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ABSTRACT

Estimation of the solar radiation level reaching a specific
zone on the surface of earth is a crucial step in the design
and planning of solar energy systems. The large number of
parameters affecting the estimation and prediction processes
mandates dimension reduction of the input feature space. In
this paper, we address this problem for a prediction system
in which uncertainties play a major role. We propose an
adaptive memory programming-based approach to optimize
the input feature space of a solar radiation predictor. The
fitness values of reducts are calculated using granular com-
puting. The attribute reduction concept in the rough set
theory is invoked and the dependency degree is used as a
fitness function. The proposed methodology is evaluated
using a large environmental temporal dataset collected for
regions that exhibit diverse climate conditions.
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1. INTRODUCTION
Solar energy is one of the main prospective sources for

renewable energy [3]. Solar radiation data is a main in-
gredient for the design and operation of solar energy sys-
tems [8]. So, accurate prediction of solar radiation and its
components at a specific location is essential. For instance,
prediction of solar radiation is important to many parties
like governments, enterprises and operators for making op-
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timal strategic plans of energy generation using different en-
ergy sources. However, short-term prediction of solar energy
levels is a considerable challenge. Inaccurate prediction of
solar radiation levels limits the competence of solar energy
with other resources. To solve this problem, several pre-
diction and estimation models of solar radiation have been
proposed in the literature, including numerical weather pre-
diction (NWP) and artificial intelligence (AI) models, e.g. [6]
and [9]). However, there is a large number of parameters,
including weather and topography variables, affects under-
lying prediction and estimation models. Therefore, it is cru-
cial to get a succinct set of these parameters, or features in
machine learning terminology, to improve the predictor per-
formance and to reduce the computation cost of real-time
estimation or prediction.

The parameter selection for the estimation or the pre-
diction process usually depends on intuition and experts’
choices. This selection paradigm results in a relatively large
number of possible input parameters, among which several
are redundant or irrelevant. From another side, the large
dimensionality of the input feature space makes manual se-
lection of the most relevant features almost impossible. So,
given some rich and diverse measurements, automatic di-
mension reduction of the input feature space becomes a
must. In this paper, we propose using the tabu search at-
tribute reduction (TSAR) [4] as a feature selection method
along with a fuzzy classifier [1] for the estimation of solar
radiation levels.

The rest of the paper is arranged as follows: a review of
the used methodologies is presented in Section 2, followed
by a discussion of the experimental setup and evaluation in
Section 3. Then, the results and technical discussion are
detailed in Section 4. Finally, the paper is concluded in
Section 5.

2. METHODOLOGY
The proposed method modifies the TSAR method to se-

lect the best features, and then a classifier can be used based
on those selected features. The work flow of the proposed
method is shown in Figure 1, and their details are explained
in the following subsections.

2.1 Solution Representation
Solutions are coded as a binary vector whose dimension

equals the number of conditional feature attributes. A value
of 1 in that vector means the corresponding feature is in-
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Figure 1: The flowchart of the proposed method.

cluded in that solution. Otherwise, the feature is excluded
from that solution.

2.2 Solution Evaluation
In granular computing, the dependency degree function

of the rough set theory [7] can be used as an evaluator to
judge the solutions quality. The best solution(s) are sought
through maximizing the dependency degree function and
minimizing the solution cardinality. In order to compute
the dependency degree function of a reduct, one can use the
following definitions [7]:

Definition 2.1. For a subset of attributes P ⊆ A, the
indiscernibility relation is defined by IND(P ) [7]:

IND(P ) = {(ξ, η) ∈ U × U | ∀a ∈ P, a(ξ) = a(η)}.

It is easily shown that IND(P ) is an equivalence relation
on the set U . The relation IND(P ), P ⊆ A, constitutes a
partition of U , which is denoted as U/IND(P ). If (ξ, η) ∈
IND(P ), then ξ and η are indiscernible by attributes from
P . The equivalence classes of the P -indiscernibility relation
are denoted by [ξ]P .

Definition 2.2. For a subset Ξ ⊆ U , the P -lower ap-
proximation of Ξ can be defined as:

PΞ = {ξ|[ξ]P ⊆ Ξ}.

