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ABSTRACT 

Although many advances have been made in genome sequencing 
for analyzing the composition of microbiomes, very few studies 
have attempted to learn and model their dynamics. Furthermore, 
no studies have attempted to exploit the dynamics of 
compositional changes of a microbiome for overproducing a 
metabolite of interest.  This task proves to be computationally 
difficult at best and intractable at worst.  The challenge is due to 
the complex, interdependent, and large number of highly non-
linear interactions among members of a microbiome, as well as 
environmental factors, e.g. substrate.  Here, we present a 
computationally tractable strategy using machine learning 
methods and stochastic optimization to characterize and 
potentially engineer a microbiome. In this work, an artificial 
neural network (ANN) is utilized to learn how six different 
lignocellulose food sources affect the temporal composition of the 
hindgut microbiome of Reticulitermes flavipes, the eastern 
subterranean termite. The learned dynamics from the ANN are 
optimized using either a genetic algorithm or artificial immune 
system approach.  Specifically, the optimization objective is the 
maximization of the Rhodospirillales, an acetate producing order 
of bacteria, which will intrinsically maximize acetate production 
from the microbiome.  The genetic algorithm and artificial 
immune system are compared for robustness and speed. 
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1. INTRODUCTION 
The emergent field of microbiome research has become 
increasingly important with the surge in genome sequencing   
technology. For example, one of the main goals of the Human 
Microbiome Project (HMP) is to analyze genetic sequences of 
microbiomes from various parts of the human body, such as the  
gut and skin, and determine if relationships between microbiome 
composition and diseases exist [6]. Consequently, metagenomics 
studies which analyze large amount of sequencing data have been  

 

 

 

 

 

 

able to link changes in human microbiome composition to 
maladies, such as obesity [5], inflammatory bowel disease [2], and 
type 2 diabetes [3]. Although metagenomic advances have helped 
give insight to the microbiome, there have been only a few studies 
attempting to model and learn the dynamics of the microbiome 
due to the difficulty in identifying the numerous interrelationships 
among community members, the computational difficulty of 
modeling those highly nonlinear, and other external influences 
such as substrate, temperature, pH, micronutrient concentrations, 
etc. 

In this work, we propose an algorithm which utilizes an artificial 
neural network to learn the dynamics of the microbiome present in 
the hindgut of R. flavipes. The learned dynamics are then used in 
conjunction with an artificial immune system and a genetic 
algorithm to engineer the microbiome and determine a substrate 
regimen to maximize the relative abundance of the order 
Rhodospirillales. Rhodospirillales was chosen due to the order’s 
ability to create acetic acid as a product. 

2. METHODS 
2.1 Termite Hindgut Sequencing 
R. flavipes termites were separated into colonies based on which 
single substrate diet they were to receive.  These substrates 
included spruce, cardboard, oak, maple, mulch, birch, and one 
colony was starved for a total of seven colonies. Termites from 
each colony were sampled on the day of arrival (day 0) and on 
days 1, 2, 3, 7, 14, 21, 28, 35, 42, 49 after arrival. Before arrival 
and on day 0 the termites were fed mulch. Hindgut samples were 
sequenced with an Illumina MiSeq using 16S rRNA sequencing to 
determine the relative abundance of operational taxonomic units 
(OTUs) at a given time. Each OTU which was identified was 
originally drilled down to the species level. Before being fed to 
the neural network, the OTUs were grouped by taxonomic order 
in order to reduce noise in the algorithm. 

2.2 Artificial Neural Network 
A deep backpropagation artificial neural network (ANN) was 
created using Fast Artificial Neural Network (FANN) [4] with 
Python bindings. The number of input nodes was set to the 
number of taxonomic orders plus the number of substrates 
present/lacking in the given colony for a total of 70 inputs nodes. 
The number of output nodes was set to 64, or the number of 
taxonomic orders present.  The ANN utilized two hidden layers 
with 67 and 60 nodes, respectively.  The ANN was trained by 
feeding the relative abundance of each taxonomic order and 
substrates present/lacking at time period t as inputs and the 
relative abundance of each taxonomic order for time period t+1 as 
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the target for each time point in each colony. The network was 
trained until the error was below 10-5. 

