
Criticality of Response Time in the usage  
of Metaheuristics in Industry 

 
Silvino Fernández 

ArcelorMittal 
Global R&D Asturias 

P.O. Box 90 - 33400 Avilés - Spain 
silvino.fernandez@arcelormittal.com 

 
 

Eneko Malatsetxebarria 
ArcelorMittal 

Global R&D Asturias 
P.O. Box 90 - 33400 Avilés - Spain 

eneko.malatsetxebarria@arcelormittal.
com 

 
 

Pablo Valledor 
ArcelorMittal 

Global R&D Asturias 
P.O. Box 90 - 33400 Avilés - Spain 

pablo.valledor-
pellicer@arcelormittal.com 

 
Miguel Iglesias 

ArcelorMittal Global R&D Asturias 
P.O. Box 90 - 33400 Avilés - Spain  

miguel.iglesias@arcelormittal.com 

Diego Díaz 
ArcelorMittal 

Global R&D Asturias 
P.O. Box 90 - 33400 Avilés - Spain 

diego.diaz@arcelormittal.com 

 

 

ABSTRACT 
 
Metaheuristics include a wide range of optimization algorithms. 
Some of them are very well known and with proven value, as 
they solve successfully many examples of combinatorial NP-
hard problems. Some examples of Metaheuristics are Genetic 
Algorithms (GA), Simulated Annealing (SA) or Ant Colony 
Optimization (ACO). Our company is devoted to making steel 
and is the biggest steelmaker in the world. Combining several 
industrial processes to produce 84.6 million tones (public 
official data of 2015) involves huge effort. Metaheuristics are 
applied to different scenarios inside our operations to optimize 
different areas: logistics, production scheduling or resource 
assignment, saving costs and helping to reach operational 
excellence, critical for our survival in a globalized world. 

Rather than obtaining the global optimal solution, the main 
interest of an industrial company is to have “good solutions”, 
close to the optimal, but within a very short response time, and 
this latter requirement is the main difference with respect to the 
traditional research approach from the academic world. 
Production is continuous and it cannot be stopped or wait for 
calculations, in addition, reducing production speed implies 
decreasing productivity and making the facilities less 
competitive. Disruptions are common events, making 
rescheduling imperative while foremen wait for new instructions 
to operate. This position paper explains the problem of the time 
response in our industrial environment, the solutions we have 
investigated and some results already achieved.          

General Terms 
Algorithms, Experimentation. 

Keywords 
Decision Making, Manufacturing, Ant Algorithms, Swarm 
Intelligence, Ant Colony Optimization, Ant Colony System, 
Combinatorial Optimization, Algorithms, Metaheuristics, Steel 
Industry, Scheduling, Auto Tuning. 
 

1. INTRODUCTION 
 
The production of steel is a very complex process, with several 
stages involved in its transformation from coal and iron ore to 
rail or steel coils: iron making (conversion of iron ore into liquid 
pig iron), steelmaking (conversion of liquid pig iron into liquid 
steel), casting (solidification of liquid steel into semi-products: 
billets or slabs) and finally rolling. Under the scope of several 
facilities existing in the steel industry, a huge number of variants 
of combinatorial problems appear, requiring a quick answer to 
sudden production changes. An implicit hard constraint for any 
real problem coming from the intended use of a scheduling 
optimization model is the execution time. Usually it is very 
limited, since it must be able to provide decisions within a few 
minutes in order to be useful for production. 

In this context, there is a wide range of examples to show the 
importance of the use of Metaheuristics in industrial problems. 
(Fernandez et al., 2014) and (Díaz et al., 2014) introduce two 
examples on how to use the Ant Colony Optimization algorithm 
(Dorigo, 1992) to optimize the scheduling and the cutting plan 
of steel making plants, respectively; (Fernández et al., 2006) 
show how to use Genetic Algorithms to optimize logistic 
movements of a train fleet in order to increase their productivity 
while covering the production necessities. These solutions 
provide several advantages such as objective criteria to schedule 
the operations independently of subjective human opinion, fast 
reaction under sudden incidents, avoidance of human errors, and 
powerful computation capacities to explore solutions. 

Normally, models are the result of the collaboration between 
research experts in mathematical models and optimization 
techniques, and the production experts who are in charge of 
defining the problem itself and the way of evaluating the 
different solutions (fitness functions). The quality and accuracy 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA  
© 2016 ACM. ISBN 978-1-4503-4323-7/16/07…$15.00  
DOI: http://dx.doi.org/10.1145/2908961.2931649 

937



of the model depends on this collaboration. However, in most 
cases, there is an implicit restriction as a consequence of the 
industrial scenario: response time. Facing an incident in a 
continuous facility that never stops means to reschedule the line-
up in few minutes (or seconds) to keep the production going and 
to assure the levels of productivity needed to reach operational 
excellence, key to survive in a globalized world as it is today. 

