
Simultaneous Synthesis of Multiple Functions using
Genetic Programming with Scaffolding

Iwo Błądek and Krzysztof Krawiec
Poznan University of Technology, 60965 Poznań, Poland

{iwo.bladek,krawiec}@cs.put.poznan.pl

ABSTRACT
We consider simultaneous evolutionary synthesis of multiple
functions, and verify whether such approach leads to compu-
tational savings compared to conventional synthesis of func-
tions one-by-one. We also extend the proposed synthesis
model with scaffolding, a technique originally intended to
facilitate evolution of recursive programs, and consisting in
fetching the desired output from a test case, rather than
calling a function. Experiment concerning synthesis of list
manipulation programs in Scala allows us to conclude that
parallel synthesis indeed pays off, and that engagement of
scaffolding leads to further improvements.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
genetic programming, scaffolding, multisynthesis, problem
decomposition, Scala

1. MULTISYNTHESIS
A problem of synthesizing a single program realizing cer-

tain task is a search problem defined by a contract C, which
defines the desired behaviour of function f , and a set of in-
structions I of which f is to be constructed. We consider si-
multaneous synthesis (multisynthesis) of multiple functions
f1, . . . , fn specified as a n-tuple of contracts C1, . . . , Cn, each
defining the desired behavior of the corresponding function
fi, and an n-tuple of instruction sets I1, . . . , In of which the
fis are to be constructed, such that ∀i=1,...,n∀j 6=i fj ⊂ Ii, i.e.
functions may call each other. A solution to a multisynthesis
problem is an n-tuple of correct programs (p1, . . . , pn) that
meet the corresponding contracts in the above-defined sense,
∀i pi ≡Ci fi. Availability of recursive calls (i.e., including fi

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908992

in Ii) is not an essential characteristics of a multisynthesis
problem, so we leave them out from the formulation.

We say that the ith synthesis problem depends on the jth
synthesis problem if and only if the function fi to be synthe-
sized, in order to meet the contract Ci, needs to call fj (i.e.,
fj is necessary for fi to be synthesized). If the ith problem
is independent on all remaining problems, it becomes a con-
ventional synthesis problem and can be solved separately.
However, an important motive for this paper is that inde-
pendence does not necessarily mean that a problem should
be solved separately, because solving it with the help of the
remaining functions may be easier and lead to shorter and
more legible code, as demonstrated by everyday practice in
software engineering. Note also that existence of a depen-
dency may be unknown for a given pair of functions in a
multisynthesis task.

Recursive scaffolding [2] has been proposed as a tech-
nique to facilitate evolutionary synthesis of recursive pro-
grams. The main problem with evolving recursive functions
with genetic programming (GP) is the abrupt deterioration
of fitness for recursive programs that are structurally only
slightly different from the optimal solution. We generalize
scaffolding to multisynthesis problems: a scaffolded mul-
tisynthesis algorithm replaces the calls to a function fi (all
or some of them) with ‘calls’ to the corresponding contract
Ci. We consider two variants:

1. Test-based scaffolding (applicable to contracts spec-
ified by tests). Given an invocation fi(x), we seek a test of
the form (x, y) in contract Ci. If such a test is found, we
return y; otherwise, we call pi(x), i.e., the implementation
of fi known at the given moment of search, whether it is
correct or not.

2. Oracle-based scaffolding. This variant is applicable
in scenarios where contracts are ‘executable’, i.e., can serve
as oracles. Given an invocation fi(x), we apply the corre-
sponding oracle Ci to x and return the result. On the face
of it, oracle-based scaffolding may seem a contradiction in
terms: why would one attempt to synthesize a program pi
if the corresponding oracle Ci, i.e., basically a program, is
already available? There are, however, plausible usage sce-
narios for this case; consider for instance reverse engineering
of existing (but closed) software or hardware, which can be
executed but cannot be used directly due to technical or
legal issues.

Experiment. Our experimental environment is a subset
of Scala, a hybrid object-oriented and functional program-
ming language. Using the FUEL framework1 and related

1https://github.com/kkrawiec/fuel

97

http://dx.doi.org/10.1145/2908961.2908992
https://github.com/kkrawiec/fuel


Table 1: The benchmarks. T stands for generic type.

