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ABSTRACT
In genetic programming systems, parent selection algorithms
select the programs from which offspring will be produced by
random variation and recombination. While most parent se-
lection algorithms select programs on the basis of aggregate
performance on multiple test cases, the lexicase selection
algorithm considers each test case individually, in random
order, for each parent selection event. Prior work has shown
that lexicase selection can produce both more diverse pop-
ulations and more solutions when applied to several hard
problems. Here we examine the effects of lexicase selection,
compared to those of the more traditional tournament se-
lection algorithm, on population error diversity using two
program synthesis problems. We conduct experiments in
which the same initial population is used to start multiple
runs, each using a different random number seed. The initial
populations are extracted from genetic programming runs,
and fall into three categories: high diversity populations,
low diversity populations, and populations that occur after
diversity crashes. The reported data shows that lexicase se-
lection can maintain high error diversity and also that it
can re-diversify less-diverse populations, while tournament
selection consistently produces lower diversity.
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1. INTRODUCTION
Parent selection is one of the fundamental processes in

genetic programming (GP), and several different parent se-
lection algorithms have been developed. Lexicase selection
is a relative newcomer on the scene [13, 5]. While most
commonly-used parent selection algorithms, such as tour-
nament selection, select programs on the basis of aggregate
performance on multiple test cases, the lexicase selection
algorithm considers each test case individually, in random
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order, for each parent selection event. Compared to tour-
nament selection, lexicase selection has been shown to pro-
duce more diverse populations and more solutions on several
classes of problems, including software synthesis benchmark
problems [5, 1, 4, 2]. This prior work made connections
between high diversity and high solution rates when using
lexicase selection. Each of these studies examined the diver-
sity of entire GP runs, each starting with a different initial
population and random number seed.

Our work here was originally motivated by observations
of dramatic drops in diversity that result from “hyperselec-
tion” events when using lexicase selection, in which one or
a few individuals in the population receive the majority of
the parent selections in a generation [3]. Anecdotally, these
runs often seemed to recover diversity within a handful of
generations following the diversity crash. Because a capabil-
ity for recovering adaptive diversity is desirable, we decided
to examine the dynamics of diversity after diversity crashes
more systematically, producing data from runs using lexi-
case selection and, for comparison, tournament selection.

While examining the effects of selection algorithms in the
wake of diversity crashes is enlightening, such a study has
scope limited to infrequent events when using lexicase se-
lection. More broadly, we are interested in the immediate
effects on diversity that these algorithms have in populations
with other defining characteristics. In particular, we wish to
explore how each method influences diversity in populations
that occur naturally during evolution, specifically in popu-
lations with usually high or low diversity.

In order to study these questions, we conducted sets of
runs in which each run was initialized with the same popu-
lation, with each population extracted from a GP run. This
allows us to observe how different selection methods affect
diversity when started on the exact same population.

In the next section we describe the two selection algo-
rithms in our study. We then describe our experimental
design, including a discussion of the diversity measure that
we used (error diversity), the ways in which we extracted ini-
tialization populations, the two test problems that we used,
and the parameters of our runs. Finally, we present the
results of the experiments and discuss their implications.

2. PARENT SELECTION
In this section we describe the two parent selection algo-

rithms used in our experiments.

2.1 Tournament Selection
We use standard tournament selection as a comparison
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method. In it, we choose random individuals (with replace-
ment) to form a tournament set, and select the individual
with the lowest total error to be a parent.

2.2 Lexicase Selection
Each time a parent must be selected, lexicase selection

first shuffles the list of test cases into a random order. Then,
starting with the entire population, it removes any individ-
ual that did not achieve the best error value on the first test
case. As long as more than one individual remains in the
population, the first test case is removed and this process is
repeated with the next test case, etc. For each test case, any
individual that did not have the best error of those remaining
in the pool is removed from consideration. If at any point
only a single individual remains, it is selected as the winner
of that parent selection event. On the other hand, if every
test case is exhausted and multiple individuals remain, one
of them is randomly selected. A more detailed description
of lexicase selection is given in [5].

Lexicase selection shares some motivation with other re-
cent techniques that consider not how an individual per-
forms across an entire problem in aggregate, but instead how
it performs on parts of a problem. This work on “behavior-
based” or “semantic” search operators includes geometric se-
mantic GP [12], behavioral GP [8], clustering test cases into
objectives [7, 11], and other behavior-based search drivers
[9]. Lexicase selection sets itself apart from these methods
by placing importance on individual test cases and com-
binations of test cases—those test cases that come at the
beginning of each random ordering of cases.