In the next sections of this position paper, we introduce our 
research lines to reduce the response time of our algorithms in 
operation to meet the requirements of the production facilities 
while respecting the constraints and assuring a good level of 
quality for the results.  

2. RESPONSE TIME 
We can generically define response time as the total 

amount of time a system takes to respond to a request for a 
service. In the context of metaheuristics in industry, it would be 
the time spent by the algorithm since the foreman has loaded the 
input and requested a decision. This time t depends on the 
parameters shown in the following equation: 

t = t0 + i * s * (ts + te + tu) + tp       (1) 

Where: t0: Setup time for the algorithm. 

i: number of iterations of the search. 

s: number of solutions explored per iteration. 

ts: time to create the solution. 

te: time to evaluate the solution. 

tu: time to process the solution. 

tp: presentation of the final solution to the user. 

So, it is possible to reduce the response time by means of 
reducing any of the parameters in equation (1). We have 
classified these parameters in two different sets: a first set, called 
Intelligent Set (IS), covering the configuration parameters of the 
algorithm, where we include i and s. The second set would be 
the Speed Set (SS), considering machine and architecture 
limitations, where we include ts, te and tu (we consider t0 and tp 
are not significant in our cases). 

Acting on IS can be done directly changing (reducing) the 
parameters of the algorithm because they are an input. In the 
case of Genetic Algorithms, i would be the number of 
generations and s the number of individuals generated and 
evaluated at each generation. In ACO, they would the number of 
iterations and the number of ants, respectively. Decreasing these 
parameters will reduce the search and hence it can affect the 
quality of the solution, but it could help to reduce the response 
time significantly. To assure the same level of solution quality, it 
is necessary to make the algorithm smarter so that it can reach 
comparable solutions before being stopped.     

On the other hand, reduction of the SS parameters is limited by 
the characteristics of the computers. More powerful servers 
reduce response time executing the instructions of the algorithm 
faster, but it means an investment, sometimes difficult or not 
possible to approve. Another alternative is to use parallelism to 
execute (parts of) the algorithm concurrently, gaining time.   

3. ALTERNATIVES TO REDUCE 
RESPONSE TIME 

As commented, we identify two main approaches to reduce 
the response time for each of the groups: 

 Execute the instructions faster (SS). 

 Make the search more intelligent (efficient) to 
obtain the same quality of the solution but faster, 
with less solution evaluation (IS). 

3.1 Speed Set 
There are two main approaches to increase the speed of the 
calculations: the first one (obvious) to invest in the computers 
where the models run, but in some contexts this is very difficult 
and the server where the solution is executed is not a state-of-
the-art computer. Other possibility is to use parallelism 
techniques in the code of the models to accelerate calculations 
(in case of availability of a multi core machine or a high-
performance computing cluster).   

3.2 Intelligent Set 
Regarding the number of solutions explored, there are 

several alternatives to reduce them, maintaining the same quality 
level. The main ones are: 

 Improve the configuration of the algorithm  

 Improve the search strategy 

The configuration of the algorithm is very important to 
reduce the search time, but it is not easy to obtain a generic 
parameter set that achieves the best result for every instance. In 
industry, operators continuously generate instances, and results 
are required in a short time. Therefore, configuration analysis 
cannot be done on the fly, as it is too time consuming, and 
hence, a previous analysis is necessary to classify the instance as 
soon as it is created. 

Ant Colony Optimization (ACO) is a family of algorithms 
inspired in the way the ants look for food in nature and they 
transmit the information about the success of the search to the 
following ants. The first version was called Ant System. Since 
then, many variants have been developed showing better 
performance depending on the problem. The normal way of 
evaluating performance is to measure and compare the quality of 
the solutions for a specific problem in a limited time period. 
This time period is a key factor to determine whether a variant is 
suitable, because it must meet the time requirements of the 
context. (Cáceres, López-Ibánez, and Stützle, 2014) present a 
study to determine the best ACO variant for a problem under the 
limitation of 1000 evaluations (in the end, a computation time 
limit). Following this approach, we have evaluated the different 
variants on one of our problems. Results are shown in the 
following sections.    

