
Integrating Local Search within neat-GP

Perla Juárez-Smith
∗

, Leonardo Trujillo
†

Instituto Tecnológico de Tijuana
Tijuana, México

ABSTRACT
There are two important limitations of standard tree-based
genetic programming (GP). First, GP tends to evolve unnec-
essarily large programs, what is referred to as bloat. Second,
it uses inefficient search operators that operate at the syn-
tax level. The first problem has been the subject of a fair
amount of research over the years. Regarding the second
problem, one approach is to use alternative search opera-
tors, for instance geometric semantic operators. However,
another approach is to introduce greedy local search strate-
gies, combining the syntactic search performed by standard
GP with local search strategies for solution tuning, which is
a simple strategy that has comparatively received much less
attention. This work combines a recently proposed bloat-
free GP called neat-GP with a local search strategy. One
benefit of using a bloat-free GP is that it reduces the size of
the parameter space confronted by the local searcher, offset-
ting some of the added computational cost. The algorithm
is validated on a real-world problem with promising results.

Keywords
Genetic Programming, Bloat, NEAT, Local Search

1. INTRODUCTION
Genetic programming (GP) is one of the most competi-

tive approaches towards automatic program induction and
automatic programming in the fields of artificial intelligence,
machine learning and soft computing [7]. In particular, even
the earliest version of GP, proposed by Koza in the 1990’s
and commonly referred to as tree-based GP or standard GP
[6], continues to produce strong results in difficult domains
over 20 years later [13]. However, while tree-based GP is
supported by sound theoretical insights [8], these formal-
ism’s have not allowed researchers to overcome some of GPs
most glaring weaknesses.

∗pjuarez@tectijuana.edu.mx
†Corresponding author: leonardo.trujillo@tectijuana.edu.mx

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

GECCO’16 Companion, July 20–24, 2016, Denver, CO, USA.

ACM ISBN 978-1-4503-4323-7/16/07. . . $15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DOI: http://dx.doi.org/10.1145/2908961.2931659

The first problem is bloat, the tendency of GP to evolve
unnecessarily large solutions. In bloated GP runs the size
(number of nodes) of the best solution and/or the average
size of all the individuals increases even when the quality
of the solutions stagnates. Bloat has been the subject of
much research in GP literature [11]. The most successful
bloat control strategies have basically modified the manner
in which fitness is assigned [3, 10], focusing the search to-
wards specific regions of solution space.

A second issue with standard GP is related to the nature
of the search operators. Subtree crossover and mutation
operate at the level of program syntax, but they are blind
to their effect on program output or semantics [9]. This
has lead researches to exploit the geometric properties of
semantic space [9] and define search operators that operate
at the syntax level but have a known and bounded effect
on semantics, in what is referred to Geometric Semantic
GP (GSGP). While GSGP has recently achieved impressive
results in several real-world domains [1] it suffers from an
intrinsic shortcoming. In particular, that the size of the
evolved solutions grows exponentially with the number of
generations [9], which practically eliminates the possibility
of interpreting the evolved solutions [6, 7]. In this work we
assume that the true shortcoming of standard GP search
does not lie in the nature of the search operators, but in the
fact that they are used improperly. Standard GP is basi-
cally using syntactic operations to search for both the struc-
ture of a desired solution and it’s optimal parametrization,
whether this is explicitly stated or not [15, 16]. This has
lead researchers to integrate numerical local search strate-
gies within the basic GP process, an intuitive solution that
has not received, in our opinion, sufficient literature atten-
tion [2]. Exclusively using syntax search operators at the
very least contributes towards the inefficient nature of the
search, as evidenced by the fact that GP algorithms that
integrate a local search (LS) find shorter solutions on most
problems using comparable computational effort [15, 16].

The goal of this work is to incorporate recent methodolo-
gies towards bloat control and local search optimization into
a single GP methodology, otherwise based on standard GP
principles. In particular, this work focuses on the symbolic
regression task and the proposal builds on two recently pub-
lished works. First, the neat-GP algorithm [14], which is
based on the operator equalization (OE) [3] family of bloat
control methods, in particular the Flat-OE algorithm [10],
and the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [12] that was originally proposed for the evolu-
tion of neural networks. Second, we apply the local search

993

strategy proposed in [15, 16], which has exhibited strong
performance in both symbolic regression and classification
problems, we will refer to this method as GP-LS.

