
Multi-Line Batch Scheduling by Similarity

Ignacio Arnaldo
MIT, CSAIL

Cambridge, MA
iarnaldo@csail.mit.edu

Erik Hemberg
MIT, CSAIL

Cambridge, MA
hembergerik@csail.mit.edu

Una-May O’Reilly
MIT, CSAIL

Cambridge, MA
unamay@csail.mit.edu

ABSTRACT
We introduce a real-world job shop scheduling problem where
the objective is to minimize configuration costs that depend
on the sliding pairwise similarity between two assets ordered
one after the other in a processing batch. This implies that
our fundamental challenge is to learn from the costs what
constitutes asset similarity in the context of batching locally
and optimizing a multi-line end to end. We present a 3 com-
ponent scheduling system: simulator, scheduler and hyper-
optimizer. The scheduler relies upon a machine learning
algorithm – hierarchical clustering, to select, from an entry
yard, assets for a batch based on weighted similarity. It then
utilizes a weighted distance matrix to sequence the assets.
The weights used by the scheduler are optimized online with
an evolutionary algorithm.

Categories and Subject Descriptors
I.2.2 [Artificial intelligence]: Scheduling

Keywords
hyper-optimization; machine learning

1. INTRODUCTION
Late stage steel processing occurs on a very large scale: gi-

gantic, heavy steel assets (coils or slabs typically) are chemi-
cally treated, rolled flat and/or galvanized by passing through
what is termed a multi-line. A multi-line is a series of com-
ponents, each consisting of an entry yard, process and exit
yard. The exit yard of one process functions as the entry
yard to the next. Groups of assets arrive from different
sources at entry yards along the multi-line and can exit af-
ter a component. Scheduling is done in batches, locally at
each component. Each asset transits through the multi-line
independently, becoming a member of a different batch at
each component.

Efficiently selecting the assets for a batch from the in-
ventory yard and sequencing them is the challenge of our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA

© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931647

scheduling problem, see Figure 1. This problem is within
the general class of job shop scheduling however it exhibits
distinctions that make it atypical. For the multi-line to be
cost-efficient (and other similar manufacturing multi-lines
such as vehicle painting), the sequence of assets must be
smooth. That is, the difference between any two assets, when
one follows the other, must be minimized so that the process
does not have to be adjusted (e.g., by heat change, chem-
ical remixing or track movement). Rather than optimizing
makespan or throughput, in this problem the primary ob-
jective is to reduce the cost of reconfiguring each process for
the differing physical properties of each successive asset in a
batch.

Similarity batching as selection and sequencing, hence-
forth simply called batching, is challenging for a number of
reasons. Primarily, each asset is characterized by multiple
physical properties. For example, a slab has three dimen-
sions: length, width and thickness and is of a certain steel
grade. The four properties are relevant to smooth sequences,
one asset to the next, through the pickling process. The first
three properties are relevant to smooth sequences through
the tandem process but steel strength is an additional prop-
erty that matters while grade does not. Figure 2 shows
additional examples.

Figure 2: Examples of asset-to-asset dissimilarity

When a multi-line engineer chooses a batch of assets and
sequences it, s/he must trade off differences in properties
according to the influence each has on the cost of processing
the sequence. Costs differ by properties, e.g., for pickling
a difference in thickness is less or greater than the cost of
a difference in width depending on the magnitude of the
difference. At greater detail, depending on the size of an
asset-to-asset property difference, the cost can be indexed
by a level of severity defined as one of three levels: high,
medium and low.

Because property differences and costs are computed on a
sliding asset-to-asset basis, the sequencing problem is non-

921

http://dx.doi.org/10.1145/2908961.2931647

Figure 1: Multi-Line Scheduling. Yards = Y, Processes = P (Pickling) and T (Tandem). Asset properties are depicted
visually. Batches are circled for illustration.

linear. Additionally, a local asset-to-asset pairing has a
larger scale impact because it influences which assets are
available for future batching. At yet a higher scale, while
batch selection and sequencing is able to proceed indepen-
dently at each component, components are linked because
the exit yard of an upstream component can serve as the
entry yard for a downstream one. Note that in our problem
definition cost objectives do not directly express any costs
spanning the entire series of the multi-line.

