between CMDPSOFS, NSGAII, and SPEA2.

In terms of the nondominated solutions (NSPSOFS-B,
NSGAII-B, and SPEA2-B), results in different data sets
show different patterns. Specifically, in three data sets (Zoo,

Vehicle, and German), NSPSOFS-B dominated NSGAII-B
and SPEA2-B, while in two data sets (WBCD and Lung),
NSPSOFS-B was dominated by NSGAII-B and SPEA2-B. In
the other data sets, there are always solutions in NSPSOFS-B,
which dominate solutions in NSGAII-B and SPEA2-B, al-
though there are also solutions in NSPSOFS-B dominated by
solutions in NSGAII-B and SPEA2-B. In most cases, NSGAII-B
outperformed SPEA2-B in terms of the classification perfor-
mance and the number of features.

The results in Fig. 3 suggest that NSPSOFS, NSGAII, and
SPEA2 are generally competitive with each other. However, as
discussed in Section III-C, NSPSOFS has a potential limitation
of quickly losing the diversity of the swarm because of the
updating mechanism. The performance of a PSO-based multi-
objective algorithm could be improved if this limitation can be
addressed.

2) Comparisons Between CMDPSOFS, NSGAII, and
SPEA2: As shown in Fig. 4, the average Pareto fronts,
CMDPSOFS-A, NSGAII-A, and SPEA2-A achieved similar
classification performance in all data sets. However, the
number of features in CMDPSOFS-A is usually smaller than
that of NSGAII-A and SPEA2-A, especially in the Madelon
and Isolet5 data sets.

Comparing the nondominated solutions CMDPSOFS-B with
NSGAII-B and SPEA2-B, it can be seen that, in almost all data
sets, CMDPSOFS-B achieved better results than NSGAII-B
and SPEA2-B in terms of both the number of features and the
classification performance. In a data set with a large number
of features, the better performance of CMDPSOFS is more
obvious, especially for the number of feature criterion. For
example, in the Madelon data set, the number of features in
NSGAII-B and SPEA2-B is around 150, while this number in
CMDPSOFS-B is only around 50, which means that CMDP-
SOFS further reduced by two thirds of the number of features
selected.

The results show that CMDPSOFS can address the limitation
in NSPSOFS and achieve better performance than NSPSOFS,
NSGAII, and SPEA2 in terms of both the number of features
and the classification performance.

D. Results of Hypervolume Indicator

In order to further compare the results of multi-objective
algorithms, NSPSOFS, CMDPSOFS, NSGAII, SPEA2, and
PAES, the hypervolume indicator [58] is used in the experi-
ments. In each run, each method obtained two Pareto fronts,
which are a training Pareto front according to the training clas-
sification performance and the number of features, and a testing
Pareto front according to the testing classification performance
and the number of features. Therefore, for each method, we
calculated two sets of hypervolume values based on the Pareto-
fronts on the training process and the testing process, respec-
tively. Therefore, for each method, 40 hypervolume values on
the training process and 40 hypervolume values on the testing
process were calculated. As the calculation of hypervolume
needs the true Pareto front, which is not available in the tested
data sets, we first combine the training (or testing) Pareto front
of these five methods into a union and then identify the Pareto

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XUE et al.: PSO FOR FEATURE SELECTION IN CLASSIFICATION 13

TABLE III
T -TEST ON HYPERVOLUME RATIOS ON TESTING ACCURACY

TABLE IV
T -TEST ON HYPERVOLUME RATIOS ON TRAINING ACCURACY

front in the union as the “true Pareto front” to calculate the
hypervolume values. The hypervolume values are normalized
to hypervolume ratios, which is the division of the hypervolume
value of a Pareto front and the hypervolume of the “true Pareto
front.” In order to compare NSPSOFS and CMDPSOFS with
the other three algorithms, NSGAII, SPEA2, and PAES, the
Student’s T -test was performed on their hypervolume ratios,
where the significance level was set as 0.05 (or confidence
interval is 95%).

1) Results of Hypervolume on the Testing Process: Table III
shows the results of the T -test between NSPSOFS, CMDP-
SOFS, NSGAII, SPEA2, and PAES on the hypervolume ra-
tios in the testing process, where “NS” and “CMD” represent
NSPSOFS and CMDPSOFS. In Table III, “+” (“-”) indicates
that NSPSOFS or CMDPSOFS is significantly better (worse)
than another corresponding algorithm. “=” means that they
are similar. In the WBCD and Lung data sets, “?” means
that the hypervolume ratio could not be obtained because the
extracted “true Pareto front” only contains two points and its
hypervolume value is zero.

Table III shows that, compared with CMDPSOFS, NSGAII,
SPEA2, and PAES, NSPSOFS achieved similar results in
most cases, although NSPSOFS achieved better results on the
Australian data set and worse results on the Hillvalley and
Musk1 data sets. Table III also shows that CMDPSOFS
achieved similar results with other methods in most cases. In
the data sets with a large number of features, such as Hillvalley,
Musk1, and Isolet5, CMDPSOFS achieved significantly better
results than NSPSOFS, NSGAII, SPEA2, and PAES.