2. BACKGROUND
This section presents neat-GP and GP-LS.

2.1 neat-GP
Probably the most successful bloat control approaches are

derived from the basic ideas of operator equalization. The
OE approach is to control the distribution of program sizes
at each generation, defining a specific shape for the distribu-
tion and then using heuristic rules that fit the population to
the goal distribution. Surprisingly, some of the best results
are achieved by using the simplest distribution, a uniform or
flat distribution; this method is called Flat-OE [10]. One of
the main drawbacks of OE methods has been the difficulty
of efficiently controlling the shape of the distribution with-
out severely modifying the nature of the search. Recently, a
related method was proposed, this method approximates the
behavior of Flat-OE in a much simpler manner, exploiting
well-known EC principles such as speciation, fitness sharing
and elitism [14]. The method is called neat-GP, and as its
name suggests it is designed following the general principles
of the NEAT algorithm [12]. While NEAT has been widely
used in a variety of domains, its applicability for GP has
been shown recently [14].

The main features of neat-GP are the following: (a) The
initial population contain trees of small depth (3 levels),
while most GP algorithms initialize the search with small
and medium sized trees (depth between 3 and 6 levels), the
NEAT approach is to start with simple (small) solutions, and
to progressively build complexity (add size) only if the prob-
lem requires it; (b) As the search progresses, the population
is divided into subsets called species, such that each species
contains individuals of similar size and shape; this process
is called speciation, which protects innovation during the
search. (c) The algorithm uses fitness sharing, whereby the
fitness of individuals is penalized proportionally to the size
of the species to which it belongs. In this way, individuals
from very large species are penalized more than individuals
that belong to smaller species. This allows the search to
maintain an heterogeneous population of individuals based
on their size, following Flat-OE. The only exception are the
best individuals in each species, these are not penalized al-
lowing the search to maintain the best candidate solutions
for the problem. (d) Crossover operations mostly take place
between individuals from the same species.

Tree dissimilarity and speciation.
Individuals are grouped together into species based on

their size and shape. The goal is to maintain an heteroge-
nous collections of program sizes. For a tree T let nT repre-
sent the size of the tree (number of nodes) and dT represents
its depth (number of levels). Moreover, let Si,j represent the
shared structure between both trees starting from the root
node (upper region of the trees), which is also a tree. Then,
the dissimilarity between two trees Ti and Tj is given by

δT (Ti, Tj) = β
Ni,j−2nsi,j

Ni,j−2
+ (1− β)

Di,j−2dsi,j
Di,j−2

(1)

where Ni,j = nTi + nTj , Di,j = dTi + dTj , and β ∈ [0, 1].
Using the above measure we can group individuals based

on their size and depth. Each individual Ti that has not
been assigned to a species is compared with each individual
Tj in the current population that does belong to a species,
one after another. When δT (Ti, Tj) < h, with threshold h
an algorithm parameter,then Ti is assigned to the species to
which Tj belongs and no more comparisons are done. If no
such Tj exists then a new species is created.

Fitness sharing is used in each species, such that individ-
uals that belong to large species are penalized while individ-
uals that belong to smaller ones are less so. For a minimiza-
tion problem a simple penalization is:

f
′
(Ti) = |Su| f(Ti) (2)

where f(Ti) is the raw fitness of the tree, f ′(Ti) is the
penalized or adjusted fitness, Su is the species to which Ti

belongs, and |Su| is the number of individuals in species Su.
The best individual of each species will be an exception, the
fitness of this solution wont be penalized.

Parent selection uses an elitist strategy, such that the
pworst% individuals of each species are deleted, and the same
number of offspring are generated to replace them. A max-
imum number of possible offspring for each individual is set
proportionally to its raw fitness; the adjusted fitness is not
used because some individuals were not penalized, if the
adjusted fitness was used then the population would loose
diversity. Afterward, individuals are ordered based on their
adjusted fitness, and the algorithm iterates through the re-
maining population choosing parents. A random equiprob-
able decision is made each time, of either selecting the best
individual or a random individual. Each time an individual
is selected as parent its expected number of descendants is
reduced accordingly, and when this value reaches zero the
individual cannot be used again as a parent.

Two types of search operators are used, crossover and mu-
tation, which are chosen randomly based on the probabilities
pm and pc. For mutation, standard subtree mutation is used
and the number of expected offspring is reduced by one. For
crossover, after the first parent T1 of species S is chosen the
second parent T2 is chosen based on the following heuristic:
the best solution in S with T1 6= T2; or a random individual
if S does not contain other trees.

