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Abstract

 Evolutionary Computation (EC) has been used with great success on various real-world 
problems. One domain abundant with difficult problems is cryptology.

 This tutorial will first give a brief introduction to cryptology intended for general audience.

 We concentrate on several topics from cryptography that are successfully tackled up to now 
with EC and discuss why those topics are suitable to apply EC. However, care must be taken 
since there exists a number of problems that seem to be impossible to solve with EC and one 
needs to realize the limitations of the heuristics.

 We discuss the choice of appropriate EC techniques for various problems and evaluate on the 
importance of that choice. Furthermore, we will discuss the gap between the cryptographic 
community and EC community and what does that mean for the results.

 To conclude, we present a number of topics we consider to be a strong research choice that 
can have a real-world impact. In that part, we give a special attention to cryptographic 
problems where cryptographic community successfully applied EC, but where those problems 
remained out of the focus of EC community. This tutorial will also present some live demos of 
EC in action when dealing with cryptographic problems. 
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Introduction to Cryptology

 Cryptology (from Greek words kryptos which means hidden and logos 
which means word) is the scientific study of cryptography and 
cryptanalysis.

 We can trace the origins of cryptology in an art form to the ancient Egypt.

 Cryptography is a science (and art) of secret writing with the goal of 
hiding the meaning of a message. In modern cryptography, it is not only 
important to achieve confidentiality, but also authentication, non-
repudiation and data integrity among other goals.

 Cryptanalysis is a science of analyzing ciphers in order to find 
weaknesses in them.

6

Introduction to Cryptography

Taxonomy of ciphers
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Classical Ciphers

 Transposition ciphers are such ciphers where the order of characters is 
shuffled around.

 Substitution ciphers are ciphers where each character in the alphabet is 
substituted with another character in the alphabet.

 Enigma machine is a mechanical rotor device that is comprised from 
several rotors that dynamically substitute the plaintext in accordance to the 
rotor position.

 Today, easy to cryptanalyze.

 We do not consider them here, but we give several references.

 Scytale, Caesar cipher, non-standard hieroglyphs, etc.

8

Modern Ciphers

 In 1940s Shannon published his paper on the design principles of block 
ciphers.

 Important milestones happened in 1970s.

 The design of the DES cipher, the introduction of public key cryptography.

 Modern cryptography has much more emphasize on definitions and proofs, 
although there are many primitives used today that do not have rigorous 
proofs.

 Informally, we distinguish classical from the modern cryptography on a 
basis that modern cryptography has a more scientific approach.
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Basic notions

 Sender is a person who is sending a message. The most famous sender in 
cryptography is Alice.

 Receiver is a person who is receiving a message. The most famous message 
receiver in cryptography is Bob.

 Adversary is a malicious entity whose aim is to prevent the users of a 
cryptosystem from achieving their goals. Popular names are Eve in the case 
of passive adversaries and Mallory when talking about active adversaries.

 Cryptographic primitive is a part of a cryptographic tool used to provide 
information security, i.e., a low-level cryptographic algorithm that is 
frequently used.

 Cryptographic algorithm (cipher) is a mathematical function used for 
encryption, decryption, key establishment, authentication, etc. 

10

Basic notions

 Plaintext P or message is the information that the sender wishes to transmit 
to the receiver.

 Ciphertext C is the result of an encryption performed on plaintext using a 
cryptographic algorithm.

 Encryption is a process of applying a transformation E to the plaintext P. 
After that transformation, only an authorized party should be able to read 
the message, i.e., E(P) = C.

 Decryption is a process of applying a transformation D to the ciphertext C, 
i.e., D(C) = P.

11

Symmetric-key Cryptography

 Also known as private key cryptography.

 Symmetric-key cryptography uses the same key to encrypt/decrypt or to 
compute/verify the data.

 Assume that Alice and Bob want to exchange some message and they want 
it to remain secret, i.e., that no one else can read it.

 They have only an insecure channel to communicate through. Alice could 
encrypt her message and send it encrypted over an insecure channel to Bob. 
If Bob has the same key as Alice, he can then decrypt and read the 
message.

 Eve cannot decrypt the message if she does not know the key.

12

Symmetric-key Cryptography

Secure two party communication

885



13

Block Ciphers

 Block ciphers operate on blocks of fixed length of data with an unvarying 
transformation that is specified by the key.

