
A Modified Grid Diversity Operator for Discrete
Optimization and its Application to Wind Farm Layout

Optimization Problems

Ahmed Salah
Mathematics Department

Faculty of Science, Mansoura University
Mansoura, Egypt

a_salah@mans.edu.eg

Emma Hart
School of Computing

Edinburgh Napier University
Edinburgh, UK

e.hart@napier.ac.uk

ABSTRACT
One of the important factors for any effective metaheuristic
optimization algorithms is its ability to maintain a diverse
population throughout the generations. Specifically, diver-
sity maintenance can lead to exploration of novel areas of
the search space, and hence potentially locate better solu-
tions. Recently, a novel diversity technique called the Grid
Diversity Operator was introduced, providing improved re-
sults on a suite of continuous optimization problems. Here,
we extend the grid diversity operator to support discrete
optimization problems and validate its performance by ex-
perimenting with a range of wind farm layout optimization
problem scenarios. The experimental results showed per-
formance improvements for the quality of solutions found
especially for the farm scenarios with obstacles.

Keywords
Evolutionary Algorithms; Optimization; Diversity Mainte-
nance; Wind Farms Layout Optimization

1. INTRODUCTION
In population-based metaheuristics for optimization [1],

the search for the global optima basically consists of an it-
erative process that replaces the candidate solutions in the
population by newly generated ones. The cumulative effect
of these iterations tends to be a continued improvement in
the performance of the best candidate solutions. During
this process, such new solutions are usually generated from
previous ones, i.e. by recombination and mutation. The al-
gorithm must provide mechanisms that allow the greatest
possible exploration of the search space. In this context, the
capability of maintaining diversity among the individuals in
the population is crucial to avoid premature convergence to
a specific region of the search space. This allows a better
exploration of the domain of the problem and reduces the
susceptibility of the algorithm to converging to local optima

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931656

in multimodal optimization problems. In addition, main-
taining diversity may also allow a given algorithm to locate
several distinct high-quality solutions in a single run. A
user can then choose the one that best fits its needs. This
may save time in situations in which unpredicted constraints
arise after the execution of the optimization algorithm, as
a suitable solution may be present in the pool of solutions
returned, thus avoiding the need to reconfigure and to rerun
the optimization tool.

Optimization tools have been applied to many real-world
optimization problems, but one that has recently gained par-
ticular interest is that of wind farm layout optimization.
Finding suitable placements of wind turbines inside the wind
farm for example to maximize energy production and/or
minimize the cost, is a mixed integer-discrete-continuous
nonlinear constrained optimization problem without an ana-
lytical formulation. It is mathematically complex and can’t
be solved by using classical analytical optimization tech-
niques. Here, we propose a modification of a continuous op-
timization diversity operator called Grid Diversity Operator
(GDO) [2] that can be applied to this discrete optimization
problem. Some background to wind optimisation is given,
and then we review GDO in section 3 before proposing a
modified version for discrete optimization problems in sec-
tion 4. Section 5 introduces the experimental protocol where
we define the procedure to test the proposed GDO variant
against a wind farm optimization problem as a case study.
Finally, section 6 will provide the experimental results and
the discussion.

2. THE WIND FARM LAYOUT PROBLEM
A wind farm is a group of wind turbines located at a site

to generate electricity. Modern wind farms typically con-
sist of hundreds of utility-scale wind turbines and with a
total capacity of hundreds mega-watts. Design of efficient
wind farms that maximize electricity production is a highly
complex process with multiple and in many cases conflict-
ing objectives under different constraints. It involves mul-
tiple design and engineering tasks, which may come from
technical, logistical, environmental, economical, legitimacy
and even social considerations [3]. Amongst these tasks, de-
signing the wind farm layout is critical, i.e. finding suitable
placements of wind turbines inside the wind farm. The wind
farm layout optimization problem is concerned with deter-
mining the positions of the turbines inside the wind farm
to maximize and/or minimize some objective functions. For

977

example, this might include maximizing energy production
and minimize the cost, while meeting various constraints,
which may include wind farm boundary, wind turbines prox-
imity, noise emission level, initial investment limit, and so
on. In the most general case, it is necessary to consider
multiple factors such as the selection of the number of wind
turbines, different wind turbine types, and the discrete hub
height.