2) Results of Hypervolume on the Training Process: Ta-
ble IV shows the results of the T -test between NSPSOFS,
CMDPSOFS, NSGAII, SPEA2, and PAES on the hypervol-

TABLE V
COMPARISONS ON COMPUTATIONAL TIME (IN MINUTES)

ume value ratios in the training process. It can be seen that
NSPSOFS achieved slightly worse results than other methods in
most cases, but NSPSOFS achieved better results than NSGAII
and SPEA2 in the Isolet5 data set, where the number of features
is large. Table IV also shows that, in the data sets with a rela-
tively small number of features, CMDPSOFS usually achieved
similar results to NSGAII, SPEA2, and PAES. In the data sets
with large numbers of features, such as Hillvalley, Musk1,
Madelon, and Isolet5, CMDPSOFS achieved significantly bet-
ter results than NSPSOFS, NSGAII, and SPEA2. Although
CMDPSOFS achieved slightly worse results than PAES on the
training set, CMDPSOFS achieved similar or better results than
PAES on the test set (shown in Table III), which is considered
due to the overfitting problem in PAES.

E. Comparisons on Computational Time

Table V shows the average computational time (in minutes)
used by NSPSOFS, CMDPSOFS, NSGAII, SPEA2, and PAES
in one run.

From Table V, it can be seen that, for data sets that have
a small number of features and instances, SPEA2 and PAES
generally use less time than the other three methods. However,
all algorithms can perform one run in relatively short time, a
few minutes or even less than one minute, such as the Wine,
Zoo, and Lung data sets. For data sets with a large number
of features and instances, CMDPSOFS and PAES used shorter
time than the other three methods, especially for the Madelon
and Isolet5 data sets, where CMDPSOFS used much less time
than NSPSOFS, NSGAII, and SPEA2. In such large data sets,
computational time is more important than that in small data
sets. CMDPSOFS can finish the evolutionary training process
in much shorter time and achieve better results, which suggests
that this method is a better choice than the other four methods
in real-world applications, where a large number of features and
instances are involved.

All of the methods have the same number of evaluations as
they have the same number of individuals and iterations during
the evolutionary process. NSGAII and NSPSOFS generally
consumed more time, which is probably caused by the different
levels of nondominated ranking mechanism and the calculation
of crowding distances. CMDPSOFS also involves ranking, but
it only happens in the small leader set. Therefore, ranking
in CMDPSOFS does not cost as much time as NSGAII and
NSPSOFS. More importantly, during the evolutionary training
process, CMDPSOFS selected smaller numbers of features than
the other four algorithms, which cost much less time for the
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Multi-objective PSO for FS�Binary VS continuous

-Ave: Average 
Results 
-Best: Best 
Results 

Example:
(20, 40), (20,42) 
(20, 41), (20,43)

-Ave: (20, 41.5)
-Best: (20, 40)

Bing Xue, Mengjie Zhang, Will N. Browne."Multi-Objective Particle Swarm Optimisation (PSO) for Feature Selection". Proceedings of 2012 Genetic and 
Evolutionary Computation Conference (GECCO 2012). ACM Press. Philadelphia, USA. 7-11 July 2012. pp. 81-88
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• Updating equations:
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Probability based BPSO (PBPSO)

Bing Xue, Su Nguyen, Mengjie Zhang. "A New Binary Particle Swarm Optimisation Algorithm for Feature Selection". Proceedings of the 17th 
European Conference on Applications of Evolutionary Computation (EvoApplications 2014). Lecture Notes in Computer Science. Vol. 8602. Granada, 
Spain 23rd - 25th April 2014. pp. 501-513
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Probability based BPSO (PBPSO)

Bing Xue, Su Nguyen, Mengjie Zhang. "A New Binary Particle Swarm Optimisation Algorithm for Feature Selection". Proceedings of the 17th European Conference on 
Applications of Evolutionary Computation (EvoApplications 2014). Lecture Notes in Computer Science. Vol. 8602. Granada, Spain 23rd - 25th April 2014. pp. 501-513
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• Introduce statistical feature clustering to feature 
selection and develop the first approach

- reduce the size of the search space
- #features: from 600 to ~12
- implicitly consider feature interaction
- Example: 
� our method achieved accuracy 100%: {10, 7, 3}

� Single feature ranking: 7, 10, 12, 1, 9, 11, 6, 2, 13, 5, 4, 
3
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EC and Statistical Grouping for FS 

Bing Xue, Micthell C. Lane, Ivy Liu, Mengjie Zhang, “Particle Swarm Optimisation for Feature Selection Based on Statistical 
Clustering”, Evolutionary Computation (Journal, MIT Press), Passed first round review with positive comments [ARC/ERA Tier A]
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EC and Statistical Grouping for FS 
• Development of four new 

particle position update 
algorithms that 
automatically select a single 
feature from each feature 
cluster

• As features are grouped by 
similarity, a single feature is 
expected to provide enough 
information about its 
feature cluster

Mitchell C. Lane, Bing Xue, Ivy Liu, Mengjie Zhang. "Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection". 
Proceedings of the 14th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014). Lecture Notes in Computer 
Science. Volume 8600, Granada, Spain 23rd - 25th April 2014. pp. 133--144 
Mitchell C. Lane, Bing Xue, Ivy Liu and Mengjie Zhang. "Particle Swarm Optimisation and Statistical Clustering for Feature Selection". Proceedings of the 26th 
Australasian Joint Conference on Artificial Intelligence (AI2013) Lecture Notes in Computer Science. Vol. 8272. Springer. Dunedin, New Zealand, December 
2013. pp. 214-220
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• Information theory in evolutionary feature 
selection