3. EXPERIMENTAL DESIGN
In this paper we concentrate on diversity measures re-

lated to the outputs of the programs. One such diversity
measure, behavioral diversity, has been shown to correlate
with problem-solving performance [6]. In behavioral diver-
sity, the output of a program on each training case input is
recorded as a behavior vector. Behavioral diversity is then
the percentage of distinct behavior vectors in the popula-
tion. Error diversity, a slight variation of behavioral diver-
sity, considers the percentage of distinct error vectors in the
population where each error vector is computed by apply-
ing the error function to each output in the behavior vector.
We believe error diversity does a good job of measuring how
well evolution is exploring meaningful differences between
programs that might be lost with a diversity measure that
only takes into account syntactic (genotypic) diversity of the
population, since two wildly different programs may actually
compute the same function.

In order to produce the populations on which to experi-
ment, we started GP runs and let them continue until they
met certain stopping conditions; we then stored those pop-
ulations and later conducted multiple trials with different
random number seeds starting with those stored popula-
tions. We used three different stopping conditions in order
to generate naturally occurring populations with interesting
properties: high diversity, low diversity, and after a diversity
crash.

High diversity: In lexicase selection runs, we stopped
if the population error diversity was greater than 0.9. This
produces diverse populations, allowing us to observe whether
evolution is able to maintain such high diversity in the fol-
lowing generations.

Table 1: PushGP parameters

Parameter Value

runs per problem/parent selection combination 100
population size 1000
maximum genome size 800
maximum initial genome size 400
tournament size (for tournament selection) 7

Genetic Operator Probability

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

Low diversity: In runs using tournament selection, we
stopped if the population error diversity was less than 0.15.
These populations allow us to see if methods promote diver-
sification starting from such undiverse populations.

After a diversity crash: As described above, we were
initially motivated here by observations of runs using lexi-
case selection that underwent major drops in diversity fol-
lowing hyperselection events. In this condition, we stopped
runs using lexicase selection when the error diversity reached
a level at least 0.25 less than it had been at some point in
the previous 10 generations. This allowed us to detect popu-
lations that had recently undergone large drops in diversity.
We do not definitively know whether those drops are related
to hyperselection events, but we expect that they are.

In all three conditions, we only considered populations
occurring after the first 10 generations in order to give evo-
lution a chance to settle down after the extreme shifts that
can happen at the beginning of a run.

In each trial, we continued running GP on a stored popu-
lation for 20 generations while recording the population er-
ror diversity. For each parent selection setting (lexicase and
tournament selection), we conducted 100 trials with differ-
ent random number seeds from the same stored population.

We conducted these tests on two problems from a recent
program synthesis benchmark suite [4]. The first problem,
Replace Space With Newline (RSWN), specifies a target pro-
gram that takes a string as input and both prints an out-
put string and returns a result. The printed string should
be a copy of the input string with all spaces replaced by
newline characters. The functionally returned result should
be the number of non-whitespace characters in the input
string. Previous examinations of error vector diversity on
the RSWN problem show that lexicase selection maintains
significantly higher diversity than tournament selection [2].

The second problem, Double Letters, requires the produc-
tion of a program that takes a string as input and prints the
string after doubling every alphabetic character and tripling
every exclamation point. All other characters should be
printed once. As with the RSWN problem, lexicase selection
consistently achieves high diversity on this problem. Differ-
ently than RSWN, runs using tournament selection show
slow but steady increases in diversity, though not approach-
ing that of lexicase selection runs [2].

For our experiments we used PushGP [16, 15], a stack-
based GP system.1 PushGP supports a variety of control

1Lexicase selection has also been shown to be effective in
tree-based GP [5, 11].
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structures and multiple data types, making it a good choice
for program synthesis tasks such as the problems we explore
here. Except for parent selection, we used the exact same
PushGP parameters in both the initial runs used to store
interesting populations as well as the continuations of the
stored populations. We give the most relevant parameters
in Table 1. The parameters not listed here exactly follow
those described in [1], where the meanings of all parameters
are also explained in detail.