The layout problem has been specified as a competition
at recent GECCO conferences [4]. The competition sup-
plied an API that returned the global energy capture of a
given layout, accounting for wind distribution and wake ef-
fects caused by other nearby turbines. Most of the published
approaches use a grid-based discrete formulation, which sim-
plifies the searching space of the optimization problem from
continuous space to discrete space. Full details of the prob-
lem, including download of the software and competition
results are available from [4].

3. GRID DIVERSITY OPERATOR
The Grid Diversity Operator (GDO) was first described

[2, 5] is a novel approach for achieving exploration and ex-
ploitation balance through maintaining diversity. It can be
defined as a hybrid, non-niching, population-based, geno-
type diversity maintaining and learning technique. Simply
put, GDO is a special infusion technique for initializing new
individuals that are inserted into a population after a cer-
tain number of generations. Instead of randomly initializing
individuals over the whole domain, GDO tries to initialize
them in unexplored locations. A memory archive is used
to store information collected throughout the run regarding
the distribution of the individuals, and is used to infer rarely
visited locations.

GDO works by dividing the search space into smaller sub-
spaces using the grid size parameter Gsz ∈ <n, which defines
the number of intervals per dimension, where n is the num-
ber of dimensions for the problem. The GDO will then try
to distribute new individuals into the grid slots that have re-
ceived fewer visits over time, thus increasing the explorative
power of the algorithm. The Grid Diversity Operator, GDO,
is described in listing 1.

Listing 1 Grid Diversity Operator

Input: MemoryArchive,Nnew,Gsz,Pth

Output: Snew

Snew ← ∅
for i = 1 to Nnew do

distributed ← FALSE
while ¬ distributed do

Key ← PickSlotAtRandom(Gsz)
if KeyExist(MemoryArchive,Key) then

V ← GetValueOfKey(MemoryArchive,Key)

P ← e−V

else
P ← 1

end if
if P > Pth then

Individual ← CreateNewIndividualInSlot(Key)
InsertIndividual(Snew,Individual)
distributed ← TRUE

end if
end while

end for
Return (Snew)

First, a memory archive is initialized as an empty dictio-
nary that has n component keys, where each of these keys

matches a single value. The keys refer to the indices of a slot
within the grid, while the value represents the number of in-
dividuals that have previously been placed in this slot. The
memory archive is designed in this manner for efficiency: as
most of initialized memory will be sparse, by using the dic-
tionary only visited locations are stored, and therefore the
use of memory is efficient regardless of problem dimension-
ality.

For each iteration in the containing algorithm, every new
individual is processed to identify its slot to update the mem-
ory archive. For each individual being processed, if there is
an entry in the archive with a key that matches the identi-
fied slot, the value corresponding to this entry is increased
by one. Otherwise, a new entry is added to the archive with
a value of 1. The process of updating the memory archive
is demonstrated in listing 2.

After processing all individuals, the updated archive is
used to initialize new individuals. For each new individual
required, we pick a slot S(d1,d2,...,dn) at random and calculate
its distribution probability P according to equation 1.

P = e(−N) (1)

where N is the value matching the slot key in the archive
or zero if the slot does not yet belong to the archive. Finally,
the calculated probability P is compared to the probability
threshold parameter of the algorithm, Pth, and if P > Pth

then a new individual is initialized randomly in this specific
slot. If not, another slot is picked at random, and the steps
are repeated until the individual is initialized successfully.

Listing 2 GDO Update Archive Method

Input: MemoryArchive, Individuals, Resolution
Output: MemoryArchive

for Individuali ∈ Individuals do
Key ← FindSlot(Individuali)
if KeyExist(MemoryArchive,Key) then

IncreaseValue(MemoryArchive,Key,1)
else

AddKey(MemoryArchive,Key)
SetValue(MemoryArchive,Key,1)

end if
end for
Return (MemoryArchive)

The process of updating the memory archive and dis-
tributing new individuals continues until the algorithm ter-
minates, at which point the final population is expected to
be more diverse than simply using a random initialization
procedure.

