
1

Evolutionary Computation and Cryptology

Stjepan Picek
KU Leuven, ESAT/COSIC and iMinds, Belgium,

LAGA, University Paris 8, France
stjepan@computer.org

http://www.sigevo.org/gecco-2016/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA
ACM 978-1-4503-4323-7/16/07.
http://dx.doi.org/10.1145/2908961.2927003

2

Abstract

 Evolutionary Computation (EC) has been used with great success on various real-world
problems. One domain abundant with difficult problems is cryptology.

 This tutorial will first give a brief introduction to cryptology intended for general audience.

 We concentrate on several topics from cryptography that are successfully tackled up to now
with EC and discuss why those topics are suitable to apply EC. However, care must be taken
since there exists a number of problems that seem to be impossible to solve with EC and one
needs to realize the limitations of the heuristics.

 We discuss the choice of appropriate EC techniques for various problems and evaluate on the
importance of that choice. Furthermore, we will discuss the gap between the cryptographic
community and EC community and what does that mean for the results.

 To conclude, we present a number of topics we consider to be a strong research choice that
can have a real-world impact. In that part, we give a special attention to cryptographic
problems where cryptographic community successfully applied EC, but where those problems
remained out of the focus of EC community. This tutorial will also present some live demos of
EC in action when dealing with cryptographic problems.

3

Contents
 Introduction to Cryptology

• Classical Ciphers
• Modern Ciphers

 On the Evolutionary Computation
 Examples of Applications

• Boolean functions
• S-boxes
• Addition chains
• Pseudorandom number generators
• Fault injection

 Perspectives, Final Remarks, Conclusions
 References

4

Introduction to Cryptology

883

5

Introduction to Cryptology

 Cryptology (from Greek words kryptos which means hidden and logos
which means word) is the scientific study of cryptography and
cryptanalysis.

 We can trace the origins of cryptology in an art form to the ancient Egypt.

 Cryptography is a science (and art) of secret writing with the goal of
hiding the meaning of a message. In modern cryptography, it is not only
important to achieve confidentiality, but also authentication, non-
repudiation and data integrity among other goals.

 Cryptanalysis is a science of analyzing ciphers in order to find
weaknesses in them.

6

Introduction to Cryptography

Taxonomy of ciphers

7

Classical Ciphers

 Transposition ciphers are such ciphers where the order of characters is
shuffled around.

 Substitution ciphers are ciphers where each character in the alphabet is
substituted with another character in the alphabet.

 Enigma machine is a mechanical rotor device that is comprised from
several rotors that dynamically substitute the plaintext in accordance to the
rotor position.

 Today, easy to cryptanalyze.

 We do not consider them here, but we give several references.

 Scytale, Caesar cipher, non-standard hieroglyphs, etc.

8

Modern Ciphers

 In 1940s Shannon published his paper on the design principles of block
ciphers.

 Important milestones happened in 1970s.

 The design of the DES cipher, the introduction of public key cryptography.

 Modern cryptography has much more emphasize on definitions and proofs,
although there are many primitives used today that do not have rigorous
proofs.

 Informally, we distinguish classical from the modern cryptography on a
basis that modern cryptography has a more scientific approach.

884

9

Basic notions

 Sender is a person who is sending a message. The most famous sender in
cryptography is Alice.

 Receiver is a person who is receiving a message. The most famous message
receiver in cryptography is Bob.

 Adversary is a malicious entity whose aim is to prevent the users of a
cryptosystem from achieving their goals. Popular names are Eve in the case
of passive adversaries and Mallory when talking about active adversaries.

 Cryptographic primitive is a part of a cryptographic tool used to provide
information security, i.e., a low-level cryptographic algorithm that is
frequently used.

 Cryptographic algorithm (cipher) is a mathematical function used for
encryption, decryption, key establishment, authentication, etc.

10

Basic notions

 Plaintext P or message is the information that the sender wishes to transmit
to the receiver.

 Ciphertext C is the result of an encryption performed on plaintext using a
cryptographic algorithm.

 Encryption is a process of applying a transformation E to the plaintext P.
After that transformation, only an authorized party should be able to read
the message, i.e., E(P) = C.

 Decryption is a process of applying a transformation D to the ciphertext C,
i.e., D(C) = P.

11

Symmetric-key Cryptography

 Also known as private key cryptography.

 Symmetric-key cryptography uses the same key to encrypt/decrypt or to
compute/verify the data.

 Assume that Alice and Bob want to exchange some message and they want
it to remain secret, i.e., that no one else can read it.

 They have only an insecure channel to communicate through. Alice could
encrypt her message and send it encrypted over an insecure channel to Bob.
If Bob has the same key as Alice, he can then decrypt and read the
message.

 Eve cannot decrypt the message if she does not know the key.

12

Symmetric-key Cryptography

Secure two party communication

885

13

Block Ciphers

 Block ciphers operate on blocks of fixed length of data with an unvarying
transformation that is specified by the key.

 A block cipher with a given key should be indistinguishable from a random
permutation by an adversary not knowing the key.

 Claude Shannon stated that computationally secure cryptosystem should
follow confusion and diffusion principles.

 Confusion – the ciphertext statistics should depend on the plaintext
statistics in a manner too complicated to be exploited by the cryptanalyst.

 Diffusion - each digit of the plaintext and each digit of the secret key
should influence many digits of the ciphertext.

 DES, AES, MARS, PRESENT, etc.

14

Stream Ciphers

 They should behave as pseudorandom number generators (PRNGs).

 Most of the stream encryption schemes encrypt message bits by adding
encryption bits modulo two.

 Historically looking, linear feedback shift registers (LFSRs) were used
extensively, in order to produce pseudorandom numbers.

 An LFSR is a shift register whose input bit is a linear function of its
previous state. Those bit positions that affect the next state are called taps.

 To add the nonlinearity (and therefore improve the security) one option is
to add some nonlinear element, where a Boolean function represents a
common choice.