In addition, the P -upper approximation of Ξ can be defined
as:

PΞ = {ξ|[ξ]P ∩ Ξ 6= ∅}.

Definition 2.3. The positive region of the partition of
U/IND(Q) with respect to P , is the set of all elements of
U that can be uniquely classified to blocks of the partition
U/IND(Q) by means of P , which can be defined as:

POSp(Q) =
⋃

Ξ∈U/IND(Q)

PΞ.

Definition 2.4. The dependency degree expresses the ra-
tio of all objects of U that can be properly classified to the
blocks of the partition U/IND(Q) using the knowledge in P ,
which can be defined as:

γP (Q) =
|POSP (Q)|

|U |
,

where |F | denotes the cardinality of set F .

Thus, the dependency degree is the ratio of all objects of U
that can be classified to the blocks of the partition U/IND(Q)
using the knowledge in P .

If γP (Q) = 1, we say that Q depends totally on P , and if
γP (Q) < 1, we say that Q depends partially on P . There-
fore, the dependency degree γx(D) of decision attribute D
is used to measure the quality of a solution x. To compare
two solutions x and y, x is said to be better than y if one of
the following conditions holds:

• γx(D) > γy(D),

• γx(D) = γy(D), and the number of attributes repre-
sented in x is less than that in y.

2.3 Initialization
An initial solution is generated as a random binary vector.

The tabu and elite lists are initialized as empty lists. The
most recently visited solutions are stored in the tabu list in
order to avoid being trapped in local optima. On the other
hand, the best solutions found so far are stored in the elite
list in order to be used in the intensification steps.

2.4 Search Procedures
The main search procedures of the proposed method are

similar to those of our previously-published method [4] with
slight modifications. Particularly, the proposed method starts
with an initial solution and continues generating trial solu-
tions. The stopping criterion is achieved when no improve-
ment is obtained through a predefined consecutive number
of iterations. Then, a diversification process begins and the
search is restarted from a new diverse solution. If the num-
ber of these consecutive iterations without improvement ex-
ceeds another predefined consecutive number of iterations,
an intensification process is initiated in order to improve
the best reduct obtained so far. The search is terminated if
the number of iterations exceeds a maximum allowed itera-
tion limit. Finally, the search invokes a final diversification-
intensification mechanism in order to obtain the final output.

2.4.1 Neighborhood Search

The neighborhood of the current iterate solution x =
(x1, . . . , xn) is divided into a certain number of neighbor-
hood zones Zj , j = 1, . . . , ℓ. These zones are defined as
follows:

Zj(x) = {xj : xj = (xj
1, . . . , x

j
n)},
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Figure 2: Reducing the cardinality of the best solu-

tion using the shaking procedure

where
{

xj
i 6= xi, ∀i1, . . . , ij ∈ {1, . . . , n} and i1 6= · · · 6= ij ,

xj
i = xi, otherwise.

A trial solution is randomly generated from each zone.
The tabu list is invoked to avoid regenerating recently visited
solutions.

2.4.2 Solution and Memory Updates

The best trial solution among the generated ones is se-
lected to be the next iterate. Then, the tabu and elite lists
are updated.

2.4.3 Local Search

The best solution is refined using a local search proce-
dure called Shaking [4] by trying to reduce the included at-
tributes one-by-one without reducing its dependency degree
value. Figure 2 illustrates the shaking procedure. The used
shaking procedure in this paper is a modified version of the
original one of [4]. The original shaking procedure [4] is
only applied to reduce the cardinality of the best reducts,
i.e. those whose γ-values are 1’s. Here, the modified shaking
procedure is called to reduce the cardinality for both total
or partial reducts, i.e. for those whose γ-values equal or less
than 1, respectively.

2.4.4 Diversification

Whenever diversification is needed, a new diverse solution
can be generated to contain attributes chosen with proba-
bility inversely proportional to their appearance in the pre-
viously generated solutions.