The work in[5] validated GDO for a selection of continuous
optimization problems from CEC 2014 benchmark suite[6]
using two algorithms (Artificial Immune System Algorithm
Opt-aiNET[7] and The SawTooth Genetic Algorithm[8]).
The GDO operator was shown to achieve effective explo-
ration through testing on the benchmark problems when
incorporated within the two algorithms and it was shown
that GDO can significantly help a supported algorithm to
achieve better quality solutions in most cases.

4. MODIFIED GRID DIVERSITY OPERA-
TOR FOR DISCRETE OPTIMIZATION

Many of the optimization problems in industry naturally
fall into the class of discrete optimization problem. Recalling

978

that the grid diversity operator (GDO) [2, 5] was initially
designed for and only considered continuous optimization,
here we propose a modified GDO that supports discrete op-
timization problems.

The major change concerns the definition of the grid. Sim-
ilar to continuous optimization problems, the grid is formed
by dividing the search space into discrete sub-spaces with
one exception: the number of partitions for a decision vari-
able (which is defined by GDO grid size parameter Gsz)
cannot exceed the number of all possible values for that vari-
able.

An example of how the grid is formed for the modified
GDO can be demonstrated by assuming a discrete optimiza-
tion problem with two decision variables x1 = {1, 2, ..., 9}
and x2 = {A,B, ..., L}. Setting the GDO grid size param-
eter Gsz = 3 for this discrete problem yields that the very
first slot will contain all nine possible solutions: {1, 2, 3} ×
{A,B,C} = {{1, A}, {1, B},, {3, B}, {3, C}}. During the
runs and while updating GDO’s memory archive, the indi-
viduals in each slot are counted and the counts are used to
calculate the distribution probability which is used to initial-
ize the new individuals. Figure 1 demonstrate this example
by assuming some individuals in the slots and the individu-
als count per slot is shown on the lower-right corner for all
slots.

 1

 2

 3

 4

 5

 6

 7

 8

 9

A B C D E F G H I J K L

3 1 2 4

5 2 0 3

1 3 2 0

Figure 1: Demonstration of the modified GDO grid for a
sample discrete optimization problem with two variables
with Gsz = 3

Both listings (1, 2) are still valid for the modified GDO
proposed here as the modifications lies on how the grid works
in discrete search space which affect how the memory archive
is defined and manipulated. The following points, however,
should be noted:

• The memory archive in the modified GDO should not
be confused with Tabu search [9] as it is not a tabu
list and the sub-spaces inside it can still be used to
initialized new individuals again. The selection process
in GDO favors slots with fewer visits, but does not
prohibit the use of any slot.

• GDO should be viewed as an additional layer for some
metaheuristic optimization algorithms, but it is not an
optimization algorithm by itself. It aims to improve an
algorithm’s performance by promoting more diversity
within a population.

5. EXPERIMENTAL PROTOCOL
To assess the performance of the proposed modified GDO

we inject it into the artificial immune algorithm opt-IA[10].
An integral part of the opt-IA algorithm is a step which
adds new randomly generated solutions during each iter-
ation of the algorithm. Note that there are many other
candidate algorithms that support injection that could have
been chosen. For example, GDO was previously used with
opt-aiNet [7], saw-tooth [8]), with results described in [5].
However, here we choose to use opt-IA as it has previously
been shown to provide superior results to other algorithms
on a range of optimization problems [10].

The algorithm is evaluated using GECCO’s Wind Farm
Layout Optimization Competition framework. This compe-
tition has been organized annually from 2014 with the aim of
encouraging new approaches to solving the wind optimiza-
tion problem. The supplied framework for the competition
provides layout evaluators, wind field conditions, and base-
line performances for the different layout optimization prob-
lems. The experiments here are conducted using the latest
API and scenarios available and inherits the same rules such
that the experimental results can be compared to the com-
petition results. The aim is to optimize the wind farm lay-
out of a set of 25 different scenarios (each represents wind
forces, layout shapes, etc.) that consist of 20 demo scenarios
(in which 10 of them include obstacles) and the remaining
five scenarios are the ones used for the actual competition by
minimizing the Cost of Energy which is calculated as defined
in equation 2:

fitness =

Construction cost︷ ︸︸ ︷(

ct ∗ n+ cs ∗ floor(
n

m
)

) Economy of scale︷ ︸︸ ︷(
2

3
+

1

3
∗ e−0.00174n2

)