15

Implementation Attacks

 All attacks that do not aim at the weaknesses of the algorithm itself, but on
the actual implementations on cryptographic devices.

 Sources: power, sound, light, electromagnetic radiation, etc.

 Implementation attacks are among the most powerful known attacks against
cryptographic devices.

 Common types of implementation attacks are side channel attacks and fault
injection attacks.

 Side channel attacks are passive and non-invasive attacks.

 Fault injection attacks are active attacks since they enforce the target to
work outside the nominal operation range.

16

Public Key Cryptography

 In symmetric key cryptography, both parties need to know the key before
the communication in order to establish the secure channel.

 However, the problem is how to exchange that key if there exists no secure
channel.

 One option is to use public key cryptography.

 Also called asymmetric cryptography.

 Here, there exist two keys: private and public key.

 To encrypt, one uses the public key, but to decrypt one needs to know the
private key.

886

17

Public Key Cryptography

 Public key cryptography relies on difficult problems in mathematics, like
integer factorization, discrete logarithm problem, knapsack problem, etc.

 RSA, Diffie-Hellman, ECC,…

 For public key cryptography, the are only a few papers where authors use
evolutionary computation and the results are not spectacular.

 However, this is to be expected: it is much more difficult to design some
cryptographic primitive here or to attack a system with evolutionary
computation.

18

On the Evolutionary Computation

19

On the Evolutionary Computation

 Research area within computer science that draws inspiration from the
process of natural evolution.

 Evolutionary algorithms are population based metaheuristic optimization
methods that use biology inspired mechanisms like selection, crossover or
survival of the fittest.

 Genetic Algorithm (GA), Holland, 1975.

 Tree based Genetic Programming (GP), Koza, 1992.

 Cartesian Genetic Programming (CGP), Miller, 1999.

 Evolution Strategy (ES), Rechenberg, Schwefel, 1970s.

 NSGA-II, Deb, 2002.

20

Examples of Applications

887

21

Basics

 How to solve hard problems in cryptology?

 Problems need to be hard (to be worthwhile), but not too difficult (to be
impossible to solve).

 Plenitude of problems and possible methods to solve them.

 Care needs to be taken that one does not select too difficult problems.

 Often, evolutionary computation is not used to provide the final solutions,
but instead to help us to improve the results of some other technique.

22

Evolutionary Computation Framework

 ECF is a C++ framework intended for application of any type of
evolutionary computation.

 Developed by Evolutionary Computation group from Faculty of Electrical
Engineering and Computing, Zagreb, Croatia:

http://gp.zemris.fer.hr/

 Details about projects concerning evolutionary computation and
cryptology:

http://evocrypt.zemris.fer.hr/

23

Evolutionary Computation Framework
ECF GUI

24

Evolutionary Computation Framework
<ArtificialBeeColony>

<Entry key="elitism">1</Entry>
<Entry key="limit">300</Entry>

</ArtificialBeeColony>
<Clonalg>

<Entry key="beta">1</Entry>
<Entry key="c">0.2</Entry>
<Entry key="cloningVersion">proportional</Entry>
<Entry key="d">0</Entry>
<Entry key="n">100</Entry>
<Entry key="selectionScheme">CLONALG1</Entry>

</Clonalg>
<CuckooSearch>

<Entry key="pa">0.75</Entry>
</CuckooSearch>
<DifferentialEvolution>

<Entry key="CR">0.9</Entry>
<Entry key="F">1</Entry>
<Entry key="bounded">0</Entry>

</DifferentialEvolution>
<Elimination>

<Entry key="gengap">0.6</Entry>
<Entry key="selpressure">10</Entry>

</Elimination>
<EvolutionStrategy>

<Entry key="lambda">4</Entry>
<Entry key="mu">1</Entry>
<Entry key="rho">1</Entry>
<Entry key="selection">plus</Entry>

</EvolutionStrategy>

<GeneticAnnealing>
<Entry key="coolingfactor">0.7</Entry>
<Entry key="elitism">0</Entry>
<Entry key="energybank">200</Entry>

</GeneticAnnealing>
<OptIA>

<Entry key="c">0.2</Entry>
<Entry key="dup">5</Entry>
<Entry key="elitism">0</Entry>
<Entry key="tauB">100</Entry>

</OptIA>
<ParticleSwarmOptimization>

<Entry key="bounded">0</Entry>
<Entry key="maxVelocity">10</Entry>
<Entry key="weight">0.8</Entry>
<Entry key="weightType">0</Entry>

</ParticleSwarmOptimization>
<RandomSearch/>
<RouletteWheel>

<Entry key="crxprob">0.5</Entry>
<Entry key="selpressure">10</Entry>

</RouletteWheel>
<SteadyStateTournament>

<Entry key="tsize">3</Entry>
</SteadyStateTournament>

Available algorithms

888

http://gp.zemris.fer.hr/
http://evocrypt.zemris.fer.hr/

25

Boolean functions

 The easiest problem to start.

 There exists a natural mapping between the truth table representation of
Boolean functions and representation of solutions in EC.

 Boolean functions are important cryptographic primitive and often used in
stream ciphers as the source of nonlinearity.

Boolean function with 2 inputs

26

Boolean functions

 To be used in cryptography, a Boolean function needs to fulfill a number of
cryptographic properties.

 To be used in filter generators: balancedness, high nonlinearity, high
algebraic degree, high algebraic immunity, high fast algebraic immunity.

 To be used in combiner generators additionally is required a good value of
correlation immunity.

 To be used as a part of the side-channel attack countermeasure it needs to
have low Hamming weight and high correlation immunity.

 To be of practical importance, it should have at least 13 inputs.

 Three options: algebraic constructions, random search, and heuristics.

27

Boolean functions

Combiner generator Filter generator

28

Boolean functions, scenario 1

 Evolving Boolean functions that are to be used in combiner/filter
generators.