 

4. AUTO CONFIGURATION OF 
PARAMETERS 
Finding the most appropriate parameter settings for an 
optimization problem and for a given set of heterogeneous 
instances is critical to obtain good results in a short (valid) 
calculation time in industry. There are several approaches to 
calculate a suitable configuration. Irace is a software package 
developed by (López-Ibánez et al., 2011). Irace implements the 
Iterated F-Race method, generating different candidates of 

938



parameter configurations for a specific algorithm and then 
performing a race of those candidates on distinct problem 
instances, that is, all candidates are run on a predefined number 
of instances before the first statistical test is performed to 
remove the worst candidates. After that, the test is performed 
each time after all remaining candidates have been run on the 
next instance until the iteration budget is exhausted or only a 
few candidates remain. Usually, multiple races are performed 
containing the previous best candidates and newly generated 
ones until the total budget is exhausted. As results Irace provides 
the optimal candidate configurations proposed by the iterated F-
Race method. 

We carried out an experiment, classifying the instances of one of 
our models to optimize the scheduling of production facilities. 
The model sequences the coils according to two criteria to 
minimize the objective function: costs (losses) of the transitions 
between coils, and constraints (large penalties), when there is 
not a possible transition that make the foremen to introduce 
transition coils in the middle to make it feasible. The 
classification criteria in our experiment was to study the 
characteristics of the steel coils (items) to produce in each 
sequence (instance), analyzing the average and standard 
deviation of each parameter. By means of a correlation matrix 
and hierarchical cluster analysis, we have classified the instances 
into 12 different clusters using these variables as criteria; they 
would be the input for Irace in order to obtain the best 
configuration for each one. For each cluster, we run IRace to 
obtain the best configuration for an ACO algorithm (α, β, ρ). 
Afterwards, we compare the results for a set of instances of each 
cluster versus the results of the algorithm for the same instances 
with a default configuration (α=1, β=2 and ρ=0.2, respectively).   

   
Figure 1: Impact of Clustering in the Results of the model. 

Figure 1 shows the comparison among the three tests done. 100-
NOIRACE is the test with default parameter settings and the 
normal solution evaluations. 70-NOIRACE uses the same 
parameters, but only 70% of the evaluations. Finally, 70-IRACE 
uses the parameters fine-tuned with Irace after the classification 
of the instance in a representative cluster according to these 
parameters with 70% of the evaluations. The chart on the right 
shows the number of hard constraints violated by the solutions, 
when large penalty is invoked (their reduction is the first 
objective in the optimization). The one on the left shows the 
average of the rank cost of the solutions. As shown, the 
experiments with parameters pre-calculated by Irace improve 
significantly the quality of the results (note that reducing hard 

constraints justifies higher costs). This could allow a reduction 
of the number of evaluations and thus the calculation time. 

It would also be possible to combine this approach with the 
selection of the best ACO strategy as shown in the previous 
section, selecting for each cluster the best configuration and the 
best strategy. For this study, we used Ant System.     

 

5. VARIANTS TO MAKE THE SEARCH 
SMARTER 
 

In (Fernández et al., 2015) we presented our first analysis of the 
potential improvements in terms of response time (and solution 
quality) by means of using different approaches in the strategy 
of the search of an Ant Colony Optimization. In these 
experiments, we proved for a specific model that even though 
the results can be better in some cases, the improvement was not 
very significant. In any case, we implemented all the variants to 
perform further analyses of the well-known ACO algorithms. 
Figures 2 and 3 show the results of each variant on instances of 
60 and 90 steel coils to schedule. 

Figure 2: Performance of different ACO algorithms for 
several instances of 60 coils. 

 
Figure 3: Performance of different ACO algorithms for 

several instances of 90 coils. 

 
The chart above shows clear variability in the relative 
performance of the variants with the problem instance. Although 
ACS appears to consistently underperform, it improves over the 
others in terms of constraint fulfilment for instances D and E 
with 60 coils, for example (the number of violated constraints is 
not shown for clarity). Therefore, we conclude that the algorithm 

939



selection should be a part of the tuning phase as it depends on a 
given instance.   

6. PARALELLISM TO ACCELERATE 
THE CALCULATION 
Parallelism is an obvious choice to attain computation speed-up 
for ACO algorithms, as the solution building and evaluation 
phases of an ant are both independent and concurrent to that of 
other ants within an iteration. Many approaches to exploit 
parallelism at every level, from GPU acceleration of cost 
function calculation to multi-colony variants have been 
proposed; see (Janson, Merkle, and Middendorf, 2005) for an in-
depth survey. 

For our tests, we followed the multithreaded approach where the 
execution of the ants is performed by a thread pool, splitting the 
ants in each iteration evenly across threads. Since the algorithm 
is only partially parallel (the comparison of solutions and the 
pheromone update occur sequentially between iterations), the 
expected speed-up must be sublinear in the number of threads; 
additionally, the synchronization effects of the iterations and the 
distribution of ants across threads should further reduce the 
improvements. 

We tried out a range of number of concurrent threads on two 
different platforms (4- and 24-core machine, respectively), and 
for two different implementations (the built-in thread pool in the 
.NET standard library, and one of our own), always using as a 
reference a single-threaded version on the same platform. 