2.4.5 Final Intensification

The most common features that appear in the saved solu-
tions of the elite list are exploited as a core to generate new
promising solutions. Specifically, the obtained reducts are
saved in a set called Reduct Set (RedSet). The intersection
of all the reducts in RedSet is called the core. Hence, a trial
solution xFinal is constructed as the intersection of the m
best reducts in RedSet, where m is a pre-specified number.
If the number of attributes involved in xFinal is less than
that in the best obtained solution by at least two, then the
zero position in xFinal, which gives the highest γ-value, is
updated to one. This update process is continued until a
new better solution is found.

2.5 Control and Termination
Three non-improvement counters (Ilocal, Idiv, Iglobal) are

used to control the processes of applying the local search, di-
versification and final intensification, where Ilocal < Idiv <
Iglobal. Specifically, if a number of non-improvement iter-
ations, Ilocal, is reached, the shaking procedure is called.
Then, if the number of non-improvement iterations is in-
creased and reaches Idiv, a new diverse solution is generated.
Finally, the final intensification is applied when the number
of non-improvement iterations exceeds a limit of Iglobal.

2.6 Prediction using Classifiers
A cluster refers to a group of entities that have similar

features. In fuzzy clustering, based on the theory of fuzzy
sets, points can have different grades of memberships in dif-
ferent clusters rather than binary grades of memberships [2].
A fuzzy classifier can be constructed based on the best se-
lected features in the previous steps.

3. EXPERIMENTAL SETUP AND EVALU-

ATION
In order to evaluate the performance of the dimension re-

duction, its impact on the solar radiation estimation process
is measured. We use historical observed data to estimate
solar radiation. Specifically, we use weather data variables,
such as temperature, humidity, wind speed and direct nor-
mal irradiance, among other environmental data, as shown
in Table 2. The proposed system is evaluated by setting the
objective output as the global horizontal irradiance (GHI)
for the current day.

The global horizontal irradiance (GHI) measurements of
historical data is used to evaluate candidate reduced feature
spaces. The used datasets are collected from a number of
stations in Saudi Arabia. These stations are installed and
monitored by King Abdullah City for Atomic and Renewable
Energy (KACARE) as a part of the Renewable Resource
Monitoring and Mapping (RRMM) Program [5, 10]. The
datasets represent daily observations of three Saudi cities
from mid-2013 to the end of 2014. These specific datasets
are used for comprehensive evaluation. However, we ob-
served that two of the important variables were not recorded
in this period due to technical issues at some of KACARE
stations as they were recently installed. These two measure-
ments are the sky cover and visibility parameters, in addi-
tion to the uncertainty values associated with all measured
data. Therefore, we opted to add the visibility variable data
from another source, which is the Presidency of Metrology
and Environment stations’ data. The choice of these cities
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was motivated by their different topographies and locations
as well as the availability of solar data due to the research
nature of the installed stations. However, only two cities of
the three have the visibility parameter recorded, as shown
in Table 2.

4. RESULTS AND DISCUSSION
As the main objective of this work is to optimize the in-

put feature space, this section demonstrates the effect of
this feature-space reduction on performance. Specifically,
we discuss how this reduction may affect the γ-values or
the prediction quality. The output space is treated in three
different ways: as a continuous real-number space, as a 5-
class decision space resulting from a fuzzy classifier, or as a
10-class decision space.

Figures 3-5 reflect the independent accuracy of an input
attribute when each one of them is fed to the classifier as
the only single attribute, representing a single-reduct input
space. The three figures show the γ-values of every single
attribute all three of the aforementioned output spaces. It is
clear that the DH and DN attributes have the best γ-values,
followed by H , while WS and PWS give the least γ-values.

The quality of dual-attribute reducts, as represented by
the γ-values, is illustrated in Figures 6-8. The top-left/bottom-
right diagonals of these figures are the top-view of Figures 3-
5. The data non-linearity is clearly observed here. In other
words, the combination of the best single attribute does not
necessarily give a good reduct and vice versa. This confirms
the sophistication of the considered problem.