 We are interested in a number of properties, where some of those properties
are conflicting.

 Search space size is 2^(2^n).

 Representing solutions in the truth table form requires string of bits of
length 2^n.

 Already for a Boolean function with 8 inputs, the search space size is
2^(256).

889

29

Boolean functions, scenario 1

 How to write fitness function?

 As a single objective with the weight factors, or a multiple stage fitness
function, multi-objective approach or even many-objective approach.

 For Boolean functions up to 8 inputs, most of the EC techniques give good
results.

 However, the best results are obtained with GP and CGP.

 Results comparable with algebraic constructions.

 The simplest problems seem to be either:
• Evolving bent function (those that are not balanced, but with maximum nonlinearity)

• Evolving balanced functions with high nonlinearity.

30

Boolean functions, scenario 1

 It seems that the genotype plays much larger role than the choice of the
fitness function.

Average values, CGP, bent Boolean functions with 8 inputs

31

Boolean functions, scenario 1

GA, bitstring representation
Boolean function with 8 inputs

32

Boolean functions, scenario 1

GP, Boolean function with 8 inputs

890

33

Boolean functions, scenario 2

 Here we aim to evolve Boolean functions that have as small as possible
Hamming weight and high correlation immunity in order to reduce the
masking cost when used as a side-channel countermeasure.

 Masking consists in changing randomly the representation of the key to
deceive the attacker.

 Example: if each bit ki, 1< i < n of a key k is masked with a random bit mi,
then an attacker could probe ki XOR mi.

 Provided mi is uniformly distributed, the knowledge of ki XOR mi does not
disclose any information on bit ki .

 Since most of the algebraic constructions aim to find balanced Boolean
functions, they are not appropriate for this problem.

34

Boolean functions, scenario 2

 Masking can be summarized as the problem of finding Boolean functions
whose support is the masks' set, with the two following constraints:

• small Hamming weight, for implementation reasons, and

• high correlation immunity t to resist an attacker with multiple (< t) probes.

 There is a trade-off which motivates the research for low Hamming weight
high correlation immunity Boolean functions.

 Interesting problem since we know the best possible values, but we do not
know actual functions reaching those values.

35

Boolean functions, scenario 2

 Up to recently, there were several values of practical interest unknown.

 Attempts with SAT solvers did not resulted in success even after more than
one month of calculation.

 For CGP and GP, this problem seems to be trivial.

 Optimal results sometimes achieved even in less than 1 hour.

 However, there are combinations of parameters as well as function sizes
that seem more difficult for EC.

36

Boolean functions, scenario 2

Best obtained results with CGP and GP

891

37

Boolean functions, scenario 3

 Previous results show that EC can be used to evolve Boolean functions of
various sizes and properties.

 However, it is to be expected that after some size, the results will become
worse and the evaluation process long.

 For instance, if we consider the algebraic immunity and fast algebraic
immunity properties. To calculate those two properties can easily take
several hours for a Boolean functions with e.g. 16 inputs.

 Therefore, at least for now, those properties were never included in the
evaluation process for larger sizes of Boolean functions.

 The problem seems difficult to circumvent since it is actually a problem
with the way of calculating the properties.

38

Boolean functions, scenario 3

 We already discussed there are several techniques how to generate Boolean
functions.

 The question is can we combine several techniques.

 For instance, could we use evolutionary computation to evolve algebraic
constructions?

 If yes, then we need just to show that our construction results in Boolean
functions with good properties and that it holds for any size of Boolean
functions.

 We evolve secondary algebraic constructions that result in bent Boolean
functions.

39

Boolean functions, scenario 3

GP secondary construction

40

Boolean functions

 Possible challenges:
• Finding balanced Boolean function with 8 inputs that have nonlinearity 118.

• Use EC to evolve primary algebraic constructions.

• Evolve Boolean functions to be used in combiner/filter generators where parameters are
also algebraic immunity and fast algebraic immunity.

• Use different, previously not investigated unique representations of Boolean functions.

• Investigate many-objective optimization.

• Quaternary Boolean functions.

892

41

S-boxes

 Natural extension from the Boolean function case.

 S-boxes (Substitution Boxes) are also called vectorial Boolean functions.

 Often used in block ciphers as a source of nonlinearity.

 However, this problem is much more difficult!

 S-box of dimension mxn has n output Boolean functions, but for the most of
the properties we need to check all linear combinations of those functions.

42

S-boxes

2x2 S-box example

43

S-boxes

 For an S-box of dimension nxm there are in total 2^(m*2^n) S-boxes.

 When n = m, some search space sizes of practical interest are:

 Several options how to represent solutions.

 Again as in the Boolean function case, there are three design options:
algebraic constructions, random search, and heuristics.

44

S-boxes, scenario 1

 When representing S-boxes with their truth tables (i.e., bitstring
representation as with Boolean functions) we see the problem is very
difficult.

 Indeed, already balancedness property requires that all columns of an S-
box are balanced (that is, have the same number of zeros and ones), but also
all linear combinations needs to be balanced.

 Still, this approach works for sizes ~4x4 where there are 15 linear
combinations we need to consider.

 However, for larger sizes, it is almost impossible to obtain even balanced
solution with bitstring representation.

 Therefore, we do not consider such representation anymore.

893

45

S-boxes, scenario 1

 It is also possible to use CGP and GP with the permutation encoding:

46

S-boxes, scenario 1

GP solution of 8x8 S-box

47

S-boxes, scenario 2

 We can represent S-boxes as permutations, i.e., all values between 0 and
2^n -1 (where n is the dimension of the S-box).

 Then, the S-box is always bijective and we do not need to concern with the
balancedness property.

 Similar as with Boolean functions, there are many properties of interest
when evolving S-boxes (besides the balancedness): high nonlinearity, low
δ-uniformity, high algebraic degree, etc.