As a final complexity, the non-linearity sequencing depen-
dencies for a process are different for each one given the
nature of their work. Effectively, the complex concept of
what makes two assets similar in one processing context is
NOT the same as in another. Fundamentally, our challenge
is to learn from process costs, what constitutes asset simi-
larity in the context of batching locally while considering the
multi-line end to end.

The overall contribution of this paper is the design and
evaluation of a system solution to multi-line batching based
upon similarity optimization, centered on a heuristic sched-
uler, see Figure 3.

There are a number of novel aspects to our solution:

1. The scheduler selects assets from the entry yard for
a batch using a machine learning clustering algorithm.
This integrates all property dimensions relevant to sim-
ilarity. On our example multi-line definition and eval-
uation data, this is demonstrably superior to randomly
selecting assets.

2. After it selects the batch, the scheduler sequences as-
sets with a pairwise sliding window by referencing a
weighted inter-asset distance score for each possible
pair. These weighted inter-asset distance scores are re-
turned by the clustering algorithm. We contribute two
sequencing heuristics that use them: Nearest Neighbor
(NN) and ranking by weighted distance (RANK). We
compare them to simply sorting the assets on the most
influential property (SORT) with our example multi-
line definition and evaluation data. We find the Near-
est Neighbor heuristic is significantly superior to the
RANK heuristic and to sorting.

3. The weights that are integrated into the inter-asset
distance score are intended to implicitly express asset
similarity in terms of process costs. We contribute
a means of optimally determining these weights. We

make them parameters of the scheduler, terming them
more precisely “hyper-parameters”. To hyper-optimize
them we use an evolutionary algorithm, CMAES [5].
The scheduler is executed multiple times (and each
time it schedules numerous batches), each time with
a different set of weights proposed by CMAES until
the best set of weights (that produces the lowest cost
schedules) is determined. This is shown in Figure 3

4. Conventionally, hyper-parameters are tuned once, with
historical examples, then used indefinitely. We can re-
fer to this as an offline paradigm. We offer a online
paradigm which is feasible because we exploit cloud
computing and parallelization. To tune online in our
approach it is necessary to complete a run of CMAES
that determines the weights for the next batch in the
duration it takes to physically process the current batch.
We simultaneously run CMAES 30 times on the cloud
to determine the best weights and we also optimize
the execution time of a run by multi-threading the
framework’s simulator. This allows us not only to tune
the weights daily but also per batch, given our some
simplistic assumptions about batch weight and corre-
sponding asset quantity and processing time.

We proceed by first formally defining our problem in Sec-
tion 2. We then we present related work in Section 3 before
describing our system architecture in Section 4 and evaluat-
ing the scheduler in Section 5. Section 6 concludes with a
summary. Finally, future work in Section 7.

2. PROBLEM DEFINITION
All symbols are defined in Table 1 for reference. For

brevity, where unambiguous, we omit higher order super-
scripts. We are interested in minimizing the configuration
costs associated with multiple components Υi each com-
posed of an entry yard, process π, and exit yard:

Υi = (Y Ei , πi, Y
X
i), (1)

Components are linked serially into a multi-line Π

Π = (Υ1,Υ2,Υ3, . . .Υ|Π|) Y
E
Υi

= Y XΥj
, j > i (2)

The costs of each process π depend on asset properties Φ
specific to process π.

Φπ
i

= (φi1, φ
i
2, . . . φ

i
|Φ|) (3)

922

Cost severity, associated with a process and property µπ,Φ

has 3 levels: hard H, soft S and penalty P . These levels are
equivalent to high, medium and low.

µ = (H,S, P) (4)

Severity may simultaneously occur on multiple levels, e.g
a major reconfiguration and minor reconfiguration may be
required.