+

Yearly
operating

costs︷ ︸︸ ︷
cOM ∗ n

 ∗
1(

1− (1 + r)
−y
)/
r︸ ︷︷ ︸

Interests

∗
1

8760 ∗ P︸ ︷︷ ︸
Yearly
power
output

+

Farm size
coefficient︷︸︸︷

0.1

n

(2)

where, ct = $750, 000 is turbine cost, cs = $8, 000, 000
is substation cost, m = 30 is no. turbines per substation,
r = 0.03 is the interest rate, y = 20 is farm lifetime in years,
cOM = $20, 000 is operating cost per turbine, n is maximum
number of turbines and P is Farm energy output with both
n and P are scenario dependent.

5.1 Immune Algorithm OPT-IA
The opt-IA algorithm introduced in[10] is one of many im-

mune algorithms inspired by the Clonal Selection (CS) prin-
ciple. The one feature that make opt-IA standout against
the other CS algorithms is the Aging Operator which is spe-
cial diversity operator designed to control the diversity of the
population. For the aging operator to work, all solutions are
given additional property, namely Age, which records how
old that solution is.

First, a population is initialized with d randomly gener-
ated solutions each with Age set to zero. All the individ-
uals are then evaluated against the objective function and
then the population proceeds with the typical CS operators;
cloning and hypermutation; where the hypermutation is in-
versely proportional to the fitness value. Both parent pop-

979

ulation and successful hypermutated clones (the ones with
better fitness than their parents) suffer through aging oper-
ator where the solutions with Age > MaxAge are discarded.

The final step of the algorithm is called (µ+ λ)-Selection
in which the best d solutions from the survivals of the ag-
ing operator have their Age property increased by one and
added to the next population. If the survivals count is less
than d then the next population is completed be creating
new randomly generated solutions.

Listing 3 show the main steps of opt-IA algorithm where:
d is the fixed population size, dup is the number of dupli-
cates/clones per individual, ρ is the mutation parameter,
τB is the maximum age, TMAX is the maximum number of
function evaluations.

Listing 3 Immune Algorithm opt-IA

Input: d, dup, ρ, τB,TMAX

Output: Population
FFE ← 0
Nc ← d× dup
t ← 0
P

(t)
d ← PopulationInitialization(d)

Evaluate(P
(t)
d)

FFE ← FFE + d
while FFE < TMAX do

P
(clo)
Nc

← Cloning(P
(t)
d , dup)

P
(hyp)
Nc

← Hypermutation(P
(clo)
d , ρ)

Evaluate(P
(hyp)
Nc

)

FFE ← FFE + Nc

(aP
(t)
d ,a P

(hyp)
Nc

)← Aging(P
(t)
d ,P

(hyp)
Nc

, τB)

P
(t+1)
d ← (µ+ λ)-Selection(aP

(t)
d ,a P

(hyp)
Nc

)
t ← t + 1

end while
Population ← P

(t)
d

Return (Population)

5.2 OPT-IA for Wind Farm Layout Optimiza-
tion Problem and Injection with Modified
GDO

Although opt-IA algorithm was initially designed for con-
tinuous optimization, we were able to implement it for wind
farm layout optimization with few modifications. The first
is to define what an individual represents. Here, an individ-
ual for opt-IA defines a solution as usual but here it is coded
as a Nt × 2 matrix in which each row is a coordinate for a
turbine and Nt is the number of turbines of the solution.

The other change was the hypermutation process which
was implemented on two phases. The first phase is to make
a random change in the number of turbines in the solution by
adding/removing one turbine according to a random num-
ber. This step is necessary as the competition instructions
were to optimize both the number and the location of the
turbines. The second phase is the affinity proportionate mu-
tation in which a number of turbines are relocated to differ-
ent sites. We first calculate the mutation rate, α, according
to equation 3 where ρ is the mutation parameter and f∗ is
the normalized fitness of the solution.

α = (1/ρ) · e(−f∗) (3)

The number of turbines to relocate, nm, is then calculated
according to equation 4. Finally, the nm turbines are cho-
sen randomly from the solution and are assigned new coor-
dinates.

nm = floor [2 · α ·Nt] (4)

As previously stated, the opt-IA algorithm feature adding
new randomly generated solutions through (µ+ λ)-Selection
step. To inject the algorithm with GDO, we strip the ran-
dom solutions generator and simply replace it with GDO.
The GDO injected (µ+ λ)-Selection method is shown in list-
ing 4.