2.2 Genetic Programming with Local Search
The most common application of GP is to solve what are

known as symbolic regression problems, where a model that
best fits a dataset is sought. Unlike other forms of regression,
the form of the model is not defined a priori, as is done in
linear regression for example. The goal is to search for the
symbolic expression KO : Rp → R that best fits a particular
training set T = {(x1, y1), . . . , (xn, yn)} of n input/output
pairs with xi ∈ Rp and yi ∈ R, states as

(KO,θO)← arg min
K∈G;θ∈Rm

f(K(xi,θ), yi) with i = 1, . . . , p ,

(3)
where G is the solution or syntactic space defined by the
primitive set P of functions and terminals, f is the fitness
function which is based on the difference between a pro-
gram’s output K(xi,θ) and the desired output yi, and θ is
a particular parametrization of the symbolic expression K,
assuming m real-valued parameters. In standard GP, only
the symbolic expression is constructed and modified by the
search process, while the underlying parametrization θ is

994

not considered. Recent works have shown that concurrently
optimizing both the structure and parametrization of the
evolved models can speed up convergence and improve per-
formance. In particular we adopt the approach proposed in
[15, 16] which has been applied to both symbolic regression
and classification problems.

First, as suggested in [5], for each individual K in the
population we add a small linear upper-tree above the root
node, such that

K′ = θ2 + θ1(K) , (4)

K′ represents the new program output, while θ1 and θ2 are
the first two parameters from θ. Second, for all the other
nodes nk in the tree K we add a weight coefficient θk ∈ R,
such that each node is:

n′k = θknk , (5)

where n′k is the new modified node, k ∈ {1, ..., r}, r = |Q|
and Q is the tree representation. Notice that each node
has an unique parameter that can be modified to help meet
the overall optimization criteria of the non-linear expression.
At the beginning of the GP run each parameter is initialized
by θi = 1. During the GP syntax search, subtrees belong-
ing to different individuals are swapped, added or removed
(following the standard crossover/mutation rules) together
with its corresponding parameters, without affecting their
values. This follows a memetic search process with Lamar-
ckian inheritance [15, 16]. Therefore, we consider each tree
as a non-linear expression and the local search operator must
now find the best fit parameters of the model K′. The prob-
lem can be solved using a variety of techniques, but following
[15, 16] we employ a trust region algorithm.

Finally, the LS mechanism could be applied in different
ways, in this work this mechanism is applied with a random
selection using a probability of Ps = 0.5 for each individual.

3. PROPOSAL
The proposal in this work is straightforward, combine

neat-GP with the GP-LS strategy; hereafter this hybrid will
be referred to as neat-GP-LS. This is done quite easily in
fact, Figure 1 presents a flow diagram depicting each of the
main stages in the neat-GP-LS process, combining the main
elements of both algorithms described in Section 2, proceed-
ing as follows: (a) the algorithm starts with a randomly
generated population P of small full trees; (b) speciation is
performed on the entire population P based on the size and
depth of each solution; (c) each individual is then parameter-
ized and (d) extended by the linear upper tree; (e) afterward,
fitness evaluation is performed and (f) fitness sharing is ap-
plied, penalizing individuals from larger species; (g) if the
stopping criterion is not met then (h) the set of parents Q is
selected and (i) a set R of offspring are generated using sub-
tree mutation, subtree crossover or neat-crossover; (j) the
offspring are combined with the current population {P ∪R}
and speciation is applied to this set; (k) the fitness of the
offspring in R is computed and (l) fitness sharing applied to
them; (m) the best offspring replace the worst pworst% in-
dividuals in P ; (n) individuals are selected for local search;
and (o) the local search is applied to them.

When genetic operators are applied care must be taken to
consider the inheritance of parameter values, the proposal
is a Lamarckian scheme. In case of subtree mutation, all
the parameters in the new subtree are initialized to unity.

Figure 1: General flow diagram of the neat-GP-LS
algorithm.

For crossover, the swapped nodes and subtrees maintain the
parameter values specified in the parent tree. In this case
the upper linear trees are not considered during crossover or
mutation.

4. EXPERIMENTS AND RESULTS
The experimental work centers around comparing these

variants: standard GP; neat-GP with standard-crossover;
GP-LS and neat-GP-LS. These variants are validated on the
Boston Housing real world problem that concerns housing
values in suburbs; it consists of 506 cases having 13 input
variables. The aim is to predict the median house price given
a number of demographic features.

In this case, 30 runs of each algorithm was performed with
the parameters specified in Table 1. In the neat-GP variants
the parameters were set according to [14]. The termination
criterion is given by a maximum number of function eval-
uations (calls to the fitness function), considering that we
cannot compare the algorithms based on generations since
this would not account for the computational effort required
to apply the LS heuristic. For all algorithms, fitness and
performance are computed using RMSE.