Because the configuration of a process must be adjusted
before different assets pass through it, e.g. changing furnace
temperature or dip chemical treatments, process costs are
assigned on an asset-to-asset, a0-to-a1, basis when the values
of a property are not similar. Described fully, a process cost,
f is a function of process, property, severity, and the two
assets. f maps to a real value.

y = f(πi, φ
i
j , a1, a0, µ

i,j
k), y ∈ R (5)

A batch β is an ordering of assets selected from a yard.
We presume that the quantity of assets in a batch is smaller
than the inventory quantity.

β = {a1, a2, . . . a|β|}

|β| << |Y E |
(6)

We aggregate the asset-to-asset cost f for each property,
severity and process over a batch β of assets a using a pair-
wise, overlapping, sliding window and then over successive
batches B that run through the multi-line over a time du-
ration.

cost(B, π, φ, µ) =

B∑
β

β∑
a

f(πi, φ
i
j , a1, a0, µ

i,j
k) (7)

Our goal is to minimize the costs of manufacturing mul-
tiple sequences B by controlling the pairwise sequencing of
assets. In other words to find the B that minimizes all the
costs within (7). For practicality, to reduce the objective
space we will weight the cost of a property by a coefficient
of severity, KH , KS and KP .

f(π, φ, a1, a0) =KHf(πi, φ
i
j , a1, a0, µ

i,j
H)+

KSf(πi, φ
i
j , a1, a0, µ

i,j
S)+

KP f(πi, φ
i
j , a1, a0, µ

i,j
P)

KH >> KS >> KP

(8)

Then we sum the costs of a property φζ across processes.

cost(φ) = f(πi, φ
i
ζ , a1, a0) + f(πj , φ

j
ζ , a1, a0)

πi 6= πj
(9)

To explain the notation, it expresses that πi and πj are dif-
ferent processes while φζ is the same property. An example
is helpful here. Suppose the multi-line has 2 processes, PKL
and TDM, and the width difference between each pair of
assets is independently relevant to each of them. There are
hard, soft and penalty severities in cost. We sum the width
difference costs weighted by severity of each of PKL and
TDM before adding them together.

Table 1: Symbols in problem definition
Symbol Meaning

Υi = (Y Ei , πi, Y
X
i) component with entry yard,

process and exit yard
Π = (Υ1,Υ2,Υ3, . . .Υ|Π|) multi-line

Y EΥi
= Y XΥj

, j > i component coupling

β = {a1, a2, a3, . . . , a|β|} batch of assets
B = {β1, β2, β3, . . . , β|B|} batches

Φπ = {φ1, φ2, . . . φmax} asset properties dependent
on process

µ = (H,S, P) cost severity levels: Hard,
Soft, Penalty

f(φ, π, a0, a1, µ) process cost for a process,
property, pair of assets, and
severity

KH , KS , KP coefficients of cost severity

3. RELATED WORK
To relate our work to state of the art we first situate our

problem within job shop scheduling (JSS). Following that,
we compare aspects of our solution to other approaches.
Problem Description Comparison

Branke et al [1] provide the most up to date comprehen-
sive survey on JSS in the context of heuristic approaches.
To the best of our knowledge, the similarity-based batch
scheduling problem (SBBS) has not yet been addressed by
the evolutionary computation community. We believe no
benchmarks of the problem exist. It is a specific sub-class
of JSS problem falling within the general class of job shop
scheduling in batches. There are obvious parallels between
processes and machines and between the multi-line and a
series of machines. Our conjecture is that, like many multi-
stage problems, it is generally NP-hard.

Branke et al [1] describe problems that pick jobs from an
eligible list one by one. In subtle but important contrast, in
similarity-based batch scheduling a batch of assets must be
selected from a larger entry yard. This selection requirement
is significant if a direct solution approach were to be taken
because some sort of variable length representation would
be required. For a dispatch rule supported by a priority
function however, selection does not appear to impose extra
requirements. That is, we believe the batch aspect of our
problem is a unimportant specialization of dispatch rules
that assign tasks to a machine one at a time.