Listing 4 (µ+ λ)-Selection for GDO injected opt-IA

Input: d,Parents,Clones,MemArchive, Gsz, Pth

Output: NextPop
NextPop ← {Parents ∪ Clones}
NextPop ← RemoveRedundancy(NextPop)
if |NextPop| ≥ d then

NextPop ← SelectBest(NextPop, d)
else

Nnew ← (d− |NextPop|)
MemArchive ← GDO–Update(MemArchive, NextPop, Gsz)
NewIndividuals ← GDO–Create(MemArchive,Nnew, Gsz , Pth)
NextPop ← {NextPop ∪ NewIndividuals}

end if
Return (NextPop)

6. RESULTS AND DISCUSSION
Two versions of opt-IA algorithms are implemented for

the experiments. The first is implemented without any mod-
ification to the original algorithm according listing 3. The
second includes the GDO injection step inside the (µ+ λ)-
Selection phase as shown in listing 4. Because the search
space is not big per dimension/turbine, smaller values for
GDO grid size are better and here we empirically chose
Gsz = 1 for this specific problem. This value for Gsz means
each slot in GDO’s memory archive will refer to a sub-space
that only contain a specific solution. In addition, we chose
to use a probability threshold for GDO Pth = 0.2 for all
the tests. The rest of opt-IA algorithm parameters used for
both implementations are as defined in[10]: d = 20, dup = 1,
ρ = 150, τB = 10. Both versions ran 25 times each for
TMAX = 10, 000 evaluations per scenario as defined by the
competition and the best solution of all runs (with respect
to cost of energy) is recorded.

In figure 2, where all scenarios are obstacle-free, we can see
that the GDO injected version of opt-IA achieved noticeable
improvement over the clean version for demo scenarios one
and two. The other scenarios show no significant difference
between the two implementations although GDO version is
still better performer except for demo scenario 3.

The results for demo scenarios with obstacles show more
improvement while using GDO as shown in figure 3. The
GDO implementation achieved significantly lower cost of en-
ergy in six out of the ten scenarios. The results of the rest
of scenarios (13, 18, 19 and 20) where about the same with
no significant difference visible.

Finally, and more importantly, figure 4 shows the sum-
marized results for both opt-IA implementations over com-
petition scenarios which are more complex and are much
challenging. The GDO version dominated the clean opt-IA
for scenarios two, three and four while falling behind for
scenario five and having the same performance for the first
scenario.

Combining the results for all the experiments together,
we find that GDO significantly helped the containing algo-
rithm (opt-IA) for scenarios with obstacles more than those
without obstacles. In an attempt to comprehend and ex-
plain this behavior, we analyzed the way GDO affect the

980

0
.0

0
1

1
0

4
0

.0
0

1
1

0
7

Demo 1

R
N
D

G
D
O

0
.0

0
0

6
7

5
5

0
.0

0
0

6
7

7
0

Demo 2

R
N
D

G
D
O

0
.0

0
1

4
0

5
0

.0
0

1
4

0
8

Demo 3

R
N
D

G
D
O

0
.0

0
1

1
7

0
0

.0
0

1
1

7
3

Demo 4

R
N
D

G
D
O

0
.0

0
1

2
5

9
0

.0
0

1
2

6
2

Demo 5

R
N
D

G
D
O

0
.0

0
0

9
5

0
0

.0
0

0
9

5
2

0
.0

0
0

9
5

4

Demo 6

R
N
D

G
D
O 0

.0
0

0
8

6
0

0
0

.0
0

0
8

6
1

5

Demo 7

R
N
D

G
D
O

0
.0

0
0

9
3

7
0

.0
0

0
9

3
9

Demo 8

R
N
D

G
D
O

0
.0

0
0

8
5

7
0

0
.0

0
0

8
5

8
5

Demo 9

R
N
D

G
D
O 0

.0
0

0
8

3
2

5
0

.0
0

0
8

3
3

5

Demo 10

R
N
D

G
D
O

Figure 2: Cost of Energy comparison between clean opt-
IA (RND) against injected version (GDO) for the ten demo
scenarios without obstacles