- Fast algorithm — mutual information
- New measures, evaluate multiple features 
- Evolutionary multi-objective filter feature 

selection

41

Information Theory Feature Selection

Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie Zhang. “A Multi-Objective Particle Swarm Optimisation for Filter Based 
Feature Selection in Classification Problems". Connection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang. “Evolutionary Algorithms and Information Theory for Filter
Based Feature Selection in Classification". International Journal on Artificial Intelligence Tools. Vol. 22, Issue 04, August 2013. pp. 
1350024 -- 1 - 31. DOI: 10.1142/S0218213013500243.
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Feature Selection Though Data Discretisation

Proposed

• One-stage (PSO-DFS)Two-stage	(PSO-FS)

Binh Tran Ngan, Mengjie Zhang, Bing Xue. "Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising and Selecting Features For High-Dimensional 
Classification". Proceedings of the 19th European Conference on the Applications of Evolutionary Computation (EvoApplications 2016, EvoIASP 2016). Lecture 
Notes in Computer Science. Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 701-718

Bare-Bone Particle Swarm Optimisation
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Feature Selection Though Data Discretisation

Candidate	
solution

Binh Tran Ngan, Mengjie Zhang, Bing Xue. "Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising and Selecting Features For High-Dimensional 
Classification". Proceedings of the 19th European Conference on the Applications of Evolutionary Computation (EvoApplications 2016, EvoIASP 2016). Lecture 
Notes in Computer Science. Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 701-718
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• Promote rough set theory for feature selection
- Others’: mainly < 200 features 
- Ours: more than 600 features

44

Filter FS based on Rough Set

The	upper	
approximatio

n

Objects

The	target	set

The	lower	
approximation

Universe

Boundary
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FS based on Rough Set

Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang."Binary PSO and rough set theory for feature selection: a 
multi-objective filter based approach". International Journal of Computational Intelligence and Applications (IJCIA), Vol. 13, No. 2 
(2014). pp. 1450009(1-34)
Liam Cervante, Bing Xue, Lin Shang, Mengjie Zhang. "A Multi-Objective Feature Selection Approach Based on Binary PSO and 
Rough Set Theory". Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimisation 
(EvoCOP 2013). Lecture Notes in Computer Science. Vol. 7832. Vienna, Austria. 3-5 April 2013. pp. 25-36
Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. "A Dimension Reduction Approach to Classification Based on Particle 
Swarm Optimisation and Rough Set Theory". Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence. 
Lecture Notes in Artificial Intelligence.Vol. 7691. Springer. Sydney, Australia, December 2012. pp. 313-325

Attributes Equivalence	
relation Partition Equivalence	

classes

Lower	and	upper	
approximationsRough	set
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Feature Selection                             Classification      

47

Class +
< 0                 >=

Class -

GP for Embedded Feature Selection

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 10th 
International Conference on Simulated Evolution and Learning (SEAL 2014). Lecture Notes in Computer Science. Vol. 8886. Dunedin, New Zealand. 
December 15-18, 2014. pp. 593-604
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Feature Construction

872



GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• GP is flexible in making mathematical and logical functions

• There isn’t much structural (topological) information in the 
search space of possible functions, so using a meta-heuristic 
approach (such as evolutionary computation) seems 
reasonable.

49

Why Use GP for Feature Construction?

Selected 
Features

Constructed 
Features

Constructed 
Features
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• One constructed feature for one class

50

GP for FC: A System Diagram

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• One constructed feature for one class

50

GP for FC: A System Diagram

COMP422 Feature Manipulation: 37

Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.

COMP422 Feature Manipulation: 38

What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.

COMP422 Feature Manipulation: 39

What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.

COMP422 Feature Manipulation: 40

Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.

COMP422 Feature Manipulation: 41

GP for Feature Construction: A System Diagram

COMP422 Feature Manipulation: 42

A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the 
dispersion of the instances of that class along the feature 
axis. The dispersion of instances themselves is related to the 
distribution of data points in that class. 

• An interval I is represented with a pair (lower, upper) which 
shows the lower and upper boundaries of the interval. Ic is 
used to indicate an interval for class c. 

• The interval of class c could be formulated as follows if the 
class distributions were normal. 

• However, the normality assumption is not always satisfied. 
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GP for FC Measure: Entropy of Class Intervals 

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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Defining a measure of goodness for a single feature: 

• The interval of a class along a feature is determined by the 
dispersion of the instances of that class along the feature 
axis. The dispersion of instances themselves is related to the 
distribution of data points in that class.  

• An interval I is represented with a pair (lower, upper) which 
shows the lower and upper boundaries of the interval. Ic is 
used to indicate an interval for class c.  

• The interval of class c could be formulated as follows if the 
class distributions were normal.  

• However, the normality assumption is not always satisfied. 
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depending on type of classifiers will be using the constructed

features.
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The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.
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What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.
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Why Use GP for Feature Construction?
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• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.
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GP for Feature Construction: A System Diagram
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A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.
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• Overlapping intervals

• Non-overlapping intervals

52

GP for FC Measure:Examples of good and bad class 
intervals

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• Overlapping intervals 

• Non-overlapping intervals
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GP for FC Measure:Examples of good and bad 
class intervals
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Examples of good and bad class intervals

Overlapping intervals: ��
x
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Non-overlapping intervals: �
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c⋆, the class of

interest with corresponding interval Ic⋆, the Shannon entropy of the

interval of class c⋆ is

H(Ic⋆) = −
∑

c∈C p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆)

COMP422 Feature Manipulation: 45

Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.

COMP422 Feature Manipulation: 46

Example Papers for Reading

• Kourosh Neshatian, Mengjie Zhang, Peter Andreae: Genetic Programming

for Feature Ranking in Classification Problems. SEAL 2008: 544-554.

http://dx.doi.org/10.1007/978-3-540-89694-4_55

• Kourosh Neshatian, Mengjie Zhang, Mark Johnston: Feature Con-

struction and Dimension Reduction Using Genetic Programming.