Significant differences arise in terms of what task, job and
machine information is relevant and available to the sched-
uler heuristic. Typically in JSS problems, (for example, see
Table III in one survey [1] and Table 2 in another paper[6]),
job properties such as processing time of an operation, ready
time of a job, weight of a job are introduced. This reflects
objectives centered around throughput or makespan. In con-
trast our problem introduces asset properties. This reflects
objectives centered on batch ”smoothness” or asset-to-asset
differences. Additionally, our problem has no process at-
tributes equivalent to machine attributes such as setup time.
It also, notably, lacks any explicit objectives related to a
global metric such as end to end throughput. There is no
concept of end to end similarity or global configuration effi-
ciency. A suite of local objectives (at the component level)
must be optimized and, indirectly, this causes their collective

923

scheduling to be optimized because components are linked
through exit and entry yards.
Solution Design Discussion

A majority of state of art solutions to JSS, per [1], gener-
ate an effective scheduler heuristic by simply applying candi-
date heuristics to a set of problem instances (the training in-
stances), measuring their performance, and using this feed-
back to guide the search towards increasingly better heuris-
tics. Genetic programming to evolve priority functions is
one such example. Ant colony optimization is another [3,
4] In contrast to using a priority function, we use cluster-
ing, see Section 4.1, thus exploring the similarity aspect of
our problem. The computational cost of optimizing weights
used by clustering by using CMAES is arguably similar to
the cost of using genetic programming to learn a priority
function. CMAES likely requires less memory than genetic
programming which uses a tree-based population. The com-
putational costs of batching via clustering versus using a
priority function are equivalent.

4. INTEGRATED SYSTEM
Overview The architecture of the integrated system, see
Figure 3, has three components: a scheduler, a schedule
simulator, and a hyper-optimization module.

MULTI-LINE SIMULATOR

BATCH
SCHEDULER

ENTRY
FLOWS

COSTS
&

SCHEDULE

BATCH COMPLETION
HYPER

OPTIMIZER

COSTS

WEIGHTS

Figure 3: Integrated System Architecture

For each process, in two steps, the scheduler (1) selects
a batch of assets from the entry yard and (2) sequences
them. Detailed discussion of how it does this is deferred
to Section 4.3. The scheduler adjusts the size of the batch
to the number of assets that fit within an approximately
specified weight capacity. In our problem instance a batch
requires roughly 6 hours of processing. It passes each batch
to the simulator and“waits for it to finish”during which new
assets can enter the yard. When the simulator signals that
the batch has been completed, it then starts selection and
sequencing the next batch.

4.1 Simulator
The simulator, see Figure 4 models the specific multi-line

and how it processes batches at each component. It up-
dates down stream yard inventories that change due to pro-
cessing. It is “triggered” each time the scheduler sends it a
batch. Upon triggering, it simulates the timed movement of
the batch through the process. For each asset-to-asset pair,
it calculates whatever costs are incurred, tallying them, per

property, on a batch basis. It advances simulated time to
whenever the next batch will complete processing and in-
forms the scheduler of that completion and its costs.

4.2 Hyper-Optimizer
The hyper-optimizer tunes the parameters of the sched-

uler with an evolutionary algorithm. This tuning is done
online, when the scheduler is tasked to prepare schedules for
some number of batches. For example, the scheduler might
be optimized to provide the best schedules for a day (four ap-
proximately 6h batches) or for a single batch. We cloud scale
the hyper-optimization algorithm, CMAES [5] to execute 30
runs in parallel so that the time for hyper-optimization is
bounded by a single run. The time cost of a single run is
dominated by the number of fitness evaluations of CMAES.
Given our previous example of scheduling 4 batches daily,
one fitness evaluation is a complete simulation run of four
batches per process.

4.3 Scheduler
The scheduler needs to put similar assets beside each other

but, as we have earlier explained, similarity is a complex
concept. To address this the scheduler proceeds in two steps:
1. select 2. sequence.
Step 1: CL Selection The scheduler selects a batch from
the entry yard prior to sequencing it by clustering the assets
based on similarity.

1. The scheduler has a weight vector ω that has an en-
try for each property (Φi). It normalizes the property
values for every asset in the yard and multiplies each
property value by the appropriate weight in ω. It pre-
pares a matrix Λ with the results where each column
is an asset’s weighted properties. Λ has dimensions
(|Φ| × |A|) and ω has dimensions (|Φ| × 1). Note that
weight vector ω is a hyper-parameter, i.e. optimized
for the scheduler by CMAES.