0
.0

0
1

1
0

6
0

.0
0

1
1

0
9

Demo 11

R
N
D

G
D
O

0
.0

0
0

6
7

6
5

0
.0

0
0

6
7

8
5

Demo 12

R
N
D

G
D
O

0
.0

0
1

4
0

8
0

.0
0

1
4

1
2

Demo 13

R
N
D

G
D
O 0

.0
0

1
1

7
3

0
.0

0
1

1
7

5
0

.0
0

1
1

7
7

Demo 14

R
N
D

G
D
O

0
.0

0
1

2
6

2
0

.0
0

1
2

6
5

Demo 15

R
N
D

G
D
O

0
.0

0
0

9
5

3
0

.0
0

0
9

5
5

Demo 16

R
N
D

G
D
O

0
.0

0
0

8
6

0
5

0
.0

0
0

8
6

2
5

Demo 17

R
N
D

G
D
O 0

.0
0

0
9

3
8

0
.0

0
0

9
4

0
0

.0
0

0
9

4
2

Demo 18

R
N
D

G
D
O 0

.0
0

0
8

5
8

0
0

.0
0

0
8

5
9

5

Demo 19

R
N
D

G
D
O

0
.0

0
0

8
3

4
0

.0
0

0
8

3
7

Demo 20

R
N
D

G
D
O

Figure 3: Cost of Energy comparison between clean opt-
IA (RND) against injected version (GDO) for the ten demo
scenarios with obstacles

algorithm during the runs. First we computed the number
of times a feasible location (within the grid) is used within a
layout during the best run for both implementations of opt-
IA. Figure 5 shows a comparison of these numbers between
the two implementation for demo scenario 12 (which have
obstacles and where GDO version dominates). On top it is
clear from the distribution of the bars that many locations
are either never visited or visited infrequently. On the other
hand, using the GDO version, it is clear from the bottom
graph in figure 5 that all feasible locations have been vis-
ited at least once during the run. This does not come as
a surprise since GDO is exactly designed to promote diver-
sity within the populations in an attempt to discover better
solutions.

Comparing the performance gain by using GDO with opt-
IA with other published work is not trivial as raw results are
not available from the second edition of the wind farm layout
optimization competition. A slide was released online [4] af-

0
.0

0
1

2
4

8
0

.0
0

1
2

5
2

0
.0

0
1

2
5

6 Comp. 1

R
N
D

G
D
O

0
.0

0
1

0
9

0
0

.0
0

1
1

0
5

0
.0

0
1

1
2

0 Comp. 2

R
N
D

G
D
O

0
.0

0
0

6
6

0
0

.0
0

0
6

7
5

Comp. 3

R
N
D

G
D
O

0
.0

0
0

7
0

5
0

.0
0

0
7

2
0

Comp. 4

R
N
D

G
D
O

0
.0

0
1

2
0

0
.0

0
1

3
0

0
.0

0
1

4
0

Comp. 5

R
N
D

G
D
O

Figure 4: Cost of Energy comparison between clean opt-IA
(RND) against injected version (GDO) for the five compe-
tition scenarios

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
0

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Figure 5: Farm grid locations usage count for demo scenario
12. Top: clean opt-IA (RND), Bottom: injected opt-IA
(GDO)

ter the competition was over providing a graph, from which
it is difficult to extract much useful information and num-
bers. Nevertheless, we still attempted to stack the results
of both clean and GDO versions of opt-IA to the results
table provided in the competition published slides. Figure 6
shows how the results of the two implementations of opt-IA
stack against those of the eight competitors.

We did not expect that either of the implementation would
outperform any of the competition results simply because
all the competition algorithms are customized and geared
towards solving this specific problem. Recall that our ap-
proach treats the optimization problem simply as a black-
box, with no specialized operators and no use of any domain
knowledge. Despite this, it appears that the two versions re-
sults were at least comparative to the competitions result.
Moreover, we found that GDO version of opt-IA achieved
slightly better results than both competitors seven and eight
for scenarios two and three.

