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ABSTRACT 
This paper introduces a new genetic operator, called homologous 
gene replacement (hGR) applied to the chromosome of genetic 
algorithm (GA). The new genetic algorithm is referred as 
hGRGA. This operator aims to extend the ground idea behind the 
biological evolutionary process based classical genetic algorithm 
that relies on localizing and utilizing good local schema present in 
the genes of a chromosome. The operator furbishes the 
chromosomes in gene level to boost their overall functionality. 
The proposed hGRGA is evaluated by widely-used benchmark 
functions. The simulation results was promising in terms of 
convergence speed and preciseness in finding optima.  
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1. INTRODUCTION 
Evolutionary computing has become a popular tool for solving 
real world combinatorial and global optimization problems with 
rapidly increasing size and complexity in present days. The 
stochastic search based evolutionary algorithms are well 
applicable to handle wide variety of scientific research and 
engineering applications. A rich literature is available on various 
evolutionary heuristics and swarm intelligence based search 
algorithms with numerous applications [1-7].  

The idea of GA, first described by John Holland [8], was 
inspired by the Darwinian principles of biological evolution and 
adaptation in nature. The classical GA, also referred as simple GA 
(SGA), incorporates two operators, crossover and mutation, to 
address two primary challenges involved in the search process, 
intensify the existing knowledge (exploitation) and diversify to 
discover new knowledge (exploration). The underlying principle 
of GA in [9] states that there exists good ‘schema’ in 
chromosomes that contribute to their higher fitness. In nature, 
chromosome consists of genes that are connected together within 
it. Each of these genes is responsible for a function of that 
organism. Inspired by this idea, we introduce a genetic operator, 
homologous gene replacement (hGR). This operator exploits a 
chromosome by locating the best gene template in a chromosome 
and replacing relatively less fit genes of that particular 
chromosome with the better gene schemata. In addition to the 

local exploitation operator, hGR, we include twin removal (TR) 
[10, 11] to have balanced exploration in the proposed algorithm, 
referred as hGRGA. We tested hGRGA on 15 benchmark 
functions for numerical optimization.  

2. HOMOLOGOUS GENE REPLACEME 
based hGRGA 
Even with a good selection procedure, better solution schema or, 
chromosomes can be lost due to the disruptive effects of crossover 
and mutation.  We enhance the benefit provided by elitism that 
can reduce this loss, one step ahead by boosting up the fitness of 
the elites. In hGR, we replace relatively worse genes present in 
the elite-set by the best gene schema that is a homolog of the 
weak genes from same elite chromosome. We apply hGR on the 
elites to prioritize the schema fragments of elites only and to 
avoid the saturation of population with the schema of the best 
gene that may occur by applying hGR to all the individuals. This 
operator implicitly propagates the good local schema present in 
the gene of an elite contributing higher fitness to it, from local 
gene to the full chromosome, improving the overall fitness or, 
functional capacity of that chromosome. This phenomenon is 
reasonable since the combination of fully functional local genes 
can form the fitter chromosome of an organism in nature. 

To apply hGR operator, we evaluate the relative fitness of 
the individual genes of the elite chromosomes and sort them. To 
compute the fitness contribution of a particular gene (one variable 
in the solution), we deactivated the effect of the rest of the genes 
using zero as the value of the corresponding variable. Then, we 
insert the best gene with healthier schema in place of the 
unhealthy genes from the sorted sequence. We define the rate of 
gene replacement ሺݎሻ that determines the number of unhealthy 
genes to be replaced, ݊ ൌ ݎ ൈ ݀ in each elite, where ݀ is the 
number of genes of a chromosome. We keep on applying hGR 
with increased rate of gene replacement till the overall fitness of 
the elite keeps on increasing with respect to the original one or, 
there are no more genes to be replaced (݊ ൐ ݀). The proposed GA 
variation, hGRGA, combines hGR with crossover, mutation and 
TR. We apply hGR on the elites before crossover to guide the 
selection procedure towards better chromosomes for next 
generation. Therefore, the hGR operator can effectively enhance 
the exploitation capacity of GA. In addition, we utilize the TR 
operator to have balanced diversification. 