 For dimensions up to 4x4, permutation encoding gives optimal results
(bijective solutions with maximal nonlinearity and minimal δ-uniformity).

 However, for instance for 8x8, algebraic construction can give nonlinearity
of 112 and δ-uniformity of 4.

48

S-boxes, scenario 2

 Random search will result in nonlinearity up to 98 and nonlinearity down to
10.

 Heuristics, and EC more precisely with permutation encoding can go up to
104 nonlinearity and δ-uniformity of 8.

 The question is then whether there is any sense to use heuristics if such
methods cannot compete with algebraic constructions.

 However, it turns out there are properties that algebraic constructions do
not consider. For instance, properties related with the side-channel
resistance will usually have poor values if S-boxes are constructed with
algebraic constructions.

 Therefore, the task is to evolve S-boxes that have good side channel
resistance while maintaining other properties optimal.

894

49

S-boxes, scenario 2

Permutation encoding of 4x4 S-box

50

S-boxes, scenario 2

 Additional problem is that such properties are conflicting with the
nonlinearity property and there must be a trade-off.

PRESENT S-box Evolved S-box

51

S-boxes, scenario 3

 Besides the properties related with the side-channel attacks, we are also
interested in implementation properties like power, area, and latency.

 Again, algebraic constructions do not consider such properties but we can
evolve S-boxes with good cryptographic properties that are hardware-
friendly.

 Naturally, there exist the same problem as before: we do not want that
cryptographic properties deteriorate too much.

 In this scenario, we require that our evolution framework can communicate
with the framework that does the implementation properties analysis.

52

S-boxes, scenario 3

Evaluation setup when evolving S-boxes with good
implementation properties

895

53

S-boxes, scenario 3

 However, as said, EC does not cope good with larger sizes of S-boxes and
therefore our previous technique is expensive from the cryptographic
perspective.

 To circumvent the problem, we can evolve affine transformation of an S-
box.

 Affine transformation will change implementation properties, but leave
cryptographic properties intact:

𝑆𝑎 𝑥 = 𝐵 𝑆𝑏 𝐴 𝑥 𝑋𝑂𝑅 𝑎 𝑋𝑂𝑅 𝑏.

 Here, A and B are invertible nxn matrices in GF(2) and a and b are
constants.

54

S-boxes, scenario 4

 Evolve S-boxes in a form of cellular automata (CA) rules.

 Such representation is also used in practice (Keccak cipher).

 It is possible to find many rules that result in good S-boxes.

55

S-boxes, scenario 4

Evolved CA rule for the 5x5 S-box

56

S-boxes, scenario 5

 Adding flip flops in order to increase the throughput of combinatorial
circuit.

 Applications beyond cryptography.

 Depending on the number of elements (cells) the problem can be extremely
difficult.

 Current results show we are able to improve the throughput by almost
100%.

 Naturally, this causes the increase of area.

896

57

S-boxes, scenario 5

AES S-box realized in the tower field
representation

58

S-boxes

 Possible challenges:
• Evolve S-box of size 8x8 that has nonlinearity 112.

• Use new representations of solutions.

• Improve the efficiency of EC with the bitstring representation.

• Consider S-box representations in a form of equations.

• Find general rules for CA and S-boxes.

59

Addition chains

 Consider modular exponentiation; find the (unique) integer B ∈ [1,…, p-1]
that satisfies:

𝐵 = 𝐴𝑐 mod p.

 Several ways how to calculate this.

 Naïve way, multiply c times.

 Use addition chain.

 An addition chain for the exponent c of length l is a sequence V of positive
integers v0 = 1,…, vl = c, such that for each i > 1, vi = vj + vk for some j and
k with 0 ≤ j ≤ k < i.

60

Addition chains

 The length of the addition chain defines the number of multiplications
required for computing the exponentiation.

 The aim is to find the shortest addition chain for a given exponent c.

 Example:

 Binary method: write 60 in binary: 111100; replace “1” with “DA” and “0”
with “D”; cross out the first “DA” on the left; “DADADADD”, calculate:

1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60.

 Addition chain (7 operations):

A^1; A^2 = A^1 * A^1; A^4 = A^2 * A^2; A^6 = A^4 * A^2; A^12 = A^6 *
A^6;A^24 = A^12 * A^12; A^30 = A^24 * A^6; A^60 = A^30 * A^30.

897

61

Addition chains

 The problem of finding the shortest addition chain for a given exponent is
of great relevance in cryptography.

 However, the problem is believed to be NP-hard.

 There is no single algorithm that can be used for any exponent.

 Still, the best solutions are obtained by pen and paper method.

 Huge numbers so exhaustive search is impossible.

 Heuristics should be able to help.

 There exist many types of chains. Here we are interested in ascending
addition chains.

62

Addition chains

 The values in the ascending addition chain have the property that they are
the sum of two values appearing previously in the chain.

 Types of steps in the addition chain:
• Doubling step; when j = k = i - 1. This step always gives the maximal possible value at

the position i.

• Star step; when j but not necessarily k equals i – 1.

• Small step; when log2(ai) = log2(ai-1).

• Standard step; when ai = aj + ak where i > j > k.

 A star chain is a chain that involves only star operations.

63

Addition chains

 For this problem we need custom crossover and mutation operator, as well
as the repair mechanism.

64

Addition chains

898

65

Addition chains

GA results, part 1

66

Addition chains

GA results, part 2

67

Addition chains

 For most of the values we find the optimal one (or what is the current best).

 Out of all tested numbers, only 2^127 - 3 has practical importance.

 We find chain of 136 steps, also done by expert by hand.

 Human-competitive?

 We believe so, on average we need 10 mins, pen and paper requires a lot of
experience and will last at least 1 hour.

 Plenty of numbers to investigate.

 Some more realistic numbers are 2^255 - 21 and

2^252 + 27742317777372353535851937790883648491.