2. The scheduler calls a machine learning algorithm named
hierarchical clustering, HC1 [2, 7] with Λ as an input
argument. HC returns a distance matrix ∆ and a den-
drogram data structure T which represents the hier-
archical clustering of the assets given their weighted
properties, i.e., Λ. ∆, of dimensions |A| × |A|, holds
the distance computed by HC for each pair of assets
given Λ.

3. The scheduler derives from T a batch β with procedure
(a) using its clustering information. β is chosen so the
quantity of assets meets the desired batch weight. To
ensure smoothness between batches β includes the last
asset a−1 of the previous batch (though this asset is
not sequenced). The selection subroutine returns β as
the selected (as yet un-sequenced) batch and ∆.

(a) Find the previous asset a−1 and the cluster (sub-
tree τ−1) it belongs to (at the start pick the assets
with lowest pairwise distance). Find the asset a0

with lowest distance to the a−1 and add it to β
and repeat. If all assets (leafs) in τ0 have been
added we traverse to the parent of τp0 . Stop when∑
βi < C or all assets have been added.

1http://docs.scipy.org/doc/scipy/reference/generated/
scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.
linkage

924

http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage

RECEIVE
BATCH

INSERT ITS
COMPLETION

EVENT

DEQUEUE
FIRST IN
QUEUE

ADVANCE TIME
TO NEXT

COMPLETION

NOTIFY
SCHEDULER

QUEUE IS TIME SORTED LIST OF BATCH COMPLETION EVENTS

TDM
COMPLETE

PKL
COMPLETE

HDG1
COMPLETE

HDG2
COMPLETE Q-HEAD

SOONER
t

LATER
T+k

TIME

Figure 4: Block depiction of an example event-based simulator with four process: TDM, HDG1, PKL and HDG2. In this
paper we use two processes: PKL and TDM.

Step 2: Sequencing

Option1: RANK Given β from Step 1, the scheduler uses
the weighted distance matrix ∆ to sequence the assets
according to how far they are from the last asset of the
previous batch (smallest distance to longest).

Option2: NN The first asset in the sequence is the one
smallest in distance to the last asset of the previous
batch, i.e., its nearest neighbor. The second asset is
the one smallest in distance to the first, etc.

Discussion The weight vector ω is obviously critical to the
scheduler’s efficiency. If, say, its weights cause thickness sim-
ilarity to be prioritized over width but the cost of a width
mismatch is higher, the weights are poorly chosen. Con-
versely, well-determined weights accurately reflect the indi-
rect relationship between costs and properties bearing the
overall goal of cost-efficient multi-line sequencing in mind.
Rather than analytically determine the weights they are
tuned via the hyper-optimization algorithm, see Figure 3.
The hyper-optimizer algorithm optimizes the weights to min-
imize the costs of multiple cost-efficiency objectives. We
provide parameter settings for CMAES in Section 5.2.

5. EXPERIMENTAL EVALUATION

5.1 Problem Instance
We demonstrate our approach with the single problem in-

stance made available to us. The simplified multi-line has 2
components, named PKL and TDM respectively. The exit
yard of the PKL component joins with the entry yard of
the TDM component. For the PKL process there are 3 rele-
vant similarity properties: thickness, width, and length. For
the TDM process there are 3 relevant similarity properties:
thickness, width and strength. The severity coefficients are
not precisely calibrated to reflect how the actual process con-
straint violation costs would interact with property distribu-
tions of the assets. This implies that while it is possible to
determine if one option is superior among all of them, in the
future, with calibration, rankings are likely to change. Ta-
bles 2, 3 and 4 provide explicit details. We minimize a single
objective by summing all weighted costs, integrating across
severity, property, and all processes. Our cost functions are

Table 2: Problem Instance Descriptions

Processes Π (PKL, TDM)
exit(PKL) = entry(TDM)

Properties
PKL ΦPKL (length l, width w, thickness d)
TDM ΦTDM (width w, thickness d, strength s)
Coefficients Severity KH = 1000,KS = 100,KP = 1

Table 3: PKL Process Cost Functions. Cost is multiplied
by severity.

