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ABSTRACT
In this paper, we present a computationally inexpensive
method for maintaining genetic diversity in evolutionary al-
gorithms using population injection. As opposed to other
methods, e.g., cellular EAs, population injection does not
require any maintenance or setup effort.

Here, we present first experimental results comparing a
(µ, λ) EA with and without population injection and a cel-
lular EA using the h1 benchmark. As can be observed in
the results, population injection is worth to be considered
for problems which suffer from premature convergence.
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1. INTRODUCTION
A common problem evolutionary algorithms (EAs) are

facing is premature convergence due to a lack of genetic
diversity of the population. Especially having a complex
multimodal search landscape, it can often be observed that
EAs tend to converge early at an arbitrary local optimum.

Early on, premature convergence has been identified as
one of the major issues in complex multimodal evolution-
ary algorithms. Since then, several different techniques for
avoiding those problems have been developed, e.g., cellular
EAs [8, 1]. However, the major disadvantage is the high
computational effort in maintaining the neighborhood rela-
tion of individuals and their positions within the population.
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Inserting new individuals into an existing generation has
already been researched in the past [4] but based on different
EAs and methods. There are further techniques like crowd-
ing [5], or fitness sharing [6], all of which require effort for
maintenance of (meta-)information about the current evolu-
tionary process or the current population.

In this paper, we propose an computationally efficient
and inexpensive method for counteracting before mentioned
problem by adding new random individuals into the popu-
lation, called population injection. By injecting a controlled
amount of new random individuals to an existing popula-
tion, genetic diversity of the population can be increased
again, leading to an improvement in the process of exploring
the search landscape. Injection is triggered right after the
selection phase in case premature convergence is detected
based on runtime information of the optimization process,
e.g. distance of individuals to each other, which, in most
cases, is captured anyway. Due to selection pressure induced
by selection operations, most of the newly injected individu-
als will be removed from the population while others enrich
the population providing genetic variation.

2. EXPERIMENTS AND RESULTS
In order to measure the performance of the population

injection method, we applied it to the well known h1 bench-
mark function as defined in [7]. The h1 benchmark func-
tion is a bidimensional continuous maximization benchmark
having exactly one global optimum at (8.6998, 6.7665) with
value 2 in the domain [−100, 100]. For comparison reasons,
three different EAs were used: a synchronous cellular EA, a
common (µ, λ) EA, and a (µ, λ) EA using population injec-
tion. The starting population is initialized at random.

As a measure of performance, both the distance of the
result to the global optimum and the improvement per eval-
uation are calculated. As stepsize for the EAs, the number of
fitness evaluations is used. The configuration of the different
EAs are shown in Table 2. As injection threshold, i.e., the
difference in fitness variability between different populations,
we use φ = 0, whereas for comparison between different gen-
erations, the injection width, we use σ = 3. The number of
individuals to be injected (injection size) is chosen accord-
ing to λ. Operations and parameters are chosen according to
the definitions of Deb et al. [3]. For the synchronous cellular
EA, we used a toroidal von Neumann neighborhood as de-
fined in [2] using a Manhattan distance of 2. Experimental
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Table 1: h1 Benchmark Results
Benchmark Final Optimum Distance to Optimum Improvement / Evaluation

Cellular 1.9942 0.0058 9.33× 10−6

(µ, λ) 1.9922 0.0078 9.26× 10−6

Injection 2.0000 0.0000 9.28× 10−6

Injection vs. Cellular +0.0058 (+0.29%) −0.0058 (+100.00%) −0.05× 10−6 (−0.54%)

Injection vs. (µ, λ) +0.0078 (+0.39%) −0.0078 (+100.00%) +0.02× 10−6 (+0.22%)
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Figure 1: Results of the h1 Benchmark

Table 2: Benchmark Properties
Initial Population size 100
(µ, λ) (100, 100)
Number of evaluations 200 000
Experiment repetitions 30
Selection operation Tournament selection
Tournament size 5
Crossover operation Sim. binary bounded
Crossover probability 0.9
Mutation operation Polynomially bounded
Mutation probability 0.05
Mutation and crossover (η) 20

results are shown in Figure 1 and, in numerical represen-
tation, in Table 1. For the result, the minimum, average,
and maximum of fitness values in relation to the number of
evaluations are depicted.

As shown in Table 1, the benchmark is highly optimized
by all EAs, as can be seen at the distance to the global
minimum. However, the EA using population injection has
slight benefits regarding the final optimum (+0.29% com-
pared to the cellular EA and +0.39% to the (µ, λ) EA)
but has slightly worse results regarding the improvement
per evaluation compared to the cellular EA (-0.54%) but is
0.22% better than the (µ, λ) EA.

3. CONCLUSIONS AND FURTHER WORK
As our first results show, population injection seems to

be a promising technique for management of genetic di-
versity while being efficient and inexpensive. Even though
the cellular EA shows better performance compared to the
injection-based EA regarding the final optimum, it is worth
considering our proposed technique especially when compu-
tation time is expensive. In the future, we plan to investigate
the influence of the methods parameters, and comparison to
other techniques. Furthermore, further research using mul-
tiple and different kinds of problems, e.g. multi-objective
optimization problems, needs to be done.
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