 A block cipher with a given key should be indistinguishable from a random 
permutation by an adversary not knowing the key.

 Claude Shannon stated that computationally secure cryptosystem should 
follow confusion and diffusion principles.

 Confusion – the ciphertext statistics should depend on the plaintext 
statistics in a manner too complicated to be exploited by the cryptanalyst.

 Diffusion - each digit of the plaintext and each digit of the secret key 
should influence many digits of the ciphertext.

 DES, AES, MARS, PRESENT, etc.

14

Stream Ciphers

 They should behave as pseudorandom number generators (PRNGs).

 Most of the stream encryption schemes encrypt message bits by adding 
encryption bits modulo two.

 Historically looking, linear feedback shift registers (LFSRs) were used 
extensively, in order to produce pseudorandom numbers. 

 An LFSR is a shift register whose input bit is a linear function of its 
previous state. Those bit positions that affect the next state are called taps.

 To add the nonlinearity (and therefore improve the security) one option is 
to add some nonlinear element, where a Boolean function represents a 
common choice. 

15

Implementation Attacks

 All attacks that do not aim at the weaknesses of the algorithm itself, but on 
the actual implementations on cryptographic devices.

 Sources: power, sound, light, electromagnetic radiation, etc.

 Implementation attacks are among the most powerful known attacks against 
cryptographic devices.

 Common types of implementation attacks are side channel attacks and fault 
injection attacks.

 Side channel attacks are passive and non-invasive attacks.

 Fault injection attacks are active attacks since they enforce the target to 
work outside the nominal operation range.

16

Public Key Cryptography

 In symmetric key cryptography, both parties need to know the key before 
the communication in order to establish the secure channel.

 However, the problem is how to exchange that key if there exists no secure 
channel.

 One option is to use public key cryptography.

 Also called asymmetric cryptography.

 Here, there exist two keys: private and public key.

 To encrypt, one uses the public key, but to decrypt one needs to know the 
private key.
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Public Key Cryptography

 Public key cryptography relies on difficult problems in mathematics, like 
integer factorization, discrete logarithm problem, knapsack problem, etc.

 RSA, Diffie-Hellman, ECC,…

 For public key cryptography, the are only a few papers where authors use 
evolutionary computation and the results are not spectacular.

 However, this is to be expected: it is much more difficult to design some 
cryptographic primitive here or to attack a system with evolutionary 
computation.

18

On the Evolutionary Computation

19

On the Evolutionary Computation

 Research area within computer science that draws inspiration from the 
process of natural evolution.

 Evolutionary algorithms are population based metaheuristic optimization 
methods that use biology inspired mechanisms like selection, crossover or 
survival of the fittest.

 Genetic Algorithm (GA), Holland, 1975.

 Tree based Genetic Programming (GP), Koza, 1992.

 Cartesian Genetic Programming (CGP), Miller, 1999.

 Evolution Strategy (ES), Rechenberg, Schwefel, 1970s.

 NSGA-II, Deb, 2002.

20

Examples of Applications
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Basics

 How to solve hard problems in cryptology?

 Problems need to be hard (to be worthwhile), but not too difficult (to be 
impossible to solve).

 Plenitude of problems and possible methods to solve them.

 Care needs to be taken that one does not select too difficult problems.

 Often, evolutionary computation is not used to provide the final solutions, 
but instead to help us to improve the results of some other technique.

22

Evolutionary Computation Framework

 ECF is a C++ framework intended for application of any type of 
evolutionary computation.

 Developed by Evolutionary Computation group from Faculty of Electrical 
Engineering and Computing, Zagreb, Croatia:

http://gp.zemris.fer.hr/

 Details about projects concerning evolutionary computation and 
cryptology:

http://evocrypt.zemris.fer.hr/

23

Evolutionary Computation Framework
ECF GUI
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Evolutionary Computation Framework
<ArtificialBeeColony>

<Entry key="elitism">1</Entry>
<Entry key="limit">300</Entry>

</ArtificialBeeColony>
<Clonalg>

<Entry key="beta">1</Entry>
<Entry key="c">0.2</Entry>
<Entry key="cloningVersion">proportional</Entry>
<Entry key="d">0</Entry>
<Entry key="n">100</Entry>
<Entry key="selectionScheme">CLONALG1</Entry>