Australian Conference on Artificial Intelligence 2007: 160-170.

http://dx.doi.org/10.1007/978-3-540-76928-6_18

• Kourosh Neshatian, Mengjie Zhang: Using genetic pro-

gramming for context-sensitive feature scoring in classifica-

tion problems. Connect. Sci. 23(3): 183-207 (2011).

http://dx.doi.org/10.1080/09540091.2011.630065

• Kourosh Neshatian’s PhD Thesis:

http://homepages.ecs.vuw.ac.nz/˜mengjie/students/KouroshPhd_thesis.p
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Example Papers for Reading

• Bing Xue, Mengjie Zhang, Will Browne. Particle swarm optimization

for feature selection in classification: A multi-objective approach, IEEE

Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

http://dx.doi.org/10.1109/TSMCB.2012.2227469

• Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang.

Binary PSO and rough set theory for feature selection: a multi-objective

filter based approach”. International Journal of Computational Intelligence

and Applications (IJCIA), Vol. 13, No. 2 (2014). pp. 1450009 – 1- 34.

http://dx.doi.org/10.1142/S1469026814500096

• Bing Xue, Mengjie Zhang, Will N. Browne. Particle Swarm Optimisa-

tion for Feature Selection in Classification: Novel Initialisation and Updat-

ing Mechanisms”. Applied Soft Computing. Vol 18, PP. 261–276, 2014.

http://dx.doi.org/10.1016/j.asoc.2013.09.018
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Example Papers for Reading

• Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie

Zhang. A Multi-Objective Particle Swarm Optimisation for Fil-

ter Based Feature Selection in Classification Problems”. Con-

nection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

http://dx.doi.org/10.1080/09540091.2012.737765

• Bing Xue, Liam Cervante, Lin Shang, Will N. Browne,

Mengjie Zhang. Multi-Objective Evolutionary Algorithms

for Filter Based Feature Selection in Classification”. In-

ternational Journal on Artificial Intelligence Tools. Vol.

22, Issue 04, August 2013. pp. 1350024 – 1 - 31.

http://dx.doi.org/10.1142/S0218213013500243

• http://www.informatik.uni-trier.de/˜ley/pers/hd/x/Xue:Bing

• http://ecs.victoria.ac.nz/Main/BingXue.Papers
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.
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Example Papers for Reading
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Binary PSO and rough set theory for feature selection: a multi-objective
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c⋆, the class of

interest with corresponding interval Ic⋆, the Shannon entropy of the

interval of class c⋆ is

H(Ic⋆) = −
∑

c∈C p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆)
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.
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• Given a discrete or categorical random variable C (the class 
label) which can take values c1, c2, . . . , cL with probabilities 
p(c1), p(c2),. . . , p(cL), the entropy of C is defined by:

where b is base of the logarithm and is usually 2.

• A class interval establishes a new probability space.Therefore, 
the probability of classes in the above equation should be 
conditioned on the values of the feature that fall in the 
interval.

• Given X, a feature, C, the set of all class labels, and c�, the 
class of interest with corresponding interval Ic� , the entropy 
of the interval of class c� is
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c⋆, the class of

interest with corresponding interval Ic⋆, the Shannon entropy of the

interval of class c⋆ is

H(Ic⋆) = −
∑

c∈C p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆)
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by
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∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the
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Single vs. Multiple Feature Construction
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tion that has this potential.
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities
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H(C) = −
∑L

i=1
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.
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• Another way of making multiple features is to use a fitness func-
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22, Issue 04, August 2013. pp. 1350024 – 1 - 31.

http://dx.doi.org/10.1142/S0218213013500243

• http://www.informatik.uni-trier.de/˜ley/pers/hd/x/Xue:Bing

• http://ecs.victoria.ac.nz/Main/BingXue.Papers
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Examples of good and bad class intervals

Overlapping intervals: ��
x

������������������������������������
�

Non-overlapping intervals: �
x

��������������������������������������� �
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c⋆, the class of

interest with corresponding interval Ic⋆, the Shannon entropy of the

interval of class c⋆ is

H(Ic⋆) = −
∑

c∈C p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆)
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.

COMP422 Feature Manipulation: 46

Example Papers for Reading

• Kourosh Neshatian, Mengjie Zhang, Peter Andreae: Genetic Programming

for Feature Ranking in Classification Problems. SEAL 2008: 544-554.

http://dx.doi.org/10.1007/978-3-540-89694-4_55

• Kourosh Neshatian, Mengjie Zhang, Mark Johnston: Feature Con-

struction and Dimension Reduction Using Genetic Programming.

Australian Conference on Artificial Intelligence 2007: 160-170.

http://dx.doi.org/10.1007/978-3-540-76928-6_18

• Kourosh Neshatian, Mengjie Zhang: Using genetic pro-

gramming for context-sensitive feature scoring in classifica-

tion problems. Connect. Sci. 23(3): 183-207 (2011).

http://dx.doi.org/10.1080/09540091.2011.630065

• Kourosh Neshatian’s PhD Thesis:

http://homepages.ecs.vuw.ac.nz/˜mengjie/students/KouroshPhd_thesis.p
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Example Papers for Reading

• Bing Xue, Mengjie Zhang, Will Browne. Particle swarm optimization

for feature selection in classification: A multi-objective approach, IEEE

Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

http://dx.doi.org/10.1109/TSMCB.2012.2227469

• Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang.

