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ABSTRACT
We report on our findings using a genetic algorithm (GA)
as a preprocessing step for force-directed graph drawings to
find a smart initial vertex layout (instead of a random ini-
tial layout) to decrease the number of edge crossings in the
graph. We demonstrate that the initial layouts found by our
GA improve the chances of finding better results in terms
of the number of edge crossings, especially for sparse graphs
and star-shaped graphs. In particular we demonstrate a re-
duction in edge-crossings for the class of star-shaped graphs
by using our GA over random vertex placement in the order
of 3:1.
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•Mathematics of computing → Combinatoric prob-
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1. INTRODUCTION
The class of force-directed algorithms is the most well-

known and accepted approach in the graph visualisation
challenge [1]. This class of algorithms is based on the spring-
embedder model by Eades [2] which normally starts with
a random initial placement of vertices and lets the spring
forces move them towards mechanical equilibrium over sev-
eral iterations. The initial random placement can signifi-
cantly impact the final layout in terms of edge-crossings [7].
We propose a Genetic Algorithm (AngGA) for preparing
smart initial node placements, which lead to reduction in
edge crossing in the final layout. This idea was also ex-
ploited in previous work [7].
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Figure 1: Illustration of angles involved in the fitness
function with two different layouts of a star-shaped
graph.

2. GENETIC ALGORITHM
AngGA in this paper comprises a fitness function and

crossover, mutation, and selection operators. An individual
in our GA represents a sequence of cell addresses in a square
matrix. Similar to the approach of Eloranta and Mäkinen [3]
in their TimGA, we consider a discrete drawing space and
represent a layout by an n× n matrix.

2.1 Fitness
AngGA aims at maximising its fitness function which ex-

presses a weighted sum of angles between adjacent edges.
For each pair of adjacent edges, we consider the smaller angle
enclosed by these edges. We reserve more space for angles
at vertices with high betweenness centrality so that adja-
cent edges can have longer length. The fitness of layout L of
graph G = (V,E) with a set of vertices V = {v1, v2, . . . , vn}
and a set of edges E ⊆ V × V is expressed in Equation (1)
where aijk is the angle between edges {vi, vj} and {vi, vk}
and the weights bi, bj and bk are the betweenness central-
ities of vertices vi, vj and vk, respectively; eij are eik are
the lengths of the two links which create the angle between
edges {vi, vj} and {vi, vk}.

f(L) =
∑
vi∈V

∑
vj ,vk∈V

{vi,vj}∈E

{vi,vk}∈E

aijkbibjbkeijeik (1)

Fig. 1 shows two different layouts of the same graph taken
from the Rome Graphs dataset 1. The layout in Fig. 1(a) is
better in terms of edge crossings than the one in Fig. 1(b).
In both layouts the triangle and circle vertices have higher
betweenness centrality than the diamond and square ver-
tices.

1http://www.graphdrawing.org/data/
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Table 1: Results from experiments with 512 graphs from Rome repository.

No. Avg. Avg. No. GA > R R > GA GA > R R > GA GA R
L Total n m Gen Cross% Cross% No.Graphs No.Graphs time(s) time(s)
L1 512 9 11.55 90 23% -0.04% 213 53 0.16 0.0048
L2 532 37.39 37.22 n10 13% -0.09% 135 121 1.43 0.33
L3 3638 37.15 41.9 n5 13% -1% 1053 954 1.53 0.32
L4 1503 26.44 36.67 n5 23% -0.04% 990 293 0.63 0.098

Table 2: Results of applying GA as a pre-processor for Fruchterman-Reingold.

Algorithm Graph n m Gen GA-planar R-planar GA-cross R-cross GA-run (s) R-run (s)
FR 1 7 7 70 100 75 0 0.25 0.07 0.002
FR 2 39 45 200 79 17 0.21 1.23 1.2 0.25
FR 3 68 84 300 96 88 0.11 0.31 4.415 1.2
FR 4 51 63 300 96 84 0.1 0.63 2.6 0.4
KK 1 7 7 70 93 78 0.07 0.27 0.07 0.004
KK 2 39 45 200 70 34 0.355 0.885 2.015 1.11
KK 3 68 84 300 93 71 0.36 1.26 7.67 5.15
KK 4 51 63 200 66 27 0.81 3.37 2.2 0.9

2.2 General Settings
The population size depends on the graph size, we set the

population size to 100 for graphs with node count in the
range from 10 to 200. We use an elitist technique for se-
lecting individuals to be preserved in the next generation.
The whole population is sorted from best to worst fitness
and the first third of individuals is selected and copied di-
rectly into the next generation(Reproduction). The first
third and the second third in the list are also reserved for
the application of crossover and mutation, while the bottom
third of the individuals is discarded. Each ordering in the
remaining part (the first and the second thirds of orderings)
is modified and removed from the current generation and
copied to the next generation by either Crossover or Mu-
tation with equal probability. For a graph with n vertices
we consider kn generations, k being set at a value less than
or equal to 10. Then the individual with the best fitness
from the last generation is selected to be the initial layout
for a force-directed graph drawing algorithm. Since our in-
dividual represents a set of interconnected vertices we wish
to keep a good part of the layout preserved when performing
crossover. Because of its effectiveness in this regard PMX
has been chosen as our crossover operation. It randomly se-
lects vi such that vi 6= v|V | and vi 6= v1. Then it creates the
first offspring from the set {v1...vi} of the first parent and
the set {vi+1...v|V |} of the second parent, and the second
offspring from the set {v1...vi} of the second parent and the
set {vi+1...v|V |} of the first parent.

The mutation operator we chose to use in AngGA is Sin-
gleMutate [5]. This mutation operator randomly picks two
different vertices and moves them to two, also randomly
picked, empty cells in the layout matrix.

3. EXPERIMENTAL RESULTS
In order to evaluate our AngGA we ran the force-directed

algorithm of Fruchterman and Reingold [4] and Kamada-
Kawai [6] on a few selected graphs, both with a randomly
generated initial layout and with our AngGA, to compare
the number of edge crossings in the final force-directed lay-

outs (see Table 2). We have also run Fruchterman and
Reingold [4] on a few bigger sets of graphs with both ran-
domly generated initial layouts and with our AngGA. The
first dataset L1 we used in our experimental study consists
of 512 planar graphs from the Rome Graphs dataset with
a vertex count of 9 the results are listed in Table 1. The
second dataset L2 is comprised of 532 randomly generated
sparse graphs. The third set is a set of 3638 Cactus graphs
which have also been generated randomly. The last dataset
L4 is a list of 1503 star-shaped graphs, again generated ran-
domly, based on the number of branches in the graph (see
Table1).
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