</Clonalg>
<CuckooSearch>

<Entry key="pa">0.75</Entry>
</CuckooSearch>
<DifferentialEvolution>

<Entry key="CR">0.9</Entry>
<Entry key="F">1</Entry>
<Entry key="bounded">0</Entry>

</DifferentialEvolution>
<Elimination>

<Entry key="gengap">0.6</Entry>
<Entry key="selpressure">10</Entry>

</Elimination>
<EvolutionStrategy>

<Entry key="lambda">4</Entry>
<Entry key="mu">1</Entry>
<Entry key="rho">1</Entry>
<Entry key="selection">plus</Entry>

</EvolutionStrategy>

<GeneticAnnealing>
<Entry key="coolingfactor">0.7</Entry>
<Entry key="elitism">0</Entry>
<Entry key="energybank">200</Entry>

</GeneticAnnealing>
<OptIA>

<Entry key="c">0.2</Entry>
<Entry key="dup">5</Entry>
<Entry key="elitism">0</Entry>
<Entry key="tauB">100</Entry>

</OptIA>
<ParticleSwarmOptimization>

<Entry key="bounded">0</Entry>
<Entry key="maxVelocity">10</Entry>
<Entry key="weight">0.8</Entry>
<Entry key="weightType">0</Entry>

</ParticleSwarmOptimization>
<RandomSearch/>
<RouletteWheel>

<Entry key="crxprob">0.5</Entry>
<Entry key="selpressure">10</Entry>

</RouletteWheel>
<SteadyStateTournament>

<Entry key="tsize">3</Entry>
</SteadyStateTournament>

Available algorithms
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Boolean functions

 The easiest problem to start.

 There exists a natural mapping between the truth table representation of 
Boolean functions and representation of solutions in EC.

 Boolean functions are important cryptographic primitive and often used in 
stream ciphers as the source of nonlinearity.

Boolean function with 2 inputs

26

Boolean functions

 To be used in cryptography, a Boolean function needs to fulfill a number of 
cryptographic properties.

 To be used in filter generators: balancedness, high nonlinearity, high 
algebraic degree, high algebraic immunity, high fast algebraic immunity.

 To be used in combiner generators additionally is required a good value of 
correlation immunity.

 To be used as a part of the side-channel attack countermeasure it needs to 
have low Hamming weight and high correlation immunity.

 To be of practical importance, it should have at least 13 inputs.

 Three options: algebraic constructions, random search, and heuristics.

27

Boolean functions

Combiner generator Filter generator

28

Boolean functions, scenario 1

 Evolving Boolean functions that are to be used in combiner/filter 
generators.

 We are interested in a number of properties, where some of those properties 
are conflicting.

 Search space size is 2^(2^n).

 Representing solutions in the truth table form requires string of bits of 
length 2^n.

 Already for a Boolean function with 8 inputs, the search space size is 
2^(256).
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Boolean functions, scenario 1

 How to write fitness function?

 As a single objective with the weight factors, or a multiple stage fitness 
function, multi-objective approach or even many-objective approach.

 For Boolean functions up to 8 inputs, most of the EC techniques give good 
results.

 However, the best results are obtained with GP and CGP.

 Results comparable with algebraic constructions.

 The simplest problems seem to be either:
• Evolving bent function (those that are not balanced, but with maximum nonlinearity)

• Evolving balanced functions with high nonlinearity.

30

Boolean functions, scenario 1

 It seems that the genotype plays much larger role than the choice of the 
fitness function.

Average values, CGP, bent Boolean functions with 8 inputs

31

Boolean functions, scenario 1

GA, bitstring representation
Boolean function with 8 inputs

32

Boolean functions, scenario 1

GP, Boolean function with 8 inputs
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Boolean functions, scenario 2

 Here we aim to evolve Boolean functions that have as small as possible 
Hamming weight and high correlation immunity in order to reduce the 
masking cost when used as a side-channel countermeasure.

 Masking consists in changing randomly the representation of the key to 
deceive the attacker.

 Example: if each bit ki, 1< i < n of a key k is masked with a random bit mi, 
then an attacker could probe ki XOR mi.

 Provided mi is uniformly distributed, the knowledge of ki XOR mi does not 
disclose any information on bit ki .