Benchmark Dependant function Helper functions Number of tests
last last(list:List[T]):T at,size 20
patch patch(list:List[T],d:Int,p:List[T],u:Int):List[T] drop,take 39
slice slice(list:List[T],d:Int,u:Int):List[T] drop,take 19
splitAt splitAt(list:List[T],i:Int):(List[T],List[T]) drop,take 24

libraries, we evolve Scala expressions, without the possibil-
ity of creating values (val) or variables (var), and exclude
certain sophisticated functional programming mechanisms.
We consider four selected methods of the immutable List

class (Table 1). Out of over 170 methods available in that
class, we select triples of functions such that at least one
of them (dependent function) can be implemented by call-
ing the other two (helper functions). Each contract Ci that
defines program’s desired behavior is specified by a sets of
tests (numbers of tests are given in Table 1). Solutions are
not allowed to contain cyclic calls between contained func-
tions, which was motivated by the observation that such
calls would rarely form a sensible solution. We consider two
scenarios of synthesizing the three requested functions:

In sequential scenario (SEQ), functions are synthe-
sized one by one, in three evolutionary processes that follow
each other. Once a given function is synthesized, a GP pro-
cess for the next function is started with the remaining com-
putation budget. A candidate solution comprises one func-
tion, its fitness is the number of passed tests, and selection
operator is tournament of size 7. In SEQopt, functions are
synthesized in a problem-specific ‘optimal’ order, i.e., the
helper functions followed by the dependent function (e.g.,
for Slice: drop, take, slice). In SEQexp, we assume that
the optimal ordering of functions’ synthesis is unknown, and
split the computation budget of 25 runs between all 3! = 6
permutations of functions by drawing a permutation ran-
domly (with uniform distribution) for each run. The total
success rate approximates the overall expected probability
of synthesizing a correct candidate solution.

In parallel scenario (PAR), there is one evolutionary
run and each candidate solution is a triple of candidate
programs. In evaluation phase, the programs are verified
on corresponding tests, which yields three objectives. We
consider a single- and a multiobjective variant of this sce-
nario. In PAR, the fitness is the sum of fractions of tests
passed by particular functions, i.e., a scalar value ranging
in [0, 3], which is then subject to tournament of size 7. In
PARnsga, the three objectives remain separate and form the
basis of selection using the NSGA-II algorithm [1] with de-
fault parameter settings (rank-based tournament size set to
2). PAR configurations occur in two variants, without (PAR
and PARnsga) and with oracle-based scaffolding (PARs and
PARs

nsga). In the former configurations, the current imple-
mentation of the function is used to obtain the return value.

Results. In Table 2, we present the number of correctly
synthesized constituent functions in best-of-run individuals
averaged over benchmarks. As expected, SEQopt dominates
all other configurations. The knowledge on the optimal or-
dering of functions to be synthesized is clearly helpful. This
scenario assumes an omniscient designer and is thus only
of theoretical importance, so we do not rank it. SEQexp

features the lowest fraction of correctly synthesized func-
tions, and the parallel scenarios fare better in that respect.
Among them, the multiobjective variants fare on average

Table 2: Average number of synthesized functions.

Method last patch slice splitAt Average
SEQopt 2.23 2.13 1.36 2.69 2.10
SEQexp 1.11 1.73 0.97 1.56 1.34
PAR 2.00 1.50 0.72 1.80 1.51
PARs 1.90 1.47 0.59 1.94 1.48
PARnsga 2.03 1.47 0.53 2.17 1.55
PARs

nsga 2.18 1.40 1.05 1.88 1.63

better than the scalar ones, which corroborates the com-
mon observation that multifaceted characterization of can-
didate solutions improves population diversification, lowers
the risk of premature convergence, and increases the odds
of success. Oracle-based scaffolding makes PARs

nsga better
than PARnsga, while deteriorating (albeit only slightly) the
performance of PAR. The overall best performing variant
is PARs

nsga, which confirms the merit of combining parallel
scaffolded synthesis with multiobjective evaluation.

Conclusions. We hypothesize that the main factor that
makes parallel multisynthesis more effective is that the pres-
ence of multiple contracts transforms the fitness landscape.
The considered scenarios are essential to meet the demands
of real-world programming. Synthesizing programs in iso-
lation inevitably leads to reinventing the wheel, i.e., repeti-
tion of code fragments that could be reused by calling other
functions. This issue can be addressed by synthesizing the
programs in the ‘right’ order and allowing the functions syn-
thesized later to call the already synthesized functions. One
cannot however assume that the knowledge on this optimal
ordering is always available. Moreover, the order of synthesis
dictated by dependencies between functions does not neces-
sarily lead to the highest chance of success. These issues
incline us to favor the parallel variant, which fared well on
the considered benchmarks, especially when equipped with
scaffolding and multiobjective evaluation.

The anticipated follow-ups of this work will target elitism,
other ways of defining best-of-run solutions, other domains
than list-manipulating programs, and scalability with the
number of functions.

Acknowledgments. The authors acknowledge support from
grant 2014/15/B/ST6/05205 funded by the National Science
Centre, Poland.

2. REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A

fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2):182 –197, apr 2002.

[2] A. Moraglio, F. Otero, C. Johnson, S. Thompson, and
A. Freitas. Evolving recursive programs using
non-recursive scaffolding. In Proceedings of the 2012
IEEE Congress on Evolutionary Computation, pages
2242–2249, Brisbane, Australia, 10-15 June 2012.

98


	Multisynthesis
	References