ID φi Severity Cost logic (φ0,φ1)
f1PKL l KS 1500 if (l−3 + l−2 + l−1 + l0) < 2000m
f2PKL w KH 1 if |w0 − w1| ≤ 200
f3PKL w KS 1 if 170 < |w0 − w1| < 200
f4PKL d KH 1 if |d0 − d1|/d0 > 0.5
f5PKL d KP 1 if kd|d0 − d1|

fPKL = {f1PKL, f2PKL, f3PKL, f4PKL, f5PKL}, fTDM =
{f1TDM , f2TDM , f3TDM , f4TDM , f5TDM , f6TDM} and they
are calculated as in Eq. (9).

5.2 Evaluation Procedure
We use 7 days of the entry yard data provided to us. We

select the weight tuning (i.e. hyper-optimization) interval to
be daily and we schedule 4 batches in roughly a day. With
each daily set of optimized weights we compute the batch
costs averaged up to that day since each prior day determines
the inventories for the next. We perform 30 runs of CMAES
using a Python package2 with 100 fitness evaluations per run
to obtain 30 sets of optimized weights daily to obtain more
robust statistics on average batch cost. The population size,
chosen by the Python package is 9 and the weight vector ω
has 6 property dimensions (3 for each of PKL and TDM).
We do not change any default parameters settings used by
the package.

2https://www.lri.fr/˜hansen/cmaes inmatlab.html

925

https://www.lri.fr/~hansen/cmaes_inmatlab.html

Table 4: TDM Process Cost Functions. Cost is multiplied
by severity.

ID φi Severity Cost logic (φ0,φ1)
f1TDM w KH 1 if |w0 − w1| ≤ 5 or

|w1 − w0| ≤ 150
f2TDM w KS 1 if |w0 − w1| < 2
f3TDM w KP 1 if |w0 − w1| when w1 > w0

f4TDM d KH 1 if |d0 − d1|/d0 > 0.25
f5TDM d KP 1 if kd|d0 − d1|, kd = 1
f6TDM s KP 1 if kd|s0 − s1|, kd = 10

For hierarchical clustering we use the algorithm in package
SCIPY3. We use weighted Euclidean4 distance to measure
similarity between assets. Distance between clusters is based
on the nearest point algorithm.

5.3 Comparisons
We define two baseline selection heuristics.

1. TOP sorts the yard assets on a single property and
selects assets from the start of the sort downwards.

2. RDM randomly selects assets from the yard.

We define a baseline sequencing heuristic SORT that
sorts the assets on a single property.

Table 6 shows the results of our experiments. We per-
formed a Wilcoxon rank sum test5 and the difference be-
tween experiments were all statistically significant for a sig-
nificance level of α = 0.05.

With our problem instance we first run the TOP selection
and SORT sequencing (TOP+SORT) on 9 combinations of
single properties, one each for PKL and TDM. We obtain the
best result of 12.169 when width is the sort property for both
PKL and TDM. This implies, for this data and multi-line
configuration, width for both processes is the most influen-
tial property affecting cost. This knowledge provides some
insight into the specific property values of the assets we are
trying to schedule and how they interact with specific cost
parameters and severity weights. This knowledge cannot
be derived from the costs alone. As additional information,
we note that the difference in average batch cost between
TOP+SORT on the worst set of properties (length for PKL
combined with strength for TDM) is 12.921, which is only
6% different from the best. This reveals the multi-line def-
inition and sample assets we are investigating to be quite
limited in scope for optimization. This could potentially
change if severity coefficients were calibrated.

We next run the RDM selection and SORT sequencing
(RDM+SORT) using the width property for both the PKL
and TDM processes. We find a increase in average batch cost
to 12.216 ± 0.211. Nether RDM+SORT and TOP+SORT
exploit hyper-optimization (because they do not rely upon
clustering or information from the distance score matrix.
Not significantly different, they represent the best perfor-
mance that can be obtained without hyper-optimization.