3. SIMULATION RESULTS 
Fifteen benchmark test functions are used to assess and compare 
the performance of hGRGA collected from the basic functions 
used in the latest Competition, CEC 2013 and 2014 [12, 13]. We 
categorize the fifteen functions into four types based on their 
properties. The details of the functions with their global minima 
and the minimum function values are available in [14]. We report 
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simulation results for reduced number of functions in Table 1. We 
set the number of genes in each chromosome (number of variables 
or, dimensions), ݀ equal to 10, and the other GA parameter values 
can be found in [14]. We ran SGA, TRGA [10] and hGRGA for 
20 times with 2000 epochs in each time. We report the best 
(minimum) and mean function value found along with the average 
number of epochs required to achieve the minimum function 
value out of the 20 runs.  

Table 1: Numerical performance of SGA, TRGA and hGRGA on 
benchmark test functions. 

Function Method Function value Epoch
best mean (mean)

Type I: unimodal, separable 

ଶ݂ 

(Discus) 

hGRGA 0 0 25.85 
TRGA 0 0 174.15
SGA 0 0 172.65 

Type II: unimodal, nonseparable 

ହ݂ 

(Schwefel 
2.2) 

hGRGA 0 0 25.75 
TRGA 0 0 161.65
SGA 0 0 188.70 

Type III: multimodal, separable 

଺݂ 

(Rastrigin) 

hGRGA 0 0 33.40 
TRGA 0.9950 3.5837 632.20
SGA 0.9952 4.2306 195.90 

଻݂ 

(Schwefel 
2.6) 

hGRGA 1.27e-04 0.0601 65.80
TRGA 129.309 309.905 1410.6 
SGA 308.918 780.969 422.70 

Type IV: multimodal, nonseparable 

ଵ݂ଵ 

(Griewank) 

hGRGA 0 0 57.45
TRGA 0.1299 0.4884 364.20
SGA 0.0426 0.4896 363 

ଵ݂ସ 

(Expanded 
Schaffer F6) 

hGRGA 0 0.009 77.6
TRGA 0.3587 1.1864 1307.6
SGA 0.3757 1.6178 547.75 

  The best mean function value is highlighted by bold.  
  The fastest convergence in terms of number of epoch is underlined. 

 

For type I and II functions, hGRGA could locate the unique 
global minima, ଶ݂ሺ࢞∗ሻ ൌ 0 ൌ ହ݂ሺ࢞∗ሻ. For ଶ݂,  hGRGA converged 
about 85% faster than the other two algorithms and for ହ݂, it 
converged to the global minima in 84.07% (and 86.35%) fewer 
mean epochs than those of TRGA (and SGA). Type III and IV are 
the most challenging functions that endorse the searching strength 
of the algorithms to avoid the local traps and to obtain the global 
minima. Both SGA and TRGA converged prematurely in the local 
minima for such four functions (Table 1). To compare, hGRGA 
successfully found the global minima ( ଺݂ሺݔ∗ሻ = 0) for ଺݂ and 
converged only close to the global minima ( ଻݂ሺݔ∗ሻ = 0) for ଻݂ 
with faster convergences. This close result is reasonable as The 
No-Free-Lunch (NFL) theorem [15, 16] states that it is only 
possible to develop a promising global optimization technique for 
a class of problems. For ଵ݂ଵ and ଵ݂ସ, hGRGA reached the global 
minima, ଵ݂ଵሺ࢞∗ሻ ൌ 0 ൌ ଵ݂ସሺ࢞∗ሻ as its best performance. 
Moreover, the convergence speed of hGRGA exceeds the SGA 
and TRGA algorithms by no less than 84.17% and 88.83% for ଵ݂ଵ 
and ଵ݂ସ respectively.  

4. CONCLUSION 
In this paper, we introduce a novel homologous gene replacement 
(hGR) operator that is dynamically adaptable to large number of 
variables. The proposed hGRGA algorithm appropriately balances 
the exploitation (or, intensification) and exploration (or, 
diversification) tasks which is crucial for any optimization 
algorithm. The resulting hGRGA delivered promising 
performance both in terms of finding minimum function value and 

speed of convergence for benchmark test functions having various 
complex properties. Therefore, it would be interesting to apply 
hGRGA to solve challenging modern combinatorial optimization. 
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