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ABSTRACT
Multi-population evolutionary algorithms are, by nature,
highly complex and difficult to describe. Even two popu-
lations working in concert (or opposition) present a myriad
of potential configurations that are often difficult to relate
using text alone. Little effort has been made, however, to
depict these kinds of systems, relying solely on the simple
structural connections (related using ad hoc diagrams) be-
tween populations and often leaving out crucial details. In
this paper, we propose a notation and accompanying formal-
ism for consistently and powerfully depicting these struc-
tures and the relationships within them in an intuitive and
consistent way.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Genetic algo-
rithms;
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1. INTRODUCTION
Evolutionary algorithms (EAs) with multiple populations

produce complexities that simple single-population systems
do not incur. Populations may exchange both genetic and
evaluative information[4], and, in more esoteric systems,
other types of information as well[2]. The complexity in
the structure of information flow throughout the system is
in addition to the actual movement of individuals between
populations, as seen in island-model migration[4].

To combat the confusion arising from all this complex-
ity, we have developed a graphical formalism that encapsu-
lates the different relationships that can exist between mul-
tiple populations in an EA system. The multi-population
EA diagram (mpEAd) employs a concise visual grammar
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to depict multiple populations and the information flow be-
tween them, in a similar way to how the Unified Modelling
Language (UML)[3] captures the categorization of and re-
lationships between the component parts of object-oriented
software systems.

2. ESSENTIAL STRUCTURE OF MPEAD

2.1 Basic Elements of mpEAd
The graph at the heart of mpEAd incorporates two types

of nodes: population nodes and conversion nodes, as well as
a number of different edge types.

2.1.1 Population Nodes
A population node corresponds to a single optimization

algorithm (usually an EA) and a set of solutions (the pop-
ulation). It is denoted using a simple hollow rectangle with
solid borders and the name of the node written inside. The
population node always includes a set of parallel lines, which
serve as a visual reminder of the population inside.

2.1.2 Information as Edges
Edges in the mpEAd graph are used to model the informa-

tion flow between nodes. As information flow is directional,
mpEAd becomes a directed graph, and, per the convention,
uses arrows to indicate direction. Genetic information, as
often used for evaluation, is represented using a solid edge
with a closed arrowhead that is either hollow (genotypic in-
formation) or filled (phenotypic information). Non-genetic
information simply encapsulates all other types of informa-
tion, the most ubiquitous type being evaluative information
(fitness values). There are, however, many other types of
non-genetic information, a full discussion of which is out-
side the scope of this paper. Regardless of type, non-genetic
information is depicted using a dashed edge, with different
arrowheads being used to distinguish between different types
of information; an example of this is the open arrowhead for
evaluative information (clearly seen in Figure 2).

2.1.3 Conversion Nodes
The second type of node, the conversion node, is less ob-

vious and is one of the elements that makes the mpEAd
formalism more than simply a topological model of the con-
nections between populations. The role of the conversion
node is to take in one or more streams of information, per-
form processing on them, and to provide the result to an-
other node or nodes. Conversion nodes perform a variety
of information processing operations, including but not lim-
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EA1 EA2

(a) A näıve approach to representing
two-population co-evolutionary sys-
tems.

EA1 EA2 EA3

(b) An attempt to model de Boer, Folkert, and Hogeweg’s
predator/prey/scavenger system[1] using the näıve ap-
proach.

Figure 1: A typical näıve way to model co-evolutionary systems.
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(a) A basic predator/prey co-
evolutionary system.
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(b) Standard co-operative co-
evolution.
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(c) Predator/prey extended to
include scavengers[1].EA1 EA2
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(d) A hybrid of co-operative and
predator/prey co-evolution with
modification.

EA1 EA2

F1 F2

(e) A hybrid of co-operative and
predator/prey co-evolution with
cross-modification.

Figure 2: Examples of various co-evolutionary systems. The two complementary systems in 2d and 2e are both, to the best
of our knowledge, novel.

ited to decoding genotypic information into phenotypic in-
formation, evaluating fitness, combining information from
different sources, and converting statistical information into
control information (used by the EA within a population
node to change its behaviour). The conversion node is de-
picted using a large hollow circle, often labelled with a name,
such as the name of the fitness function used for evaluation.

It should be noted that the fundamental difference be-
tween a conversion node and a population node is that, while
both types can perform information processing, the conver-
sion node is stateless and does not store information, only
taking input and producing output based upon it.

2.2 mpEAd in Action
While efforts have been made in the past to model the

interactions between populations, they are often simplistic
and rely on ad hoc notations, similar to what is seen in Fig-
ure 1. The power of mpEAd becomes apparent in compar-
ison to this, as it permits much more accurate and detailed
modelling of how the populations interact. All of the dia-
grams in Figure 2 are different co-evolutionary systems that
would be equivalent to the one in Figure 1a, apart from
2c, which actually models the predator/prey/scavenger sys-
tem in a way that Figure 1b cannot. Many disparate types
of multi-population systems (in this case, a variety of co-
operative and competitive co-evolutionary systems) can be
represented in a way such that their similarities, as well as
their differences, become apparent.

With the co-evolutionary systems in Figures 2d and 2e,
interesting possibilities begin to appear, as these systems

are unknown in the literature. On examination, they appear
to be a hybrid between co-operative and predator/prey co-
evolution, where the co-operative output is further modified
either by the individual itself or by an individual from the
other population.

3. CONCLUSION
The mpEAd formalism is a graphical notation designed

to permit the depiction of large, complex multi-population
EA systems. Designed with the goals of being as intuitive,
consistent, distinctive, and simple as possible, mpEAd is
a powerful modelling tool for systems often considered too
complex to describe clearly.
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