3http://docs.scipy.org/doc/scipy/reference/generated/
scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.
linkage
4weighted Minkowski with p–norm 2
5http://docs.scipy.org/doc/scipy-0.16.1/reference/
generated/scipy.stats.ranksums.html

Table 5: Combined selection and sequencing heuristics. The
last two heuristics use no baseline heuristics while the ones
above them use one or more.

NAME SELECTION SEQUENCING
RDM+SORT RDM SORT
TOP+SORT TOP SORT
TOP+RANK TOP RANK
TOP+NN TOP NN
CL+SORT CL SORT
CL+RANK CL RANK
CL+NN CL NN

Table 6: Results for each selection and sequencing heuristic.
Cost is calculated as the average for each 6h batch.

Setup Average 6h Cost
TOP+SORT 12.169
RDM+SORT 12.216 ±0.211
TOP+RANK 9.580 ± 0.452
TOP+NN 8.491 ± 0.168
CL+RANK 10.032 ± 0.501
CL+NN 8.789 ±0.313
CL+SORT 10.006 ± 0.063

To isolate sequencing from selection effects, we next pair
the TOP selection heuristic with both RANK and NN. Whether
RANK or NN will outperform SORT will depend, in general
on the multi-line definition and sample assets being sched-
uled. We find that TOP+NN has on average the signifi-
cantly better performance: 8.491 ± 0.168 vs 9.580 ± 0.452
for TOP+RANK.

We next assess our hierarchical clustering (abbreviated
CL) as a selection heuristic paired with either SORT, NN
or RANK. When selecting batches with clustering and then
sequencing the selected assets, the CL+NN has the best av-
erage performance, 8.789 ± 0.313. We note however that
TOP+NN has the best performance (over CL+NN p-value
0.00013). For the CL+SORT and CL+RANK the perfor-
mance appears almost equal but the difference is significant.
Thus, it seems that clustering can help reduce the cost.
although, it is very important to use the correct sequence
heuristic after selection.

These results indicate that optimizing weights reduces the
cost. They also shows that using the nearest neighbor to
select the next coil can help performance. Given these rank-
ings could shift when different multi-lines are defined or dif-
ferent asset flows are at hand, if cloud computing were avail-
able and inexpensive, using the cloud to try every heuristic
in combination before scheduling would be ideal.

One question that arose is whether weights optimized for
one day would be generally robust and therefore effective
on later days. If so, the interval between hyper-optimizing
could be lengthened. Proceeding pessimistically, we sequestered
the first day weights from the poorest performing clustering-
based heuristic which used RANK sequencing. We then
used them to schedule the following 6 days with no hyper-
optimization. The performance for weights taken from CL+RANK
then run over the entire week was 11.045. These very poor
results would seem to indicate that the weights are very
tightly optimized at a daily interval. This negative result,
in turn, motivated us to shorten the hyper-optimization in-
terval to its minimum - at every batch. Given concern that

926

http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.ranksums.html
http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.ranksums.html

the hyper-optimization must be fast enough to not overrun
the time it takes to process a batch, we again proceeded
pessimistically by selecting the algorithm that runs for the
longest time. This was CL+NN. When run at sub-batch
speed, the hyper-optimization generated weights that drove
costs down even lower than at the daily level. We obtained
an average batch cost of 8.348± 0.204.

Finally, we examined the weights themselves. Our ex-
pectation was that we would see high weights on the width
property of each process because we had seen these prop-
erties influence batching when we selected based on sorting
on a single property. We did see this for solutions that used
TOP where the selection was based on one property. How-
ever for experiments that used clustering for selection we
saw inconsistent weights. We will continue to work on cor-
rectly interpreting ω′s. Our intuition is that, because of
clustering, the weights are a more complex function of data
as well as of the constants in the problem costs.