68

Addition chains

Evolved addition chain for 1087 value

899

69

Addition chains

 Possible challenges:
• Improve the speed of the algorithm.

• Look for optimal chains for even larger numbers.

• Differentiate between multiplication and squaring steps.

• Analyze the structure of numbers with regards to the EC performance.

• Support special structures of numbers.

• Explore different types of chains.

70

Pseudorandom number generators

 In cryptography, random number generators (RNGs) play an important role.

 Most of the time, we need true random number generators (TRNGs), but
still there are applications where pseudorandom number generators
(PRNGs) are enough.

 TRNG is a device for which the output values depend on some
unpredictable source that produces entropy.

 PRNGs represent mechanisms that produce random numbers by performing
a deterministic algorithm on a randomly selected seed

 One example is masking for the side channel resistance.

71

Pseudorandom number generators

 We want to find extremely fast and small PRNGs that pass all NIST
tests.

 We can use GP and CGP to evolve PRNGs.

Model of a PRNG

72

Pseudorandom number generators

 We evolve PRNGs that have n inputs and 1 output (GP) or m outputs
(CGP).

 All variables are 32-bit integer values.

 Function set are function that are fast and small when implemented in
hardware (shift, rotate, permute, and logical operations XOR, NOT, AND).

 Here, obvious advantage of CGP over GP is that GP needs to iterate m
times to produce the same size of the output as CGP produces in a single
iteration.

900

73

Pseudorandom number generators

 Fitness function needs to be simple, yet powerful enough to drive our
search.

 We use approximate entropy test from the NIST statistical test suite as a
fitness function.

 After the evolution process is over, our parser automatically takes the best
individual and outputs it as a C source code.

 That source code is then used to produce 10 million bits that are then
evaluated with the NIST statistical suite.

 We cannot use whole test suite in the evolution since it would be too slow.

 Our current fitness function consists of 130 evaluations of the approximate
entropy function.

74

Pseudorandom number generators

Structure of evolved PRNGs

75

Pseudorandom number generators

Example of evolved PRNG

76

Pseudorandom number generators

GP evolved PRNG

901

77

Pseudorandom number generators

CGP evolved PRNG

78

Pseudorandom number generators

CGP solution

79

Pseudorandom number generators

 The same technique can be used to produce PRNGs on-the-fly.

 Then, we can use evolvable hardware that constantly updates the PRNG
part.

 In order to ensure that our designs always use all terminals, we penalize
solutions that do not have all inputs.

 Maximal throughput on ASIC 117 Gb/s and for FPGA 66 Gb/s.

 Here, GP and CGP are used to evolve only the update functions, but EC can
be also used to evolve the non-invertible function.

80

Pseudorandom number generators

Evolvable hardware setting

902

81

Pseudorandom number generators

Virtual reconfigurable circuit cell

82

Pseudorandom number generators

 Possible challenges:
• Improve the fitness function and consequently the evaluation process.

• Add to the fitness function also consideration about the size and speed of specific
functions (platform dependent).

• Experiment with different sizes of the update function as well as different terminal sets.

• Improve the efficiency of the evolvable hardware scenario.

83

Fault injection

 A fault injection (FI) attack is successful if after exposing the device to a
specially crafted external interference, it shows an unexpected behavior
exploitable by the attacker.

 Insertion of signals has to be precisely tuned for the fault injection to
succeed.

 Finding the correct parameters for a successful FI can be considered as a
search problem where one aims to find, within a minimum time, the
parameter configurations which result in a successful fault injection.

 The search space is typically too large to perform an exhaustive search.

 Use heuristics to find search space parameters that lead to successful attack.

84

Fault injection

 Voltage switching, three parameters: glitch length, glitch voltage, and glitch
offset.

 Two scenarios:
• Finding faults in a minimal number of measurements.

• Characterizing the parameter space, again in a minimal number of measurements.

 FI testing equipment can output only verdict classes that correspond to
successful measurements.

 Attacking the PIN mechanism.

903

85

Fault injection

PIN authentication mechanism

86

Fault injection

 Several possible classes for classifying a single measurement:
• NORMAL: smart card behaves as expected and the glitch is ignored

• RESET: smart card resets as a result of the glitch

• MUTE: smart card stops all communication as a result of the glitch

• INCONCLUSIVE: smart card responds in a way that cannot be classified in any other
class

• SUCCESS: smart card response is a specific, predetermined value that does not happen
under normal operation

87

Fault injection

Custom GA

88

Fault injection

Random, 2500 measurements Exhaustive, 7500 measurements

GA + LS, 250 measurements

904

89

Fault injection

Random, 250 measurements GA, 250 measurements

GA + LS, 250 measurements 90

Fault injection

 Possible challenges:
• Working with more relevant parameters.

• Attacking cards with countermeasures.

• Switching to other sources of attacks.

• Making the search algorithm more powerful.

91

Final Remarks, Perspectives
and Conclusions

92

Final Remarks

 All the examples presented here are available from SVN repository:

http://evocrypt.zemris.fer.hr/

 In all the experiments we use Evolutionary Computation Framework (ECF)
that can be downloaded from:

http://ecf.zemris.fer.hr/

 For updated version of slides as well as for the further references, please
check:

http://www.evocrypt.com/

905

http://evocrypt.zemris.fer.hr/
http://ecf.zemris.fer.hr/
http://www.evocrypt.com/

93

Perspectives

 Stepping outside of the cryptology area and considering security area there
are many more interesting problems:

• Malware detection.

• Intrusion detection.

• Automatic code improvement.

• Spam detection.

• Etc.

 We also need to step outside the EC area and consider other heuristic
techniques.

94

Perspectives

 We presented here only a handful of applications, there are many more
options.

 Even for each of the applications, there is a plethora of options still to try:
• New algorithms.

• Representations.

• Fitness functions.

• Combinations of parameters.

• Etc.