These runs use the most recent version of PushGP, in
which individuals are stored as linear genomes that we trans-
late into hierarchical Push programs prior to execution [1].
These linear genomes admit a range of uniform genetic op-
erators; we use four, listed in Table 1 with their probabil-
ities. Alternation is a linear crossover operator modeled
after the recombinative portion of ULTRA [14]. Uniform
mutation may replace each instruction with 1% probabil-
ity. Uniform close mutation may add or remove hierarchy-
delineating parentheses from the program. Finally, the last
operator runs alternation on two parents and then uniform
mutation on that child to produce a new child.

4. RESULTS
Using the techniques presented in the previous section we

obtained populations on which to perform continuation ex-
periments. For each combination of the two problems and
three stopping conditions we stored populations from two
runs, for a total of 12 populations. In the following subsec-
tions we group the results based on the stopping conditions,
since they produce the most similar populations.

Starting with each stored population we conducted 100
“continuation” GP runs with lexicase selection and 100 with
tournament selection. We let each continuation evolve for 20
generations, and plot the population error diversity across
the runs. In particular, each figure has a standard box-and-
whisker plot for each generation, with the box showing the
median and quartiles. The whiskers stretch to the maximum
and minimum values, ignoring outliers. In each figure we
also plot the error diversity of each individual run at each
generation, giving another way of visualizing the spread of
diversities across runs.

Note that in a few settings, one or two runs out of 100
found solutions to the problem before the end of 20 gener-
ations. In these cases, we terminate the runs, and they do
not contribute data past their termination generation.

4.1 Starting with high diversity
First, we examine continuations initialized with popula-

tions that were evolved using lexicase selection and achieved
error diversity greater than 0.9. As such, the initial popu-
lations of the continuations have very high diversity, with
most individuals producing distinct error vectors.

Figure 1 plots the continued runs started from two popu-
lations (A and B) stored from GP on the RSWN problem.
Lexicase selection consistently maintains high levels of di-
versity starting from both populations, with little variance.
On the other hand, both plots show runs using tournament
selection quickly losing significant diversity within the first
5 to 10 generations of the continuation, dropping from over
90% distinct error vectors down to around 50% distinct er-
ror vectors. Interestingly, the tournament selection runs on
Population A show large differences in diversity in the last 10
generations, with some becoming even less diverse while oth-

ers recover much of the lost diversity. On the other hand, the
tournament selection runs on Population B maintain much
more consistent diversity, with most runs having between
40% and 60% diversity in the remaining generations.

Figure 2, which plots the diversities of continuations of
two populations (C and D) on the Double Letters problem,
shows similar trends in both lexicase selection and tourna-
ment selection. Note that tournament selection maintains
higher diversity on this problem than on the RSWN prob-
lem, though not as high as lexicase selection. This trend
mirrors what has been seen previously on full GP runs [2].

4.2 Starting with low diversity
Next, we present continuations of runs that start from

populations exhibiting population diversity of at most 0.15,
i.e., most of the individuals in these populations produced
the same error vectors. These populations were stored from
runs that used tournament selection, since we were not able
to achieve population diversity this low in a run using lex-
icase selection. Additionally, these runs will shed light on
whether the parent selection technique used to produce the
initial populations has effect on the continued diversity.

Figure 3 plots diversity of runs starting from populations
E and F on the RSWN problem. In neither case does tour-
nament selection increase diversity across the 20 generations
except for a handful of outlier runs. The continuations using
lexicase selection increase the median diversity across runs
rapidly, with over 50% unique error vectors by generation
8 using population E and generation 4 using population F.
For population E, lexicase selection runs continue to steadily
rise in diversity over the 20 generations. On the other hand,
many runs starting with population F undergo steep drops
in diversity, such that by generation 9 the lower quartile of
diversity falls precipitously from around 60% to around 35%.
The indivdiually plotted run diversities show that many runs
continue to see single-generation drops in diversity through-
out the 20 generations. We believe this population likely
contained one or more individuals that, when varied in the
right way, produce a child that dominates the rest of the
population, leading to hyperselection events—and therefore
drops in diversity—in many runs. Even with these drops in
diversity, lexicase selection maintains higher diversity than
tournament selection in the majority of continuations.

