
Maintaining Genetic Diversity in Multimodal Evolutionary
Algorithms using Population Injection

Robin Mueller-Bady,
Martin Kappes

Frankfurt University of Applied Sciences
Nibelungenplatz 1

Frankfurt am Main, Germany
mueller-bady@fb2.fra-uas.de

kappes@fb2.fra-uas.de

Inmaculada Medina-Bulo,
Francisco Palomo-Lozano

Universidad de Cádiz
Avda. de la Universidad de Cádiz 10

11519 Puerto Real, Spain
inmaculada.medina@uca.es

francisco.palomo@uca.es

ABSTRACT
In this paper, we present a computationally inexpensive
method for maintaining genetic diversity in evolutionary al-
gorithms using population injection. As opposed to other
methods, e.g., cellular EAs, population injection does not
require any maintenance or setup effort.

Here, we present first experimental results comparing a
(µ, λ) EA with and without population injection and a cel-
lular EA using the h1 benchmark. As can be observed in
the results, population injection is worth to be considered
for problems which suffer from premature convergence.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms;

Keywords
Evolutionary algorithm, cellular evolutionary algorithm, pop-
ulation injection, premature convergence, genetic diversity

1. INTRODUCTION
A common problem evolutionary algorithms (EAs) are

facing is premature convergence due to a lack of genetic
diversity of the population. Especially having a complex
multimodal search landscape, it can often be observed that
EAs tend to converge early at an arbitrary local optimum.

Early on, premature convergence has been identified as
one of the major issues in complex multimodal evolution-
ary algorithms. Since then, several different techniques for
avoiding those problems have been developed, e.g., cellular
EAs [8, 1]. However, the major disadvantage is the high
computational effort in maintaining the neighborhood rela-
tion of individuals and their positions within the population.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909052

Inserting new individuals into an existing generation has
already been researched in the past [4] but based on different
EAs and methods. There are further techniques like crowd-
ing [5], or fitness sharing [6], all of which require effort for
maintenance of (meta-)information about the current evolu-
tionary process or the current population.

In this paper, we propose an computationally efficient
and inexpensive method for counteracting before mentioned
problem by adding new random individuals into the popu-
lation, called population injection. By injecting a controlled
amount of new random individuals to an existing popula-
tion, genetic diversity of the population can be increased
again, leading to an improvement in the process of exploring
the search landscape. Injection is triggered right after the
selection phase in case premature convergence is detected
based on runtime information of the optimization process,
e.g. distance of individuals to each other, which, in most
cases, is captured anyway. Due to selection pressure induced
by selection operations, most of the newly injected individu-
als will be removed from the population while others enrich
the population providing genetic variation.

2. EXPERIMENTS AND RESULTS
In order to measure the performance of the population

injection method, we applied it to the well known h1 bench-
mark function as defined in [7]. The h1 benchmark func-
tion is a bidimensional continuous maximization benchmark
having exactly one global optimum at (8.6998, 6.7665) with
value 2 in the domain [−100, 100]. For comparison reasons,
three different EAs were used: a synchronous cellular EA, a
common (µ, λ) EA, and a (µ, λ) EA using population injec-
tion. The starting population is initialized at random.

As a measure of performance, both the distance of the
result to the global optimum and the improvement per eval-
uation are calculated. As stepsize for the EAs, the number of
fitness evaluations is used. The configuration of the different
EAs are shown in Table 2. As injection threshold, i.e., the
difference in fitness variability between different populations,
we use φ = 0, whereas for comparison between different gen-
erations, the injection width, we use σ = 3. The number of
individuals to be injected (injection size) is chosen accord-
ing to λ. Operations and parameters are chosen according to
the definitions of Deb et al. [3]. For the synchronous cellular
EA, we used a toroidal von Neumann neighborhood as de-
fined in [2] using a Manhattan distance of 2. Experimental

95



Table 1: h1 Benchmark Results
Benchmark Final Optimum Distance to Optimum Improvement / Evaluation

Cellular 1.9942 0.0058 9.33× 10−6

(µ, λ) 1.9922 0.0078 9.26× 10−6

Injection 2.0000 0.0000 9.28× 10−6

Injection vs. Cellular +0.0058 (+0.29%) −0.0058 (+100.00%) −0.05× 10−6 (−0.54%)