Comprehensive result sets are shown in Tables 3 and 4
for real values and for both discrete classes, as both of the
five and ten classes gave similar results. These results show
how a very low-γ single-reduct attribute in combination with
other attributes can provide better prediction quality. For
example, combining H and DH with PWS in the KAU case
raises the γ-value up to 100%. Similarity, adding the low P
attribute to other attributes leads to a similar effect.

5. CONCLUSION
This paper presents an approach for feature selection and

dimensionality reduction of parameters associated with so-
lar radiation estimation. The proposed method is based on
using an adaptive memory programming approach to op-
timize the input feature space of a solar radiation model.
The correlation values of reducts are calculated using gran-
ular computing. The proposed method uses the tabu search
attribute reduction (TSAR) method to select best features,
and then using a fuzzy classifier based on the found features.
The proposed methodology is applied to a real environmen-
tal temporal dataset collected for regions in Saudi Arabia.
The results of the independent dependency degrees showed
that the diffuse horizontal irradiance and direct normal irra-
diance attributes have the best dependency degrees values,
followed by relative humidity. The dual-attribute feature
reduction reveals the non-linearity behavior of the reducts,
where the combination of the ‘best’ single attribute does not
necessarily give a good reduct. Interestingly, when using dis-
crete classes, the combination of some very low dependency
degree single-reduct attributes with other attributes can lead
to very good quality solutions. The results confirm the an-
ticipated complexity of the problem, while the low number

of features found highlights the need for more investigation
in this area.
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Table 1: The details of stations and recorded samples used in this experiment

Latitude Longitude Elevation Data
Station City Abbreviation (N) (E) (m) Samples
King Abdulaziz University Jeddah KAU 21.49604 39.24492 75 582
Qassim University Qassim QU 26.34668 43.76645 688 576
Taif University Taif TU 21.43278 40.49173 1518 575

Table 2: Solar attributes used in current experiment

Attributes Abbreviation KAU QU TU
Air Temperature (Degrees C) T X X X

Average Wind Direct at 3m (Deg North) WD X X X

Average Wind Speed at 3m (m/s) WS X X X

Diffuse Horizontal Irradiance (Wh/m2) DH X X X

Direct Normal Irradiance (Wh/m2) DN X X X

Peak Wind Speed at 3m (m/s) PWS X X X

Relative Humidity (Percent) H X X X

Station Pressure (mB (hPa equivalent)) P X X X

Visibility V X X ×
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Figure 3: γ-Values of reducts with a single attribute using the real values of the decision attribute
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Figure 4: γ-Values of reducts with a single attribute using the 5-class decision attribute

T WD WS DH DN PWS H P V

Attributes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

p
e

n
d

e
n

c
y

 D
e

g
re

e
 V

a
lu

e
s

KAU

T WD WS DH DN PWS H P V

Attributes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

p
e

n
d

e
n

c
y

 D
e

g
re

e
 V

a
lu

e
s

QU

T WD WS DH DN PWS H P

Attributes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

p
e

n
d

e
n

c
y

 D
e

g
re

e
 V

a
lu

e
s

TU

Figure 5: γ-Values of reducts with a single attribute using the 10-class decision attribute
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Figure 6: Distributions of γ-values of reducts with dual and single attributes using the real values of the

decision attribute
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Figure 8: Distributions of γ-values of reducts with dual and single attributes using the 10-class decision

attribute

Table 3: Best Reducts out of five independent runs using the real values of the decision attribute

Attributes in the best reducts Reduct Reduct
Dataset T WD WS DH DN PWS H P V Size Quality
KAU X X 2 100%
QU X X X 3 99.65%

X X X 3 99.31%
X X 2 97.92%

X X 2 97.92%
TU X – 1 99.83%

X X – 2 99.83%
X – 1 92.17%

Table 4: Best Reducts out of five independent runs using the 5-class or the 10-class decision attribute

Attributes in the best reducts Reduct Reduct
Dataset T WD WS DH DN PWS H P V Size Quality
KAU X X 2 100%

X X X 3 100%
QU X X X 3 99.65%

X X 2 99.31%
X X X X 4 97.92%
X X X X 4 97.92%

TU X – 1 99.83%
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