 Since most of the algebraic constructions aim to find balanced Boolean 
functions, they are not appropriate for this problem.

34

Boolean functions, scenario 2

 Masking can be summarized as the problem of finding Boolean functions 
whose support is the masks' set, with the two following constraints:

• small Hamming weight, for implementation reasons, and

• high correlation immunity t to resist an attacker with multiple (< t) probes.

 There is a trade-off which motivates the research for low Hamming weight 
high correlation immunity Boolean functions.

 Interesting problem since we know the best possible values, but we do not 
know actual functions reaching those values.

35

Boolean functions, scenario 2

 Up to recently, there were several values of practical interest unknown.

 Attempts with SAT solvers did not resulted in success even after more than 
one month of calculation.

 For CGP and GP, this problem seems to be trivial.

 Optimal results sometimes achieved even in less than 1 hour.

 However, there are combinations of parameters as well as function sizes 
that seem more difficult for EC.

36

Boolean functions, scenario 2

Best obtained results with CGP and GP
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Boolean functions, scenario 3

 Previous results show that EC can be used to evolve Boolean functions of 
various sizes and properties.

 However, it is to be expected that after some size, the results will become 
worse and the evaluation process long.

 For instance, if we consider the algebraic immunity and fast algebraic 
immunity properties. To calculate those two properties can easily take 
several hours for a Boolean functions with e.g. 16 inputs.

 Therefore, at least for now, those properties were never included in the 
evaluation process for larger sizes of Boolean functions.

 The problem seems difficult to circumvent since it is actually a problem 
with the way of calculating the properties.

38

Boolean functions, scenario 3

 We already discussed there are several techniques how to generate Boolean 
functions.

 The question is can we combine several techniques.

 For instance, could we use evolutionary computation to evolve algebraic 
constructions?

 If yes, then we need just to show that our construction results in Boolean 
functions with good properties and that it holds for any size of Boolean 
functions.

 We evolve secondary algebraic constructions that result in bent Boolean 
functions.

39

Boolean functions, scenario 3

GP secondary construction
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Boolean functions

 Possible challenges:
• Finding balanced Boolean function with 8 inputs that have nonlinearity 118.

• Use EC to evolve primary algebraic constructions.

• Evolve Boolean functions to be used in combiner/filter generators where parameters are 
also algebraic immunity and fast algebraic immunity.

• Use different, previously not investigated unique representations of Boolean functions.

• Investigate many-objective optimization.

• Quaternary Boolean functions.
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S-boxes

 Natural extension from the Boolean function case.

 S-boxes (Substitution Boxes) are also called vectorial Boolean functions.

 Often used in block ciphers as a source of nonlinearity.

 However, this problem is much more difficult!

 S-box of dimension mxn has n output Boolean functions, but for the most of 
the properties we need to check all linear combinations of those functions.

42

S-boxes

2x2 S-box example

43

S-boxes

 For an S-box of dimension nxm there are in total 2^(m*2^n) S-boxes.

 When n = m, some search space sizes of practical interest are:

 Several options how to represent solutions.

 Again as in the Boolean function case, there are three design options: 
algebraic constructions, random search, and heuristics.

44

S-boxes, scenario 1

 When representing S-boxes with their truth tables (i.e., bitstring
representation as with Boolean functions) we see the problem is very 
difficult.

 Indeed, already balancedness property requires that all columns of  an S-
box are balanced (that is, have the same number of zeros and ones), but also 
all linear combinations needs to be balanced.

 Still, this approach works for sizes ~4x4 where there are 15 linear 
combinations we need to consider.

 However, for larger sizes, it is almost impossible to obtain even balanced 
solution with bitstring representation.

 Therefore, we do not consider such representation anymore.
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S-boxes, scenario 1

 It is also possible to use CGP and GP with the permutation encoding:

46

S-boxes, scenario 1

GP solution of 8x8 S-box
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S-boxes, scenario 2

 We can represent S-boxes as permutations, i.e., all values between 0 and 
2^n -1 (where n is the dimension of the S-box).

 Then, the S-box is always bijective and we do not need to concern with the 
balancedness property.

 Similar as with Boolean functions, there are many properties of interest 
when evolving S-boxes (besides the balancedness): high nonlinearity, low 
δ-uniformity, high algebraic degree, etc.