981

C
o

s
t

o
f

E
n

e
rg

y

0
.0

0
0

0
0

.0
0

0
4

0
.0

0
0

8
0

.0
0

1
2

0
.0

0
1

6

Competitors 1 − 8

O
p

t−
IA

 (
R

N
D

)
O

p
t−

IA
 (

G
D

O
)

Scenario 1

Competitors 1 − 8
O

p
t−

IA
 (

R
N

D
)

O
p

t−
IA

 (
G

D
O

)

Scenario 2

Competitors 1 − 8

O
p

t−
IA

 (
R

N
D

)
O

p
t−

IA
 (

G
D

O
)

Scenario 3

Competitors 1 − 8

O
p

t−
IA

 (
R

N
D

)
O

p
t−

IA
 (

G
D

O
)

Scenario 4

Competitors 1 − 8

O
p

t−
IA

 (
R

N
D

)
O

p
t−

IA
 (

G
D

O
)

Scenario 5

Figure 6: Comparison of Cost of Energy between the competition’s 8 competitors and the two versions of opt-IA algorithm

7. CONCLUSIONS
The work here introduced a modified version of the grid

diversity operator (GDO) to handle discrete optimization
problems. The main idea was to replace the virtual grid
originally used in GDO with a simpler structure in which so-
lutions themselves are added to the memory-archive instead
of a slot that does not exist in such type of problems. The
new operator has been injected into the immune algorithm
opt-IA and a series of experiments have been conducted on
a set of wind farm optimization problem scenarios that vary
in complexity. The results obtained from experimentation
prove that the modified GDO technique achieving better re-
sults on many of the instances, especially for the scenarios
with obstacles. However, there is still a need to validate
the modified GDO using different other discrete optimiza-
tion problems. In addition, a unified grid diversity operator
that is suitable for both continuous and discrete optimiza-
tion should be implemented and validated.

8. REFERENCES
[1] L. N. de Castro. Fundamentals of Natural Computing:

Basic Concepts, Algorithms, and Applications.
Chapman & Hall/CRC Computer & Information
Science Series. Chapman & Hall/CRC, 2006.

[2] A. Salah and E. Hart. Grid diversity operator for some
population-based optimization algorithms. In
Proceedings of the Companion Publication of the 2015
on Genetic and Evolutionary Computation
Conference, pages 1475–1476. ACM, 2015.

[3] P. Jain. Wind Energy Engineering. New York: The
McGraw-Hill Companies, Inc., 2011.

[4] D. Wilson, S. Cussat-Blanc, S. Rodriguez, and
K. Veeramachaneni. Wind Farm Layout Optimization
Competition – 2nd Edition.

https://www.irit.fr/wind-competition/2015/slides.pdf,
2015. [Online; accessed 05-April-2016].

[5] A. Salah, E. Hart, and K. Sim. Validating the grid
diversity operator: An infusion technique for diversity
maintenance in population-based optimisation
algorithms. In G. Squillero and P. Burelli, editors,
Applications of Evolutionary Computation: 19th
European Conference, EvoApplications 2016, Porto,
Portugal, March 30 – April 1, 2016, Proceedings, Part
II, volume 9598 of Lecture Notes in Computer Science,
pages 11–26, Cham, 2016. Springer International
Publishing.

[6] J. J. Liang, B-Y. Qu, and P. N. Suganthan. Problem
Definitions and Evaluation Criteria for the CEC 2014
Special Session and Competition on Single Objective
Real-Parameter Numerical Optimization. Technical
report, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China, December
2013.

[7] L. N. de Castro and J. Timmis. An artificial immune
network for multimodal function optimization.
Evolutionary Computation, 2002. CEC’02.
Proceedings of the 2002 Congress on, 1:699–704, 2002.

[8] V. K. Koumousis and C. P. Katsaras. A Saw-Tooth
Genetic Algorithm Combining the Effects of Variable
Population Size and Reinitialization to Enhance
Performance. IEEE Transactions on Evolutionary
Computation, 10(1):19–28, feb 2006.

[9] F. Glover. Tabu search - part 1. ORSA Journal on
Computing, 1(3):190–206, 1989.

[10] V. Cutello, G. Narzisi, G. Nicosia, and M. Pavone. An
Immunological Algorithm for Global Numerical
Optimization. In Proceedings of the Intl. Conf. on
Evolution Artificielle, EA ’05, pages 284–295, 2006.

982