Binary PSO and rough set theory for feature selection: a multi-objective

filter based approach”. International Journal of Computational Intelligence

and Applications (IJCIA), Vol. 13, No. 2 (2014). pp. 1450009 – 1- 34.

http://dx.doi.org/10.1142/S1469026814500096

• Bing Xue, Mengjie Zhang, Will N. Browne. Particle Swarm Optimisa-

tion for Feature Selection in Classification: Novel Initialisation and Updat-

ing Mechanisms”. Applied Soft Computing. Vol 18, PP. 261–276, 2014.

http://dx.doi.org/10.1016/j.asoc.2013.09.018
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Example Papers for Reading

• Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie

Zhang. A Multi-Objective Particle Swarm Optimisation for Fil-

ter Based Feature Selection in Classification Problems”. Con-

nection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

http://dx.doi.org/10.1080/09540091.2012.737765

• Bing Xue, Liam Cervante, Lin Shang, Will N. Browne,

Mengjie Zhang. Multi-Objective Evolutionary Algorithms

for Filter Based Feature Selection in Classification”. In-

ternational Journal on Artificial Intelligence Tools. Vol.

22, Issue 04, August 2013. pp. 1350024 – 1 - 31.

http://dx.doi.org/10.1142/S0218213013500243

• http://www.informatik.uni-trier.de/˜ley/pers/hd/x/Xue:Bing

• http://ecs.victoria.ac.nz/Main/BingXue.Papers

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• 4 features, 3 classes
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GP for FC Measure: Original VS Constructed

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using 
Genetic Programming," in Evolutionary Computation, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012
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• 4 features, 3 classes
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GP for FC Measure: Original VS Constructed
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Fig. 9. (a) Decision tree induced by the J48 (C4.5) algorithm using the 1000
observations in the previous figure. (b) Class boundary generalized by the
decision tree. The decision tree inducer has failed to generalize the concept
of a line.

Fig. 10. (a) Simple GPMFC-constructed feature for the 1000 observations.
(b) J48 induced decision tree using the constructed feature, y.

E. Further Discussions

Theoretically, GP and symbolic learners both generate in-
telligible models: GP generates expression trees and symbolic
learners generate chains of rules or trees of decision stumps.
In practice, however, both of them can produce solutions
(constructed features or classifiers) that are not easily com-
prehensible; very often constructed features are unnecessarily
complicated and therefore unintelligible. Although in some of
our empirical results, the complexity of the constructed feature
and the complexity of the induced decision tree on those fea-
tures altogether were less than the complexity of the induced
decision tree on the original features (see the examples in the

Fig. 11. Visualization of the features in balance scale problem. The top four
plots depict the original features of the problem and the bottom plot is for
a constructed feature (x1x2 − x3x4). In each plot, the horizontal axis is the
instance number and the vertical axis is the value of the feature for the given
instance. The instances are grouped based on their class labels. The vertical
shaded areas from left to right correspond to the class labels: “left,” “balance,”
and “right.” The two dashed lines in the bottom plot depict the way a J48
decision tree inducer would partition the input (constructed) feature space in
order to learn the three concepts (classes).

previous subsection), in many cases the overall complexity
did not change or even increased after feature construction.
Two common causes of unnecessarily high complexity in GP
programs are verbosity and introns, both of which can be
addressed by algebraic or numeric simplification.

Even though in some cases the proposed feature construc-
tion system may not reduce the overall complexity of classifi-
cation systems (complexity of the constructed features plus the
complexity of the learnt classifier), throughout this paper, the
main focus was only on the complexity of induced decision
trees. This is because a decision tree with too many nodes
(on numeric features) can create serrated decision boundaries
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• Construct multiple features from a single tree
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GP for FC Measure: Multiple feature construction

Selected Features

Constructed 
Features

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and
Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM
Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256
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Image Recognition/Classification
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• The traditional way
• Domain-specific pre-extracted features approach (DS-GP)
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Image Recognition/Classification

The input is raw image pixel values

The feature areas need to be designed by 
domain-experts

Transform the pixel values of the selected 
areas to a different domain

Select a subset out of the extracted features 
(optional)

Feed the extracted features (with or without 
selection) to a GP-based classifier

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016
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Images: Two-Tier GP Method
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• Method: DWST
• Dataset: Faces
• Accuracy

- Training: 97.23%
- Test:        97.27%
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Images: Two-Tier GP Method
GECCO,Dever, 
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Images: GP-Surff

Designing a	program	representation	that	is	capable	of	detecting	sub-regions	
of	the	image	that	are	rich	in	features;

Constructing a	classification	system	to	extract	features	from	the	selected	
regions	and	then	use	a	SVM	classifier	and	voting	scheme	to	predict	the	class	
label;	and
Investigating whether	the	regions	detected	by	the	new	method	are	similar	to	
those	designed	by	domain	experts.

• Improve domain-independent object classification in images 
by using GP techniques.

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang and Bing Xue. "A Hybrid Genetic Programming Approach to Feature Detection and Image Classification". Proceedings of 2015 
the 30th International Conference on Image and Vision Computing New Zealand (IVCNZ 2015). IEEE Press. Auckland. 23 - 24 Nov 2015. pp. (to appear)
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• A program evolved on JAFFE, average over 95% test 
accuracy 

• The program detect 4 interesting regions
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Images: GP-Surff

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang and Bing Xue. "A Hybrid Genetic Programming Approach to Feature Detection and Image Classification". Proceedings of 2015 the 
30th International Conference on Image and Vision Computing New Zealand (IVCNZ 2015). IEEE Press. Auckland. 23 - 24 Nov 2015. pp. (to appear)
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• GP-HoG uses strongly typed GP to perform three tasks in 
the same tree structure. 