 The results obtained up to now are good, but there is still much room for
improvement.

95

Conclusions

 Up to now, EC proved to be successful in cryptology:

• When there exist no other, specialized approaches.

• To rapidly check whether some concept (e.g. formula) is correct.

• To assess the quality of some other method.

• To produce ``good-enough'' solutions.

• To produce novel and human-competitive solutions (solutions produced
by EC that can rival the best solutions created by humans).

96

Conclusions

 Heuristic methods are not a magic solvers.

 They require knowledge and experience if to be used correctly.

 Nice problems, both from the practical perspective, but also as benchmarks.

 If there are others, specialized algorithms, EC rarely can beat them.

 Besides EC, there are other techniques that also proved to be efficient.

 Currently, there is a large interest in machine learning methods in
cryptography.

 Necessary collaboration between the optimization and cryptology
community.

906

97

Conclusions

 Without proper collaboration, for optimization community cryptology
problems are just something to be solved, but without consideration on the
constraints and the quality of the obtained solutions.

 For cryptographic community, EC techniques are just a tool that are used
without understanding.

 Without good understanding the problem and the tool to be used, it is hard
to expect nice results.

 Thank you for your attention.

Questions?

98

Instructor
 Stjepan Picek is currently a postdoctoral

researcher in the Computer Security and
Industrial Cryptography (COSIC) group at KU
Leuven, Belgium.

 In July 2015, he completed his PhD at Radboud
University Nijmegen, The Netherlands and
Faculty of Electrical Engineering and
Computing, Zagreb, Croatia (double doctorate).

 His primary research interests are cryptography,
evolutionary computation, and machine
learning.

99

Acknowledgements
 This work has been supported in part by Croatian Science Foundation

under the project IP-2014-09-4882. In addition, this work was supported in
part by the Research Council KU Leuven (C16/15/058) and IOF project
EDA-DSE (HB/13/020).

 Finally, the author would like to thank prof. Domagoj Jakobovic for his
help with the preparation of this presentation.

100

References
General references:
 J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC, Boca Raton, 2nd

edition, 2015.
 L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Information Security and Cryptography.

Springer, 2011.
 A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryptography. CRC Press,

Inc., Boca Raton, FL, USA, 1st edition, 1996.
 B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code in C. John Wiley and

Sons, Inc., New York, NY, USA, 1995.
 J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications

to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge, USA, 1992.
 J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.

MIT Press, Cambridge, MA, USA, 1992.
 J. F. Miller, editor. Cartesian Genetic Programming. Natural Computing Series. Springer Berlin

Heidelberg, 2011.
 H.-G. Beyer and H.-P. Schwefel. Evolution Strategies A Comprehensive Introduction. Natural Computing,

1(1):3–52, May 2002.
 A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer- Verlag, Berlin Heidelberg

New York, USA, 2003.

907

101

References
Boolean functions:
 J. F. Miller. An Empirical Study of the Efficiency of Learning Boolean Functions using a Cartesian

Genetic Programming Approach. Genetic and Evolutionary Computation Conference (GECCO) 1999, pp.
1135–1142.

 L. D. Burnett. Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography,
Ph.D. thesis, Queensland University of Technology (2005).

 C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Boolean Models and Methods
in Mathematics, Computer Science, and Engineering, 1st Edition, Cambridge University Press, New York,
USA, 2010, pp. 257–397.

 C. Carlet and S. Guilley. Correlation-immune Boolean functions for easing counter measures to side-
channel attacks. Algebraic Curves and Finite Fields. Cryptography and Other Applications., Berlin,
Boston: De Gruyter., 2014, pp. 41–70.

 W. Millan, J. Fuller, and E. Dawson. New concepts in evolutionary search for Boolean functions in
cryptology, Computational Intelligence 20 (3) (2004) pp. 463–474.

 S. Picek, D. Jakobovic, and M. Golub. Evolving Cryptographically Sound Boolean Functions. Genetic and
Evolutionary Computation Conference (GECCO) Companion 2013, pp. 191–192.

 S. Picek, L. Batina, and D. Jakobovic. Evolving DPA-Resistant Boolean Functions. PPSN XIII, Lecture
Notes in Computer Science, Springer International Publishing, 2014, pp. 812–821.

 W. Millan, A. Clark, and E. Dawson. An Effective Genetic Algorithm for Finding Highly Nonlinear
Boolean Functions. ICICS ’97, pp.149–158.

 A. J. Clark. Optimisation heuristics for cryptology, Ph.D. thesis, Queensland University of Technology
(1998).

 H. Aguirre, H. Okazaki, and Y. Fuwa. An Evolutionary Multiobjective Approach to Design Highly Non-
linear Boolean Functions. Genetic and Evolutionary Computation Conference (GECCO) 2007, pp. 749-
756.

102

References
Boolean functions:
 W. Millan, A. Clark, and E. Dawson. Heuristic design of cryptographically strong balanced Boolean

functions. Advances in Cryptology - EUROCRYPT ’98, 1998, pp. 489–499.
 W. Millan, A. Clark, and E. Dawson. Boolean Function Design Using Hill Climbing Methods. Information

Security and Privacy, Vol. 1587 of LNCS, Springer Berlin Heidelberg, 1999, pp. 1–11.
 J. Clark and J. Jacob. Two-Stage Optimisation in the Design of Boolean Functions. Information Security

and Privacy, Vol. 1841 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2000, pp. 242–
254.

 J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving Boolean Functions Satisfying
Multiple Criteria. Progress in Cryptology - INDOCRYPT 2002, pp. 246–259.

 J. A. Clark, J. Jacob, S. Maitra, and P. Stanica. Almost Boolean functions: the design of Boolean functions
by spectral inversion. CEC ’03.,Vol. 3, 2003, pp. 2173–2180.