 For dimensions up to 4x4, permutation encoding gives optimal results 
(bijective solutions with maximal nonlinearity and minimal δ-uniformity).

 However, for instance for 8x8, algebraic construction can give nonlinearity 
of 112 and δ-uniformity of 4.

48

S-boxes, scenario 2

 Random search will result in nonlinearity up to 98 and nonlinearity down to 
10.

 Heuristics, and EC more precisely with permutation encoding can go up to 
104 nonlinearity and δ-uniformity of 8.

 The question is then whether there is any sense to use heuristics if such 
methods cannot compete with algebraic constructions.

 However, it turns out there are properties that algebraic constructions do 
not consider. For instance, properties related with the side-channel 
resistance will usually have poor values if S-boxes are constructed with 
algebraic constructions.

 Therefore, the task is to evolve S-boxes that have good side channel 
resistance while maintaining other properties optimal.
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S-boxes, scenario 2

Permutation encoding of 4x4 S-box

50

S-boxes, scenario 2

 Additional problem is that such properties are conflicting with the 
nonlinearity property and there must be a trade-off.

PRESENT S-box Evolved S-box

51

S-boxes, scenario 3

 Besides the properties related with the side-channel attacks, we are also 
interested in implementation properties like power, area, and latency.

 Again, algebraic constructions do not consider such properties but we can 
evolve S-boxes with good cryptographic properties that are hardware-
friendly.

 Naturally, there exist the same problem as before: we do not want that 
cryptographic properties deteriorate too much.

 In this scenario, we require that our evolution framework can communicate 
with the framework that does the implementation properties analysis.

52

S-boxes, scenario 3

Evaluation setup when evolving S-boxes with good 
implementation properties
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S-boxes, scenario 3

 However, as said, EC does not cope good with larger sizes of S-boxes and 
therefore our previous technique is expensive from the cryptographic 
perspective.

 To circumvent the problem, we can evolve affine transformation of an S-
box.

 Affine transformation will change implementation properties, but leave 
cryptographic properties intact:

𝑆𝑎 𝑥 = 𝐵 𝑆𝑏 𝐴 𝑥 𝑋𝑂𝑅 𝑎 𝑋𝑂𝑅 𝑏.

 Here, A and B are invertible nxn matrices in GF(2) and a and b are 
constants.

54

S-boxes, scenario 4

 Evolve S-boxes in a form of cellular automata (CA) rules.

 Such representation is also used in practice (Keccak cipher).

 It is possible to find many rules that result in good S-boxes.

55

S-boxes, scenario 4

Evolved CA rule for the 5x5 S-box
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S-boxes, scenario 5

 Adding flip flops in order to increase the throughput of combinatorial 
circuit.

 Applications beyond cryptography.

 Depending on the number of elements (cells) the problem can be extremely 
difficult.

 Current results show we are able to improve the throughput by almost 
100%.

 Naturally, this causes the increase of area.
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S-boxes, scenario 5

AES S-box realized in the tower field
representation

58

S-boxes

 Possible challenges:
• Evolve S-box of size 8x8 that has nonlinearity 112.

• Use new representations of solutions.

• Improve the efficiency of EC with the bitstring representation.

• Consider S-box representations in a form of equations.

• Find general rules for CA and S-boxes.

59

Addition chains

 Consider modular exponentiation; find the (unique) integer B ∈ [1,…, p-1] 
that satisfies:

𝐵 = 𝐴𝑐 mod p.

 Several ways how to calculate this.

 Naïve way, multiply c times.

 Use addition chain.

 An addition chain for the exponent c of length l is a sequence V of positive 
integers v0 = 1,…, vl = c, such that for each i > 1, vi = vj + vk for some j and 
k with 0 ≤ j ≤  k < i.

60

Addition chains

 The length of the addition chain defines the number of multiplications 
required for computing the exponentiation. 

 The aim is to find the shortest addition chain for a given exponent c.

 Example:

 Binary method: write 60 in binary: 111100; replace “1” with “DA” and “0” 
with “D”; cross out the first “DA” on the left; “DADADADD”, calculate: 

1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60.

 Addition chain (7 operations):

A^1; A^2 = A^1 * A^1; A^4 = A^2 * A^2; A^6 = A^4 * A^2; A^12 = A^6 *       
A^6;A^24 = A^12 * A^12; A^30 = A^24 * A^6; A^60 = A^30 * A^30.
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Addition chains

 The problem of finding the shortest addition chain for a given exponent is 
of great relevance in cryptography.