• All layers are trained simultaneously and coherently.

• Output of the tree is thresholded.
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Images: GP-HoG Method

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang, Bing Xue. "Genetic Programming for Region Detection, Feature Extraction, Feature Construction and 
Classification in Image Data". Proceedings of the 19th European Conference on Genetic Programming (EuroGP 2016). Lecture Notes in Computer 
Science. Vol. 9594. Porto, Portugal, March 30 - April 1, 2016. pp. 51-67 
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• The below tree has 98% training 
and 95% test performance on 
the Jaffe dataset despite being 
very simple.
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Images: GP-HoG Method

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang, Bing Xue. "Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data". Proceedings of the 19th European Conference on Genetic Programming (EuroGP 20

• The below tree has 95% training 
and 100% test performance on 
the Jaffe dataset.
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Biology
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• Due to the nature, the MS data production process is very 
expensive (costs around 2,000 NZD daily) and time 
consuming (around two weeks to produce a single sample).

• The number of samples available is very small and the 
number of features in each sample is extremely large.

• Moreover, the features of  interest are too small.

• The classification of MS data is so challenging.
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Biology 
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Biological Datasets

Data set # Features # Samples # Classes

Pancreatic 
Cancer 6771 181 2

Ovarian Cancer1 15154 253 2

Ovarian Cancer 
2 15000 216 2

Prostate Cancer 15000 322 4

Toxpath 7105 115 4

Arcene 10,000 200 2

Apple-plus 773 40 4

Apple-minus 365 40 4

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

67

Biology 

4

Proteins Metabolites

Mass spectrometry Spectrum

GECCO,Dever, 
Colorado, USA. 20-24 
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Biology 

Soha Ahmed, Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data, PhD thesis, 2015, School of Engineering and Computer Science, Victoria 
University of Wellington, New Zealand
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Biology: Feature ranking and GP FS

Soha Ahmed, Mengjie Zhang, Lifeng Peng. "Improving Feature Ranking for Biomarker Discovery in Proteomics Mass Spectrometry Data using 
Genetic Programming". Connection Science. Vol. 26, Issue 3, 2014. pp. 215-243
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Biology: Feature ranking and GP FS
58 CHAPTER 3. ENSEMBLE FEATURE RANKING

Dataset Original 
Features

REFS-F

IG

N-GP runs .
.
.

P1,1, P1,2, ...., P1,m

P2,1, P2,2, ...., P2,m

PN,1, PN,2, ...., PN,m

New Feature Set

Ranking Features 
according to
 their usage in 
the GP programs

Selecting 
top-ranked 
features

EvaluationResults

Figure 3.1: Overview of the GP-based approach.

At the beginning of each of the 10-folds cross-validation process, the
random seed of GP is initialised, and the following steps are performed.
Since the GP process is initialised at every fold, the bias of GP to the feature
selection process is avoided. The process of 10-folds cross validation is
explained as follows. For each fold, 30 independent GP runs are used, and
hence, the total number of independent runs are 300.

1. Shuffle the data randomly;

2. Divide the data into ten-folds;

3. For every fold, do the following:

(a) Use the current fold as a test and the rest of the folds as the
training set

(b) Run the GP Algorithm

(c) Use the selected features to transform training and test sets.
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Figure 3.6: Biomarker detection of the proposed method in comparison
with IG and RF.

Soha Ahmed, Mengjie Zhang, Lifeng Peng. "Improving Feature Ranking for Biomarker Discovery in Proteomics Mass Spectrometry Data using Genetic Programming". 
Connection Science. Vol. 26, Issue 3, 2014. pp. 215-243
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Biomarker Identification

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and Classification using Genetic Programming". 
Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256

GECCO,Dever, Colorado, 
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Biomarker Identification
 m/z values in Apple-plus 
data set (12 biomarkers)

 New Method   (9  ✓ )                Method 2 (3✓)

 331.21 ✗ ✓
 471.09 ✓ ✓

107.05, 169.05, 238.05, 27
5.09, 456.11, 459.13

✓ ✗

 456.62, 475.10 ✗ ✗

 449.11 ✓ ✓
 229.09 ✓ ✗

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and Classification using Genetic Programming". 
Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256

Apple minus m/z (5 
biomarkers)

New Method (5 ✓ ) Method 2 (2✓)

463.0 ✓ ✗

 447.09 ✓ ✓
 273.03 ✓ ✓
 435.13 ✓ ✗

 227.07 ✓ ✗
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July 2016
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Biology:GP for Measuring Peptide Detectability

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 
10th International Conference on Simulated Evolution and Learning (SEAL 2014). Lecture Notes in Computer Science. Vol. 8886. 
Dunedin, New Zealand. December 15-18, 2014. pp. 593-604
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Swarm random 
initialization

Evaluate fitness of each particle

Stopping criteria is met?

Update pbest
Local search for better pbest

Reset gbest to 0

Update particle’s velocity and 
position

Return the best solution

Yes
No

Start

Particles found 
better pbest ?

gbest not improved for 
m iterations ?

Yes

Yes

No

No

Update gbest

Yes

No

No

Yes

Biology: PSO with local search on pbest and 
resetting gbest (PSO-LSRG)

• Use a filter measure to identify:
– Relevant features: correlated to the class label.
– Redundant features: correlated with each other.