Injection vs. (µ, λ) +0.0078 (+0.39%) −0.0078 (+100.00%) +0.02× 10−6 (+0.22%)

0 50,000 100,000 150,000 200,000
0.0

0.5

1.0

1.5

2.0

h1

Cellular EA
Final optimum: 1.9942

Maximum
Average
Minimum

0 50,000 100,000 150,000 200,000

(mu, lambda) EA
Final optimum: 1.9922

Maximum
Average
Minimum

0 50,000 100,000 150,000 200,000

(mu, lambda) + injection EA
Final optimum: 2.0000

Maximum
Average
Minimum

Figure 1: Results of the h1 Benchmark

Table 2: Benchmark Properties
Initial Population size 100
(µ, λ) (100, 100)
Number of evaluations 200 000
Experiment repetitions 30
Selection operation Tournament selection
Tournament size 5
Crossover operation Sim. binary bounded
Crossover probability 0.9
Mutation operation Polynomially bounded
Mutation probability 0.05
Mutation and crossover (η) 20

results are shown in Figure 1 and, in numerical represen-
tation, in Table 1. For the result, the minimum, average,
and maximum of fitness values in relation to the number of
evaluations are depicted.

As shown in Table 1, the benchmark is highly optimized
by all EAs, as can be seen at the distance to the global
minimum. However, the EA using population injection has
slight benefits regarding the final optimum (+0.29% com-
pared to the cellular EA and +0.39% to the (µ, λ) EA)
but has slightly worse results regarding the improvement
per evaluation compared to the cellular EA (-0.54%) but is
0.22% better than the (µ, λ) EA.

3. CONCLUSIONS AND FURTHER WORK
As our first results show, population injection seems to

be a promising technique for management of genetic di-
versity while being efficient and inexpensive. Even though
the cellular EA shows better performance compared to the
injection-based EA regarding the final optimum, it is worth
considering our proposed technique especially when compu-
tation time is expensive. In the future, we plan to investigate
the influence of the methods parameters, and comparison to
other techniques. Furthermore, further research using mul-
tiple and different kinds of problems, e.g. multi-objective
optimization problems, needs to be done.

4. REFERENCES
[1] E. Alba and B. Dorronsoro. Cellular Genetic

Algorithms. Springer US, 2008.

[2] R. Breukelaar and T. Bäck. Using a Genetic Algorithm
to Evolve Behavior in Multi Dimensional Cellular
Automata. In Proceedings of the 2005 conference on
Genetic and evolutionary computation - GECCO ’05,
page 107, New York, New York, USA, jun 2005. ACM
Press.

[3] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, 2001.

[4] S. M. Elsayed and R. A. Sarker. Differential Evolution
with automatic population injection scheme for
constrained problems. In Differential Evolution (SDE),
2013 IEEE Symposium on, pages 112–118, apr 2013.

[5] S. Mahfoud. Crowding and Preselection Revisited.
Urbana, 1992.

[6] W. Spears. Simple Subpopulation Schemes. Proceedings
of the Evolutionary Programming Conference,
3:296–307, 1994.

[7] A. J. K. van Soest and L. J. R. R. Casius. The Merits
of a Parallel Genetic Algorithm in Solving Hard
Optimization Problems. Journal of Biomechanical
Engineering, 125(1):141, 2003.

[8] L. D. Whitley. Cellular Genetic Algorithms. In
S. Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, page 658. Morgan
Kaufmann Publishers Inc., jun 1993.

Acknowledgments
This work was supported in the framework of Hessen Modell-
Projekte, financed with funds of the European Union (Euro-
pean Regional Development Fund - ERDF) and the State of
Hessen in the context of the research project “Reactive net-
work Optimization by Using SDN-Technology” (ROBUST)
(HA project no. 473/15-15), and the Spanish Ministry of
Economy and Competitiveness (National Program for Re-
search, Development and Innovation), project DArDOS
TIN2015-65845-C3-3-R and Excellence Network SEBASENet
TIN2015-71841-REDT. Responsible for the content are the
authors.

96