As main conclusions, there is a significant speed gain to be 
obtained from the concurrent execution of the ants, but the 
marginal gain from each extra thread decreases, and actually 
becomes negative as we approach the number of available 
physical or logical threads in the machine (this result might 
differ in cases where the ants read from files or databases, since 
then the system can interweave their execution). The 
implementation of the thread pool can have some impact, but it 
is minor compared to the overall effect, and difficult to predict; 
in our case, each implementation had cases where it performed 
both better and worse than the other, and preliminary analyses 
point to garbage collection behavior as the main cause. 

We expect to improve on these results by removing the 
synchronization: continuously running ants on every thread and 
updating the pheromone matrix without stopping them; we 
expect the erroneous readings to be infrequent enough so as to 
not distort the solution quality significantly. 

7. CONCLUSIONS AND FUTURE WORK 
Academia and industry present different approaches when they 
devote efforts to investigate. In an ideal world, they should 
converge at a point where industry could apply the research 
achieved in the laboratory and take advantage of it. Benefits are 
innumerable, such as: increase productivity with a better job 
scheduling, gas emissions reduction by optimizing logistic 
movements or reducing the impact of a bottleneck resource 
through optimization of its assignment. But the transition from 
lab to the production plants requires solving some hard 
restrictions that are not presented in the academic environment: 
one critical constraint is response time. Under some conditions, 
the calculation must be delivered in a few minutes (even 
seconds) whereas the search space of the feasible solutions can 
have more combinations than there are drops in the oceans. 

In this position paper we have introduced the problem of the 
response time in industrial problems where metaheuristics play a 

key role. The alternatives presented are mainly focused in two 
alternatives: parallelism and making the search smarter, with 
automatic auto-configuration of the algorithms parameters and 
algorithm selection, using different search strategies. Some 
promising results were presented that guide the next steps 
towards further research on each topic.     

8. REFERENCES 
    [1] Cáceres, L. Pérez, M. López-Ibánez, and T. Stützle. 

2014. “Ant Colony Optimization on a Budget of 
1000.” 
http://iridia.ulb.ac.be/IridiaTrSeries/rev/IridiaTr2014-
009r001.pdf. 

    [2] Díaz, Diego, Pablo Valledor, Paula Areces, Jorge 
Rodil, and Montserrat Suárez. 2014. “An ACO 
Algorithm to Solve an Extended Cutting Stock 
Problem for Scrap Minimization in a Bar Mill.” In 
Swarm Intelligence, edited by Marco Dorigo, Mauro 
Birattari, Simon Garnier, Heiko Hamann, Marco 
Montes de Oca, Christine Solnon, and Thomas Stützle, 
13–24. Lecture Notes in Computer Science 8667. 
Springer International Publishing. 
http://link.springer.com/chapter/10.1007/978-3-319-
09952-1_2. 

     [3] Dorigo, Marco. 1992. “Optimization, Learning and 
Natural Algorithms.” Ph. D. Thesis, Politecnico Di 
Milano, Italy. http://ci.nii.ac.jp/naid/10016599043/. 

     [4] Fernández Alzueta, S., S. Álvarez, E. 
Malatsetxebarria, P. Valledor, and D. Díaz. 2015. 
“Performance Comparison of Ant Colony Algorithms 
for the Scheduling of Steel Production Lines.” In 
Genetic and Evolutionary Computation Conference, 
1387–88. ACM. 
http://dl.acm.org/citation.cfm?id=2764658. 

    [5] Fernández Alzueta, Silvino, Diego Díaz Fidalgo, 
Tatiana Manso Nuño, and Montserrat Suarez 
Rodríguez. 2006. “Optimization Techniques to 
Improve the Management of a Distribution Fleet in the 
Steel Industry.” 

    [6] Fernandez, Silvino, Segundo Alvarez, Diego Díaz, Miguel 
Iglesias, and Borja Ena. 2014. “Scheduling a Galvanizing 
Line by Ant Colony Optimization.” In Swarm Intelligence, 
146–57. Brussels: Springer. 
http://link.springer.com/chapter/10.1007/978-3-319-09952-
1_13. 

    [7] Janson, Stefan, Daniel Merkle, and Martin Middendorf. 2005. 
“Parallel Ant Colony Algorithms.” Parallel Metaheuristics: 
A New Class of Algorithms 47: 171. 

    [8] López-Ibánez, Manuel, Jérémie Dubois-Lacoste, Thomas 
Stützle, and Mauro Birattari. 2011. “The Irace Package, 
Iterated Race for Automatic Algorithm Configuration.” 
IRIDIA, Université Libre de Bruxelles, Belgium, Tech. 
Rep. TR/IRIDIA/2011-004. 

940