• Symmetric uncertainty (SU) is a normalised version of information gain (IG).

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 
2016 IEEE World Congress on Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI 2016 /CEC2016). Vancouver, 
Canada. 24-29 July, 2016. pp(to appear)
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Biology: PSO with local search on pbest and 
resetting gbest (PSO-LSRG)

5	- 6	times	faster	
than	PSO

• A PSO based hybrid FS algorithm for high-
dimensional classification.

• PSO-LSSU combines wrapper and filter 
measures:
- The fitness function.
- The local search.

• PSO-LSSU achieved much smaller feature 
subsets with significantly better classification 
performance than the compared methods in 
most cases.

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World Congress on 
Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI 2016 /CEC2016). Vancouver, Canada. 24-29 July, 2016.pp(to appear)
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• Many works on bio-data containing feature selection 
- which leads to biased results
- conclusion might change 

74

Feature Selection Bias

Binh Tran, Bing Xue and Mengjie Zhang. "Investigation on Particle Swarm Optimisation for Feature Selection on High-dimensional Data: Local Search and Selection Bias", Connection 
Science, Accepted April 2016

GECCO,Dever, Colorado, 
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• Many works on bio-data containing feature selection  
- which leads to biased results 
- conclusion might change 

74

Feature Selection Bias

Binh Tran, Bing Xue and Mengjie Zhang. "Investigation on Particle Swarm Optimisation for Feature Selection on High-dimensional 
Data: Local Search and Selection Bias", Connection Science, Accepted April 2016
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Figure 4. Structures of experiments with and without feature selection bias.

the index of the features, where the index of the features are listed in a descending order
by their frequency. It would be much more interesting to discover the biological finding
of these genes, but since the original meanings of the features/genes in GEMS are not
given, it is impossible to perform such research. In the future, we intend to collaborate with
researchers from biology to deep analyse the biological finding of the selected genes.

4.6. Further discussions

In this section, the re-substitution estimator was used to evaluate the performance of
the feature selection algorithms, which is the same as in Chuang et al. (2008) and many
other existing papers (Abedini et al., 2013; Ahmed et al., 2012; Alba et al., 2007; Babaoglu
et al., 2010; Huang et al., 2007; Mishra et al., 2009; Mohamad et al., 2011, 2013; Santana
et al., 2010; Shen et al., 2007; Yu et al., 2009). The re-substitution estimator, in other words,
means the whole dataset is used during the evolutionary feature selection process (as
shown in Figure 4(a)). There is no separate unseen data to test the generality of the selected
features. According toAmbroise andMcLachlan (2002), there is a feature selectionbias issue
here, so one cannot claim that the selected features can be used for future unseen data.

Feature selection bias typically happens when the dataset includes only a small number
of instances, especially on the gene expression data, where n-fold CV (10-CV) or LOOCV is
needed. Figure 4 compares the structures experiments with and without feature selection
bias. It can be seen that with selection bias, the algorithm reports the classification per-
formance of the (inner) CV loop and “such results are optimistically biased and are a subtle
meansof trainingon the test set” (Kohavi and John, 1997). Therefore, the conclusionsdrawn
from the re-substitution estimator with selection bias may be different from that without
bias. This, however, has not been seriously investigated in EC for gene selection.

5. Experiment II

In this section, the second set of experiments have been conducted, where the feature
selection bias issue is removed.

5.1. Performance evaluation

To avoid feature selection bias and compare the performance of the algorithms with and
without bias, the second set of experiments without feature selection bias have been
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Colorado, USA. 20-24 
July 2016
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GP for FS and FC
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GP for FS and FC

Binh Tran, Bing Xue and Mengjie Zhang. "Genetic Programming for Feature Construction and Selection in Classification on 
High-dimensional Data", Memetic Computing, Accepted 4 December 2015. (DOI:10.1007/s12293-015-0173-y)

Goal
In this study, we would like to investigate the potential
of standard GP algorithm in feature construction and fea-
ture selection for classification on high-dimensional data. To
evaluate GP individuals, we use embedded approach which
uses the constructed feature itself as a simple classifier to
classify binary-class problems. Specifically, we would like to
answer the following questions:

1. Whether the feature constructed by the standard GP
algorithm can improve the classification performance
of common learning algorithm such as SVM, KNN and
GP on high-dimensional problems.

2. How the constructed feature can improve the perfor-
mance of the learning algorithm.

3. Which of the following six combinations of features
work better with these learning algorithm.

(a) Subset 1: Constructed feature only;
(b) Subset 2: Original feature set augmented by the

constructed feature;
(c) Subset 3: Terminal features used to construct the

new feature;
(d) Subset 4: The combination of subset 2 and 3;
(e) Subset 5: Multiple features constructed from all

possible subtrees of the best GP individual;
(f) Subset 6: The combination of subset 3 and 5;

2. RELATED WORK
GP has been proposed in wrapper or filter approach to

construct a single feature or multiple features. Single fea-
ture construction is a straight forward approach to standard
GP algorithm. These methods [10, 13] were implemented as
single-tree GP methods where each GP individual contains
only one constructed feature. On the other hand, multiple-
feature construction methods used di↵erent strategies such
as using multi-tree GP where a GP individual comprises a
number of trees corresponding to a predefined number of
constructed features [9]. Another approach is to use cooper-
ative coevolution like in [4] where n concurrent populations
of single-tree individuals were used to evolve n desired con-
structed features. In [2], Ahmed et al. proposed to construct
multiple features from all possible subtrees in the best single-
tree individual. Similarly, Neshatian et al. [12] proposed a
new approach to constructing multiple features by running a
single-tree GP program multiple times. The number of con-
structed features was equal to the number of classes. Each
GP run focused on one class.