We present continuations of low-diversity populations (G
and H) evolved on the Double Letters problem in Figure 4.
Lexicase selection again increases error diversity more quickly
than tournament selection, though here tournament selec-
tion does show some increases in diversity. This is more
pronounced when starting from population H, where me-
dian diversity is over 0.25 by generation 20. This still pales
in comparison to lexicase selection’s diversity, which grows
to more than 0.6 on population H and 0.75 on population
G. Both plots show lexicase selection runs gaining and main-
taining diversity across the 20 generations, without any of
the diversity drop-offs that we observed in Figure 3.

4.3 Starting after a diversity crash
In Figure 5 we plot error diversity from populations I and

J on the RSWN problem, which were stored after diversity
crashes of at least 25%. For the lexicase selection runs, nei-
ther of these plots shows rapid rediversification; instead, we
see consistent gains in diversity for most of each run. The
median diversity on population I increases about 20% over

985



Population A Population B

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 0 5 10 15 20
Generation

E
rr

or
 d

iv
er

si
ty

Selection lexicase tournament

RSWN starting with high diversity

Figure 1: Error diversity over 100 continuations of the RSWN problem with both lexicase and tournament
selection, starting from populations with high diversity naturally occuring in a run using lexicase selection.
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Figure 2: Error diversity over 100 continuations of the double-letters problem with both lexicase and tour-
nament selection, starting from populations with high diversity naturally occuring in a run using lexicase
selection.
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Figure 3: Error diversity over 100 continuations of the RSWN problem with both lexicase and tournament
selection, starting from populations with low diversity naturally occuring in a run using tournament selection.
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Figure 4: Error diversity over 100 continuations of the double-letters problem with both lexicase and tour-
nament selection, starting from populations with low diversity naturally occuring in a run using tournament
selection.
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Figure 5: Error diversity over 100 continuations of the RSWN problem with both lexicase and tournament
selection, starting from populations that had lost at least 25% error diversity in a diversity crash in a lexicase
selection run.
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Figure 6: Error diversity over 100 continuations of the double-letters problem with both lexicase and tour-
nament selection, starting from populations that had lost at least 25% error diversity in a diversity crash in
a lexicase selection run.
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20 generations, gaining back most of the diversity it lost
during the diversity crash. Population J gains back about
15% population in that timespan. Interestingly, population
I sees immediate small gains in diversity in the first few gen-
erations, whereas population J shows consistent small losses
in diversity before rediversifying. This presumably means
that population I had reached its minimum in its diversity
crash, whereas population J was recorded near the end of
the crash but before its minimum.

Turning our attention to tournament selection, we see that
it produced remarkably consistent drops in diversity in the
very first generation, especially in Population J. These drops
are followed by little movement either direction during the
remaining generations.

Figure 6 shows the same settings for the Double Letters
problem using populations K and L. Population K is inter-
esting in that lexicase selection gains some diversity near
the beginning while almost every tournament selection loses
at least 25% diversity over the first 4 generations. After
that, an increasing number of lexicase selection runs seem
to undergo further diversity crashes, pulling down the lower
quartile while the median diversity stays around 60%. On
the other hand, tournament selection shows incrases in di-
versity in the later generations, although its quartiles never
overlap with lexicase selection’s.

For population L, after a few generations of further diver-
sity decreases, lexicase selection runs tend to increase diver-
sity (with lots of variation) ending with about 20% higher
median diversity than at its lowest. Tournament selection,
however, consistently loses diversity over the 20 generations
with little variance across runs.

5. DISCUSSION
The results from continuations of high-diversity popula-

tions clearly show that lexicase selection can maintain a high
population diversity while tournament selection cannot re-
liably do so. One notable feature visible in the initial-high-
diversity plots (Figure 1 and Figure 2) is the occasional steep
drop in diversity in a small number of runs using lexicase se-
lection, which can be seen especially clearly in populations
B and C. Based on similar runs we have encountered pre-
viously, we would guess that these runs underwent hyperse-
lection events in which one or a small number of individuals
were selected to make most of the children in a single gen-
eration. Hyperselection events can, understandably, lead to
diversity crashes since most of the individuals in the popu-
lation are closely related. Interestingly, previous work has
shown that such events are neither a driving force nor a
hinderance in runs using lexicase selection [3].

The continuations starting from low-diversity populations
(Figures 3 and 4) show how lexicase selection can diversify
an un-deriverse population over a small number of genera-
tions. This ability to create error diversity helps to explain
how lexicase selection can rapidly explore the space of mean-
ingfully different programs.