 However, the problem is believed to be NP-hard.

 There is no single algorithm that can be used for any exponent.

 Still, the best solutions are obtained by pen and paper method.

 Huge numbers so exhaustive search is impossible.

 Heuristics should be able to help.

 There exist many types of chains. Here we are interested in ascending 
addition chains.

62

Addition chains

 The values in the ascending addition chain have the property that they are 
the sum of two values appearing previously in the chain.

 Types of steps in the addition chain:
• Doubling step; when j = k = i - 1. This step always gives the maximal possible value at 

the position i.

• Star step; when j but not necessarily k equals i – 1.

• Small step; when log2(ai) = log2(ai-1).

• Standard step; when ai = aj + ak where i > j > k.

 A star chain is a chain that involves only star operations.

63

Addition chains

 For this problem we need custom crossover and mutation operator, as well 
as the repair mechanism.

64

Addition chains
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Addition chains

GA results, part 1

66

Addition chains

GA results, part 2

67

Addition chains

 For most of the values we find the optimal one (or what is the current best).

 Out of all tested numbers, only 2^127 - 3 has practical importance.

 We find chain of 136 steps, also done by expert by hand.

 Human-competitive?

 We believe so, on average we need 10 mins, pen and paper requires a lot of 
experience and will last at least 1 hour.

 Plenty of numbers to investigate.

 Some more realistic numbers are 2^255 - 21 and 

2^252 + 27742317777372353535851937790883648491.

68

Addition chains

Evolved addition chain for 1087 value
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Addition chains

 Possible challenges:
• Improve the speed of the algorithm.

• Look for optimal chains for even larger numbers.

• Differentiate between multiplication and squaring steps.

• Analyze the structure of numbers with regards to the EC performance.

• Support special structures of numbers.

• Explore different types of chains.

70

Pseudorandom number generators

 In cryptography, random number generators (RNGs) play an important role.

 Most of the time, we need true random number generators (TRNGs), but 
still there are applications where pseudorandom number generators 
(PRNGs) are enough.

 TRNG is a device for which the output values depend on some 
unpredictable source that produces entropy.

 PRNGs represent mechanisms that produce random numbers by performing 
a deterministic algorithm on a randomly selected seed

 One example is masking for the side channel resistance.

71

Pseudorandom number generators

 We want to find extremely fast and small PRNGs that pass all NIST 
tests.

 We can use GP and CGP to evolve PRNGs.

Model of a PRNG

72

Pseudorandom number generators

 We evolve PRNGs that have n inputs and 1 output (GP) or m outputs 
(CGP).

 All variables are 32-bit integer values.

 Function set are function that are fast and small when implemented in 
hardware (shift, rotate, permute, and logical operations XOR, NOT, AND).

 Here, obvious advantage of CGP over GP is that GP needs to iterate m 
times to produce the same size of the output as CGP produces in a single 
iteration.
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Pseudorandom number generators

 Fitness function needs to be simple, yet powerful enough to drive our 
search.

 We use approximate entropy test from the NIST statistical test suite as a 
fitness function.

 After the evolution process is over, our parser automatically takes the best 
individual and outputs it as a C source code.

 That source code is then used to produce 10 million bits that are then 
evaluated with the NIST statistical suite.

 We cannot use whole test suite in the evolution since it would be too slow.

 Our current fitness function consists of 130 evaluations of the approximate 
entropy function.

74

Pseudorandom number generators

Structure of evolved PRNGs

75

Pseudorandom number generators

Example of evolved PRNG

76

Pseudorandom number generators

GP evolved PRNG
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Pseudorandom number generators

CGP evolved PRNG

78

Pseudorandom number generators

CGP solution

79

Pseudorandom number generators

 The same technique can be used to produce PRNGs on-the-fly.

 Then, we can use evolvable hardware that constantly updates the PRNG 
part.

 In order to ensure that our designs always use all terminals, we penalize 
solutions that do not have all inputs.

 Maximal throughput on ASIC 117 Gb/s and for FPGA 66 Gb/s.

 Here, GP and CGP are used to evolve only the update functions, but EC can 
be also used to evolve the non-invertible function.