In addition to feature construction, GP also has been pro-
posed by some studies [3, 12] for feature selection thanks
to its intrinsic characteristic of choosing features while con-
structing new features.

3. METHODOLOGY
To answer the above questions, we use standard GP with

embedded approach to construct one new high-level feature.
A population of single-tree individuals are randomly ini-
tialised. Each individual is a candidate constructed feature.
This constructed feature is also considered as a classifier
which can be applied on the training data to evaluate the
performance of itself. For a binary-class problem, if the con-
structed feature applied on an instance x has a negative
values, GP will classify x to class 1; otherwise to class 2.

The proportion of correctly identified instances is used as
the fitness value to evaluate each GP individual. At the end
of each GP run, the best individual P is used to create the
six feature subsets:

1. “Con”: comprises only one feature constructed by ex-
ecuting the whole P tree.

2. “FullCon”: is the original feature set combined with
the constructed feature “Con”.

3. “Term”: contains all di↵erent original features appeared
in P .

4. “ConTerm”: combines two subsets “Con” and “Term”.

5. “MulCon”: is a collection of multiple features con-
structed based on all possible subtrees in P includ-
ing the whole tree P which is “Con”. Only di↵erent
subtrees are collected to avoid generating redundant
features.

6. “MulConTerm”: combines two subsets “MulCon” and
“Term”.

Based on these feature subsets, training and test sets are
transformed and input to kNN (k=1), SVM and GP (as a
classifier) to evaluate the performance of these six created
subsets. The Weka package [?] is used to run two classifica-
tion algorithms IB1 and libSVM with default settings.

4. EXPERIMENT DESIGN
Nine binary-class gene expression datasets 1 are used to

test if the created subsets can improve the performance
of IB1, libSVM and GP. Details about these datasets are
shown in Table 1. Because the number of instances in these
datasets are quite small, we use ten fold cross validation to
split the datasets into training and test sets. As GP is a
stochastic method, for each dataset, we run GP for 30 in-
dependent runs on each training and test folds. Therefore,
totally 300 GP runs are executed. To evaluate the perfor-
mance of GP as a classifier, another 30 runs with di↵erent
seeds is executed for each created subset to get the average
classification accuracy.
Table 2 describes the parameter settings of the GP pro-

gram. Because the created subsets usually have a much
smaller number than the original feature set, when running
GP as a classifier, we use the tree depth from 3 to 8 instead
of 6 to 10.

Table 1: Datasets
Data set Number of Features Number of Instances

Colon 2,000 62
DLBCL 5,469 77
Leukemia 7,129 72
CNS 7,129 60
ARCENE 10,000 200
Prostate 10,509 102
Breast 24,481 97
Ovarian 15,154 253
Madelon 500 2600

5. RESULTS
1These datasets can be downloaded
from http://www.gems-system.org,
http://csse.szu.edu.cn/sta↵/zhuzx/Datasets.html,
http://www.nipsfsc.ecs.soton.ac.uk/datasets/

5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.

Figure 1: Leukemia constructed feature
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between

Figure 2: Feature X95735 at and D42043 at

Figure 3: D13637 at and D78611 at

features of these two datasets in Figure 7 and Figure 8, we
find that Ovarian features are more correlated to each other
(about 0.4 to 0.6) than Madelon features (about 0.01 to
0.03). This indicates that for non-linear data GP can work
better than libSVM which is a linear classification algorithm.
A↵ected by this overfitting problem, SVM has the poor-

est test performance on most of the datasets. However, only
one constructed feature can significantly improve its perfor-
mance on 6 datasets while other created subsets can not.
This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
the six created subsets, the construct feature and the termi-
nal features achieve the highest performance in GP. The last
four subsets achieve similar performance in kNN and SVM
on all datasets.
Analysis of the constructed feature shows that by choos-

ing informative features, GP can construct new features
which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
most of the datasets indicates the problem of overfitting. By
analysing the datasets, we found that this problem occurs
when the data has a skewed distribution with many out-
liers. GP also shows its ability to alleviate the problem of

5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.

Figure 1: Leukemia constructed feature

⌥⌃ ⌅⇧D13637 at

⌥⌃ ⌅⇧D78611 at

"""
bbb

⇤⇥ ��*
⌥⌃ ⌅⇧0.55

%%
XXXXXXX

⇤⇥ ��-
⌥⌃ ⌅⇧Sqrt

⌥⌃ ⌅⇧D42043 at

⌥⌃ ⌅⇧X95735 at

"""
bbb

⇤⇥ ��-
⇠⇠⇠⇠⇠⇠⇠

`̀ `̀ `̀ `̀

⇤⇥ ��-

5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the
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each feature. Figure 5 shows the boxplot of the first 100 fea-
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overfitting by constructing new high-level features with bet-
ter distribution than the original skewed features. However,
the number of features constructed by one best individual is
still too small to be representative for the whole feature set
with a large number of features. Increasing the number of
constructed features may further improve the performance
of these learning algorithms on high-dimensional data. Our
future work will focus on this direction.
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• Scalability Problem
• thousands, tens of thousands, and even millions 

• Computational Cost

• Search Mechanisms

• Measures

• Representation

• Multi-Objective Feature Selection

• Feature Construction

• Number of Instances
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