Of the results we present, those from runs starting with
populations that were produced by diversity crashes (Fig-
ure 5 and Figure 6) show the smallest gaps in diversity
between lexicase selection and tournament selection. Still,
they demonstrate lexicase selection’s ability to increase di-
versity, albeit gradually, following a diversity crash. Tour-
nament selection runs lost diversity over the 20 generations
in three of the four conditions, showing not only that it was

unable to stop the diversity crash, but also that it extended
and exacerbated the crash.

In summary, the reported data shows that lexicase selec-
tion can maintain high error diversity and also that it can
re-diversify less-diverse populations, whether those popula-
tions were produced by tournament selection or by diversity
crashes with lexicase selection. Tournament selection con-
sistently produced lower diversity, either by decreasing the
number of unique error vectors in the population or by fail-
ing to increase diversity in un-diverse populations.

The higher diversity seen with lexicase selection does not,
for the problems and configurations examined here, come at
the expense of problem-solving power—quite the contrary.
In data reported elsewhere [4], lexicase selection produced
solutions to the Replace Space with Newline problem in 51
out of 100 runs, while tournament selection succeeded in
only 8. On the Double Letters problem, lexicase selection
produced 6 solutions (in 100 runs), while tournament selec-
tion produced none.

Why might lexicase selection be so much better at increas-
ing and maintaining diversity than tournament selection?

One clue might come from tournament selection’s drops
in diversity in populations that originally evolved using lex-
icase selection. Suppose that a number of individuals in a
population have identical or very similar error vectors, along
with low total error. With tournament selection, these in-
dividuals might all be selected a number of times in a given
generation, leading to a population containing many of their
children. Many of those children likely have similar error
vectors to their parents, resulting in a less diverse popula-
tion than the prior one. With the same population, lexicase
selection would require those individuals to compete for the
same selections, since any individuals with identical error
vectors will have equal chance of selection when their best
case errors come near the beginning of the randomly shuffled
test cases. So, lexicase selection makes an individual “com-
pete” for the selections it is eligible for with those individuals
that produce identical error vectors.

Another factor likely at play here is the way in which lex-
icase selection places emphasis on individuals that perform
well on single test cases or combinations of small numbers of
test cases. Since an individual must be the absolute best in
the population on a test case if it comes first in the shuffled
test cases in order for the individual to be selected, lexicase
selection can select individuals that specialize on doing well
at one or more test cases even if they do poorly at others.
This phenomenon, shown to contribute to lexicase selection’s
success in prior work [1], likely allows lexicase selection to
select many different specialists with different error vectors,
diversifying the parent pool and therefore the children of the
next generation.

The data presented here are also interesting in other re-
spects. For example, they show that patterns of diversi-
fication depend not only on the selection method and on
the problem being solved, but also on the starting popu-
lation. In fact, in some conditions it is evident that the
starting population was the cause of later swings in diver-
sity that were not manifested in the first few generations;
for example, see population A for tournament selection and
population F for lexicase selection. Thus the composition
of a population, or specific members of a population, can
drastically change the shape of diversity in the following
generations, even compared to similarly chosen populations.
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Even so, lexicase selection clearly contributes more to diver-
sity than tournament selection, starting from all twelve of
the populations presented here.

6. CONCLUSIONS
Previous work showed that lexicase selection often gen-

erates and maintains high levels of diversity across separate
runs. The experiments presented here demonstrate this phe-
nomenon systematically by conducting multiple runs from
the same starting population.

For the two software synthesis benchmark problems stud-
ied here, lexicase selection not only maintains high levels of
diversity across entire runs, but also reestablishes diversity
in many low-diversity populations. The fact that lexicase
selection also tends to solve the studied problems more fre-
quently than does tournament selection, which produces less
diverse population, strongly suggests that the diversity we
are seeing is adaptive diversity that helps the system to ex-
plore the search space.

The presented data also shows that there is a sense in
which“history is destiny”with respect to diversity in GP. For
some pairs of initial populations that were generated from
identical conditions (except for random number seeds), dis-
tinct patterns of diversity were consistently observed. The
choice of selection method has a clear and characteristic ef-
fect on diversity, but the nature of the specific starting pop-
ulation can also have consistent, long term effects.

It would be interesting to use the methodology in this
paper to compare the diversity produced by other search
drivers, such as “discovery of objectives by clustering” [7]
and novelty search [10].
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