 L. Burnett, W. Millan, E. Dawson, and A. Clark. Simpler methods for generating better Boolean functions
with good cryptographic properties, Australasian Journal of Combinatorics 29 (2004) pp. 231–247.

 J. McLaughlin and J. A. Clark. Evolving balanced Boolean functions with optimal resistance to algebraic
and fast algebraic attacks, maximal algebraic degree, and very high nonlinearity, Cryptology ePrint
Archive, Report 2013/011, http://eprint.iacr.org/.

 R. Hrbacek and V. Dvorak. Bent Function Synthesis by Means of Cartesian Genetic Programming. PPSN
XIII, Vol. 8672 of LNCS, Springer International Publishing, 2014, pp. 414–423.

 S. Picek, E. Marchiori, L. Batina, and D. Jakobovic. Combining Evolutionary Computation and Algebraic
Constructions to Find Cryptography-Relevant Boolean Functions. PPSN XIII, LNCS, Springer
International Publishing, 2014, pp. 822–831.

 S. Picek, D. Jakobovic, J. F. Miller, E. Marchiori, L. Batina. Evolutionary methods for the construction of
cryptographic Boolean functions. EuroGP 2015, 2015, pp. 192–204.

103

References
Boolean functions:
 S. Picek, C. Carlet, D. Jakobovic, J. F. Miller, and L. Batina. Correlation Immunity of Boolean Functions:

An Evolutionary Algorithms Perspective. Genetic and Evolutionary Computation Conference (GECCO)
2015, pp. 1095–1102.

 S. Picek, R. I. McKay, R. Santana, and T. D. Gedeon. Fighting the symmetries: The structure of
cryptographic Boolean function spaces. Genetic and Evolutionary Computation Conference (GECCO)
2015, pp. 457-64.

 L. Mariot, and A. Leporati. Heuristic Search by Particle Swarm Optimization of Boolean Functions for
Cryptographic Applications. Genetic and Evolutionary Computation Conference Companion, GECCO
2015, pp. 1425–1426.

 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. Miller. Evolutionary Approach for Finding Correlation
Immune Boolean Functions of Order t with Minimal Hamming Weight. TPNC 2015, pp. 71-82.

 L. Mariot and A. Leporati. A Genetic Algorithm for Evolving Plateaued Cryptographic Boolean
Functions. TPNC 2015, pp. 33-45, 2015.

 S. Picek, D. Jakobovic, J. F. Miller, L. Batina, and M. Cupic. Cryptographic Boolean functions: One
output, many design criteria. Applied Soft Computing, 40: pp. 635 - 653, 2016.

S-boxes:
 C. Carlet. Vectorial Boolean Functions for Cryptography. In Crama, Y. and Hammer, P. L., editors,

Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–469.
Cambridge University Press, New York, NY, USA, 1st edition.

 J. A. Clark, J. Jacob, and S. Stepney. Searching for cost functions. CEC2004, volume 2, pp. 1517–1524.
 J. A. Clark, J. Jacob, and S. Stepney. The design of S-boxes by simulated annealing. New Generation

Computing, 23 (3): pp. 219–231.

104

References
S-boxes:
 B. Ege, K. Papagiannopoulos, L. Batina, and S. Picek. Improving DPA resistance of S-boxes: How far can

we go? ISCAS 2015, pp. 2013–2016.
 J. Fuller, W. Millan, and E. Dawson. Multi-objective optimisation of bijective s-boxes. CEC 2004, volume

2, pp. 1525–1532.
 G. Ivanov, N. Nikolov, and S. Nikova. Cryptographically Strong S-Boxes Generated by Modified Immune

Algorithm. BalkanCryptSec 2015, pp. 31 - 42.
 G. Ivanov, N. Nikolov, and S. Nikova. Reversed genetic algorithms for generation of bijective s-boxes

with good cryptographic properties. Cryptography and Communications, 8(2): pp. 247–276.
 W. Millan, L. Burnett, G. Carter, A. Clark, and E. Dawson. Evolutionary Heuristics for Finding

Cryptographically Strong S-Boxes. Information and Communication Security, volume 1726 of LNCS, pp.
263–274.

 S. Picek, B. Ege, L. Batina, D. Jakobovic, L. Chmielewski, and M. Golub. On Using Genetic Algorithms
for Intrinsic Side-channel Resistance: The Case of AES S-box. In Proceedings of the First Workshop on
Cryptography and Security in Computing Systems, CS2 ’14, pp. 13 - 18.

 S. Picek, B. Ege, K. Papagiannopoulos, L. Batina, and D. Jakobovic. Optimality and beyond: The case of
4x4 S-boxes. HOST 2014, pp. 80 - 83.

 S. Picek, B. Mazumdar, D. Mukhopadhyay, and L. Batina. Modified Transparency Order Property:
Solution or Just Another Attempt. SPACE 2015, pp. 210 - 227.

 S. Picek, J. F. Miller, D. Jakobovic, and L. Batina. Cartesian Genetic Programming Approach for
Generating Substitution Boxes of Different Sizes. Genetic and Evolutionary Computation Companion
(GECCO) 2015, pp. 1457–1458.

 S. Picek, K. Papagiannopoulos, B. Ege, L. Batina, and D. Jakobovic. Confused by Confusion: Systematic
Evaluation of DPA Resistance of Various S-boxes. INDOCRYPT 2014, pp. 374–390.

908

105

References
S-boxes:
 P. Tesar. A New Method for Generating High Non-linearity S-Boxes. Radioengineering, 19(1): pp. 23–26.
 L. Batina, D. Jakobovic, N. Mentens, S. Picek, A. de la Piedra, and D. Sisejkovic. S-box Pipelining Using

Genetic Algorithms for High-Throughput AES Implementations: How Fast Can We Go? INDOCRYPT
2014, pp. 322 - 337.

 S. Picek, D. Sisejkovic, D. Jakobovic, L. Batina, B, Yang, D. Sijacic, and N. Mentens. Extreme Pipelining
Towards the Best Area-performance Trade-offs in Hardware. Africacrypt 2016, pp. 147 – 166.