2.3 Microbiome Engineering & Optimization 
After the ANN is sufficiently trained, an artificial immune system  
(AIS) were compared to a genetic algorithm (GA) to maximize 
the order Rhodospirillales. In order to accomplish this goal, each 
algorithm generated a random population of 100 members. Since 
most colonies were sampled at ten time points and there are six 
substrates available to be fed to each colony, each member of the 
population was a random bit array of length 60.  Each bit in each 
set of 6 bits in the array is representative of the presence or lack of 
a certain substrate given by a 1 or 0, respectively. Each set of six 
bits is representative of a sampling time period. To start, a test 
time point of the relative abundance of taxonomic orders was fed 
to the ANN with the first six bits of the array. The predicted 
relative abundance of Rhodospirillales was recorded, and the 
predicted relative abundances of each taxonomic order was then 
fed back into the ANN with the next 6 bits of the array. This is 
repeated for the length of the array.  The final score of the 
member of the population is the composite trapezoidal rule for the 
relative abundance of Rhodospirillales at each time point. In other 
words, the area under the curve of predicted relative abundance of 
Rhodospirillales   over time is the fitness score of the member of 
the population.  After scoring all members, a new population was 
generated. For the AIS, the top 35% solutions were kept as 
memory solutions and the remaining population was generated 
based off of a simplified CLONALG [1] algorithm. For the GA, 
new solutions were generated by elitist selection and single point 
crossover.  Each algorithm was run for 150 iterations. A range of 
mutation rates were tested for each algorithm.  In addition, two 
versions of each algorithm were created: one version which 
imposed a limit of up to one substrate per time period and another 
version which had no substrate limit. 

3. RESULTS 
To test the ANN, seven time points were left out of the training 
set and used in the testing set. Each time point was fed into the 
ANN and the predicted relative abundances of each OTU was 
compared to the actual relative abundances of each OTU. The root 
mean squared error (RMSE) and Bray-Curtis similarity were 
determined for each test point and averaged across the set. The 
averaged RMSE and Bray-Curtis similarity were 0.0229 and 
0.8576, respectively. The best solution for the AIS and GA were 
returned for each mutation rate, as presented in Table 1 and Table 
2. 

 

Table 1. TrapZ score of Rhodospirillales for the best solution 
using AIS with various mutation rates 

Mutation Rate No Substrate Limit Substrate Limit 

5% 0.8393 0.6646 

10% 0.9233 0.6646 

15% 0.9225 0.6646 

20% 0.9269 0.7131 

25% 0.9242 0.7131 

30% 0.9021 0.6646 

 

 

 

Table 2. TrapZ score of Rhodospirillales for the best solutions 
using GA with various mutation rates 

Mutation Rate No Substrate Limit Substrate Limit  

2% 0.7596 0.6576 

5% 0.7623 0.7342 

7% 0.8099 0.6646 

9% 0.8247 0.6646 

12% 0.7814 0.6646 

15% 0.6606 0.6646 

Overall, the AIS performed better than the GA in terms of 
solution convergence and fitness.  In terms of the predicted 
substrates present for each time period to maximize 
Rhodospirillales, both versions of the AIS and GA contained 
maple in the last seven time points for the majority of the top 
solutions.   During the first three time points, the relative 
abundance of Rhodospirillales was the highest when multiple 
substrates were present.   

4. CONCLUSION 
This work focused on implementation of a deep, backpropagation 
artificial neural network in order to learn the dynamics of the 
hindgut microbiome of R. flavipes. The dynamics learned 
included the effect of substrate fed to the termite on the relative 
abundance of taxonomic orders in the microbiome. The goal of 
both the AIS and GA was to create a substrate regimen that would 
maximize the relative abundance of Rhodospirillales, an acetic 
acid producing order of bacteria. Two versions of both the AIS 
and GA were implemented; one version only allowed up to one 
substrate to be present at a time, while the other version had no 
limit on the number of substrates present. Overall, the AIS was 
able to converge on better solutions than the GA. Food regimens 
returned from the algorithms suggested that using maple as a 
substrate in the last seven time points, as well as multiple 
substrates in the first three time points are essential to maximize 
Rhodospirillales abundance in the microbiome. It is likely that 
this outcome occurred because the ANN was trained on samples 
taken from colonies only fed one substrate. To confirm these 
results, more experimental studies will need to be performed. 
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