6. SUMMARY
We have presented a job shop scheduling problem pre-

viously undocumented in evolutionary computation litera-
ture. Its objective is to minimize configuration costs that
depend on the sliding pairwise similarity between two assets
ordered one after the other in a processing batch. We there-
fore needed to learn weights that integratively express com-
plex asset similarity. Our proposed solution is a three com-
ponent scheduling system: simulator, scheduler and hyper-
optimizer where the scheduler first selects a group of as-
sets then sequences them. The scheduler relies upon hi-
erarchical clustering to select, from an entry yard, assets
for a batch that are similar to each other in a weighted
multi-dimensional sense. It then references weighted dis-
tance information to sequence the assets. We propose two
heuristics that either use a ranking based on distance to the
last asset of the previous batch or that generate a pairwise
nearest neighbor ordering. The weights used by the sched-
uler are optimized online with an evolutionary algorithm.
Given straight forward cloud-based parallelization, the time
cost of scheduling a batch while optimizing and simulating is
shorter than the time it takes the batch to travel through its
process, allowing online optimization that supports efficient
scheduling.

7. FUTURE WORK
Limitations of pairwise similarity-based scheduling like in

this contribution arise if there is a significant cost that in-
volves two or more assets. For example, cost function cf1
of Table 3, describes a penalty if four assets’ total length is
less than a threshold. As well, it is reasonable (and typical)
to have some time constraint or objective in a scheduling
problem. How to integrate similarity-based costs with time
based ones remains an open question we would like to tackle
soon. The computing time will be investigated for how the
solution quality evolves along through the computing time
to assess the stopping criteria. Furthermore, the algorithms
should be tested on more instances to investigate how the
performance changes. In addition, more constraint-handling
techniques in evolutionary algorithms will be investigated.
Finally, we will investigate how the algorithms perform on
other data and multi-line instances.

8. REFERENCES
[1] J. Branke, S. Nguyen, C. Pickardt, and M. Zhang.

Automated design of production scheduling heuristics:
A review. IEEE Trans. Evolutionary Computation,
20(1):110 – 124, 2015.

[2] T. Feder and D. H. Greene. Optimal algorithms for
approximate clustering. In J. Simon, editor, Proceedings
of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 434–444. ACM, 1988.

[3] S. Fernandez, S. Alvarez, D. Dı́az, M. Iglesias, and
B. Ena. Scheduling a galvanizing line by ant colony
optimization. In M. Dorigo, M. Birattari, S. Garnier,
H. Hamann, M. A. M. de Oca, C. Solnon, and
T. Stützle, editors, Swarm Intelligence - 9th
International Conference, ANTS 2014, Brussels,
Belgium, September 10-12, 2014. Proceedings, volume
8667 of Lecture Notes in Computer Science, pages
146–157. Springer, 2014.

[4] S. Fernandez, S. Alvarez, E. Malatsetxebarria,
P. Valledor, and D. Dı́az. Performance comparison of
ant colony algorithms for the scheduling of steel
production lines. In S. Silva and A. I. Esparcia-Alcázar,
editors, Genetic and Evolutionary Computation
Conference, GECCO 2015, Madrid, Spain, July 11-15,
2015, Companion Material Proceedings, pages
1387–1388. ACM, 2015.

[5] N. Hansen. The CMA evolution strategy: a comparing
review. In J. Lozano, P. Larranaga, I. Inza, and
E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer, 2006.

[6] R. Hunt, M. Johnston, and M. Zhang. Evolving
”less-myopic” scheduling rules for dynamic job shop
scheduling with genetic programming. In Genetic and
Evolutionary Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16, 2014, pages
927–934, 2014.

[7] M. J. Kearns, Y. Mansour, and A. Y. Ng. An
information-theoretic analysis of hard and soft
assignment methods for clustering. In D. Geiger and
P. P. Shenoy, editors, UAI ’97: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial
Intelligence, Brown University, Providence, Rhode
Island, USA, August 1-3, 1997, pages 282–293. Morgan
Kaufmann, 1997.

927

	Introduction
	Problem Definition
	Related Work
	Integrated System
	Simulator
	Hyper-Optimizer
	Scheduler

	Experimental Evaluation
	Problem Instance
	Evaluation Procedure
	Comparisons

	Summary
	Future Work
	References