80

Pseudorandom number generators

Evolvable hardware setting
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Pseudorandom number generators

Virtual reconfigurable circuit cell

82

Pseudorandom number generators

 Possible challenges:
• Improve the fitness function and consequently the evaluation process.

• Add to the fitness function also consideration about the size and speed of specific 
functions (platform dependent).

• Experiment with different sizes of the update function as well as different terminal sets.

• Improve the efficiency of the evolvable hardware scenario.

83

Fault injection

 A fault injection (FI) attack is successful if after exposing the device to a 
specially crafted external interference, it shows an unexpected behavior 
exploitable by the attacker.

 Insertion of signals has to be precisely tuned for the fault injection to 
succeed.

 Finding the correct parameters for a successful FI can be considered as a 
search problem where one aims to find, within a minimum time, the 
parameter configurations which result in a successful fault injection.

 The search space is typically too large to perform an exhaustive search.

 Use heuristics to find search space parameters that lead to successful attack.

84

Fault injection

 Voltage switching, three parameters: glitch length, glitch voltage, and glitch 
offset.

 Two scenarios:
• Finding faults in a minimal number of measurements.

• Characterizing the parameter space, again in a minimal number of measurements.

 FI testing equipment can output only verdict classes that correspond to 
successful measurements. 

 Attacking the PIN mechanism.
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Fault injection

PIN authentication mechanism

86

Fault injection

 Several possible classes for classifying a single measurement:
• NORMAL: smart card behaves as expected  and the glitch is ignored

• RESET: smart card resets as a result of the glitch

• MUTE: smart card stops all communication as a result of the glitch

• INCONCLUSIVE: smart card responds in a way that cannot be classified in any other 
class

• SUCCESS: smart card response is a specific, predetermined value that does not happen 
under normal operation

87

Fault injection

Custom GA

88

Fault injection

Random, 2500 measurements Exhaustive, 7500 measurements

GA + LS, 250 measurements
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Fault injection

Random, 250 measurements GA, 250 measurements

GA + LS, 250 measurements 90

Fault injection

 Possible challenges:
• Working with more relevant parameters.

• Attacking cards with countermeasures.

• Switching to other sources of attacks.

• Making the search algorithm more powerful.

91

Final Remarks, Perspectives 
and Conclusions
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Final Remarks

 All the examples presented here are available from SVN repository:

http://evocrypt.zemris.fer.hr/

 In all the experiments we use Evolutionary Computation Framework (ECF) 
that can be downloaded from:

http://ecf.zemris.fer.hr/

 For updated version of slides as well as for the further references, please 
check:

http://www.evocrypt.com/
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Perspectives

 Stepping outside of the cryptology area and considering security area there 
are many more interesting problems:

• Malware detection.

• Intrusion detection.

• Automatic code improvement.

• Spam detection.

• Etc.

 We also need to step outside the EC area and consider other heuristic 
techniques.
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Perspectives

 We presented here only a handful of applications, there are many more 
options.

 Even for each of the applications, there is a plethora of options still to try: 
• New algorithms.

• Representations.

• Fitness functions. 

• Combinations of parameters.

• Etc.

 The results obtained up to now are good, but there is still much room for 
improvement.
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Conclusions

 Up to now, EC proved to be successful in cryptology:

• When there exist no other, specialized approaches.

• To rapidly check whether some concept (e.g. formula) is correct.

• To assess the quality of some other method.

• To produce ``good-enough'' solutions.

• To produce novel and human-competitive solutions (solutions produced 
by EC that can rival the best solutions created by humans).
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Conclusions

 Heuristic methods are not a magic solvers.

 They require knowledge and experience if to be used correctly.

 Nice problems, both from the practical perspective, but also as benchmarks.

 If there are others, specialized algorithms, EC rarely can beat them.

 Besides EC, there are other techniques that also proved to be efficient.

 Currently, there is a large interest in machine learning methods in 
cryptography.

 Necessary collaboration between the optimization and cryptology 
community.
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Conclusions

 Without proper collaboration, for optimization community cryptology 
problems are just something to be solved, but without consideration on the 
constraints and the quality of the obtained solutions.

 For cryptographic community, EC techniques are just a tool that are used 
without understanding. 

 Without good understanding the problem and the tool to be used, it is hard 
to expect nice results.

 Thank you for your attention.

Questions?
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