Addition chains:
 N. Nedjah and L. de Macedo Mourelle. Minimal Addition Chain for Efficient Modular Exponentiation

Using Genetic Algorithms. Developments in Applied Artificial Intelligence. LNCS 2358, 2002, pp. 88-98.
 N. Nedjah and L. de Macedo Mourelle. Minimal Addition-Subtraction Chains Using Genetic Algorithms.

Advances in Information Systems. Volume 2457 of LNCS, 2002, pp. 303 – 313.
 N. Nedjah and L. de Macedo Mourelle. Minimal Addition-Subtraction Sequences for Efficient

Preprocessing in Large Window-Based Modular Exponentiation Using Genetic Algorithms. Intelligent
Data Engineering and Automated Learning. Volume 2690 of LNCS, 2003, pp. 329 – 336.

 N. Nedjah and L. de Macedo Mourelle. Finding Minimal Addition Chains Using Ant Colony. Intelligent
Data Engineering and Automated Learning - IDEAL 2004, pp. 642 – 647.

 N. Nedjah and L. de Macedo Mourelle. Towards Minimal Addition Chains Using Ant Colony
Optimisation. Journal of Mathematical Modelling and Algorithms 5(4), 2006, pp. 525 – 543.

 N. Cruz-Cortes, F. Rodriguez-Henriquez, R. Juarez-Morales, and C. Coello Coello. Finding Optimal
Addition Chains Using a Genetic Algorithm Approach. Computational Intelligence and Security. Volume
3801 of LNCS, 2005, pp. 208 – 215.

 N. Cruz-Cortes, F. Rodriguez-Henriquez, and C. Coello Coello. An Artificial Immune System Heuristic
for Generating Short Addition Chains. Evolutionary Computation, IEEE Transactions on 12(1), 2008, pp.
1 – 24.

106

References
Addition chains:
 L. G. Osorio-Hernandez, E. Mezura-Montes, N.C. Cortes, and F. Rodriguez-Henriquez. A genetic

algorithm with repair and local search mechanisms able to find minimal length addition chains for small
exponents. CEC 2009, pp. 1422 – 1429.

 A. Leon-Javier, N. Cruz-Cortes, M. Moreno-Armendariz, and S. Orantes-Jimenez. Finding Minimal
Addition Chains with a Particle Swarm Optimization Algorithm. MICAI 2009: Advances in Artificial
Intelligence. Volume 5845 of LNCS, 2009, pp. 680 – 691.

 N. Nedjah and L. de Macedo Mourelle. High-performance SoC-based Implementation of Modular
Exponentiation Using Evolutionary Addition Chains for Efficient Cryptography. Applied Soft Computing
11 (7), 2011, pp. 4302 – 4311.

 S. Dominguez-Isidro, E. Mezura-Montes, and L.G. Osorio-Hernandez. Addition chain length minimization
with evolutionary programming. Genetic and Evolutionary Computation Conference Companion, GECCO
2011, pp. 59 – 60.

 S. Dominguez-Isidro, E. Mezura-Montes, and L.G. Osorio-Hernandez. Evolutionary programming for the
length minimization of addition chains. Eng. Appl. of AI 37, 2015, 125 -134.

 S. Picek, C. A. Coello Coello, D. Jakobovic, and N. Mentens. Evolutionary Algorithms for Finding Short
Addition Chains: Going the Distance. EvoCOP 2016, pp. 121 – 137.

Pseudorandom number generators:
 C. Lamenca-Martinez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A. Ribagorda. Lamar: A new

pseudorandom number generator evolved by means of genetic programming. PPSN IX, 2006, pp. 850-859.
 P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A.Ribagorda. LAMED - A PRNG for

EPC Class-1 Generation-2 RFID Specification. Comput. Stand. Interfaces 31(1), 2009, pp. 88 – 97.
 J.R. Koza. Evolving a computer program to generate random numbers using the genetic programming

paradigm (1991).

107

References
Pseudorandom number generators:
 J. Hernandez, A. Seznec, and P. Isasi. On the design of state-of-the-art pseudorandom number generators

by means of genetic programming. CEC2004, volume 2. pp. 1510 – 1516.
 A. Poorghanad, A. Sadr, and A. Kashanipour. Generating high quality pseudo random number using

evolutionary methods. In Computational Intelligence and Security, 2008. CIS '08, pp. 331 – 335.
 L. Sekanina. Virtual reconfigurable circuits for real-world applications of evolvable hardware. Evolvable

Systems: From Biology to Hardware. Springer Berlin Heidelberg, 2003, pp. 186- 197.
 S. Wolfram. Random sequence generation by cellular automata. Advances in Applied Mathematics, 7(2):

pp. 123 - 169, 1986.
Fault injection:
 S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards

(Advances in Information Security). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.
 P. C. Kocher, J. Jae, and B. Jun. Differential power analysis. CRYPTO '99, 1999, pp. 388 - 397.
 R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and M. Golub. Glitch it if you can: Parameter

search strategies for successful fault injection, CARDIS 2013, pp. 236 -252.
 S. Picek, L. Batina, D. Jakobovic, and R. B. Carpi. Evolving genetic algorithms for fault injection attacks,

MIPRO 2014, pp. 1106 – 1111.
 S. Picek, L. Batina, P. Buzing, and D. Jakobovic. Fault Injection with a new flavor: Memetic Algorithms

make a difference. COSADE 2015, pp. 159 – 173.

909

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 11.000 x 8.500 inches / 279.4 x 215.9 mm
 Shift: move up by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20160519165515
 792.0000
 US Letter
 Blank
 612.0000

 Wide
 1
 0
 No
 795
 352

 Fixed
 Up
 0.7200
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 26
 27
 26
 27

 1

 HistoryList_V1
 qi2base