The algorithms are compared based on the following per-
formance criteria: best training fitness, test fitness of the
best solution and average size (number of nodes) of all in-
dividuals in the population. Figure 2 presents the plot of
the median performance over all runs, relative to the total
function evaluations. Also presents rank statistics for each
method over all runs using box plots.

995

4

6

8

10

12

0 25k 50k 75k 100k
Objective function evaluations

R
M

SE
GP
neat-GP
GP-LS
neat-GP-LS

Train fitness

3

4

5

6

GP neat-GP GP-LS neat-GP-LS

R
M

S
E

(a)

4

6

8

10

12

0 25k 50k 75k 100k
Objective function evaluations

R
M

SE

GP
neat-GP
GP-LS
neat-GP-LS

Test fitness

0

5

10

15

GP neat-GP GP-LS neat-GP-LS

R
M

SE

(b)

0

100

200

300

400

0 25k 50k 75k 100k
Objective function evaluations

Si
ze

 (n
od

es
)

GP
neat-GP
GP-LS
neat-GP-LS

Population tree size

0

200

400

600

800

GP neat-GP GP-LS neat-GP-LS

R
M

SE

(c)

Figure 2: Results for Housing problem plotted with respect to total function evaluation: (a) train fitness;
(b) test fitness; (c) average population size. Plots show median values over 30 independent runs. Box plots
represent the performance distribution of each measure at the end of the 30 runs.

Table 1: Parameters used in the reported experi-
mental work.
Parameter Value GP Std and GP-LS Value neat-GP
Runs 30 30
Population 100 100
Function evaluations 100’000 100’000
Training set 70%
Testing set 30%
Operator probabilities
Crossover (pc), Mutation (pm)

pc=0.9, pm=0.1 pc=0.7,pm=0.3

Tree initialization
Ramped Half-and-Half,
with 6 levels of maximun depth

Full initialization,
with 3 levels of maximun depth

Function set +,-,x,sin,cos,log,sqrt,tan,tanh
Terminal set Input variables for real world problems.

Selection for reproduction Tournament selection of size 7
Eliminate the worst individuals
of each specie

Elitism Best individual survives
Don’t penalize the best individual
of each species

Maximum tree depth 17
Survival threshold 0.5
Specie threshold value h = 0.15 with α = 0.5
LS Optimizer probability Ps = 0.5 Ps = 0.5

5. CONCLUSIONS
The exploration advantage provided by neat-GP through

speciation provides good diversity of solutions and GP-LS
helps to exploit these areas. This contrasts with approaches
based on GSGP [9], that compromise possible interpretabil-
ity to improve of performance.

Future work will explore other parametrization schemes
and heuristics to apply the LS operator, but we will focus on
reducing computational effort using the EvoSpace Model [4].
It is a framework for developing EAs that works with mod-
ules called EvoWorkers, in each EvoWorker there’s a partial
evolutionary process which takes the initial population from
a repository of individuals called EvoStore. neat-GP-LS or-
ganizes the population into species, allowing us to distribute
the neat-GP-LS search using EvoWorkers for each species.

Acknowledgments
First author supported by CONACYT (México) scholarships No. 332554.
Funding for this work was provided by CONACYT Basic Science
Research Project No. 178323, TecNM (México) Research Project
5621.15-P, and by the FP7-Marie Curie-IRSES 2013 European Com-
mission program through project ACoBSEC with contract No. 612689.

6. REFERENCES
[1] M. Castelli, L. Trujillo, L. Vanneschi, and A. Popovič.

Prediction of energy performance of residential buildings: A
genetic programming approach. Energy and Buildings, 102:67
– 74, 2015.

[2] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan. A multi-facet

survey on memetic computation. Evolutionary Computation,
IEEE Transactions on, 15(5):591–607, Oct 2011.

[3] S. Dignum and R. Poli. Genetic Programming: 11th European
Conference, EuroGP 2008, chapter Operator Equalisation and
Bloat Free GP, pages 110–121. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[4] M. Garćıa-Valdez, L. Trujillo, J.-J. Merelo, F. Fernández de
Vega, and G. Olague. The evospace model for pool-based
evolutionary algorithms. Journal of Grid Computing,
13(3):329–349, 2014.

[5] M. Kommenda, G. Kronberger, S. M. Winkler, M. Affenzeller,
and S. Wagner. Effects of constant optimization by nonlinear
least squares minimization in symbolic regression. In Genetic
and Evolutionary Computation Conference, GECCO ’13,
Amsterdam, The Netherlands, July 6-10, 2013, Companion
Material Proceedings, pages 1121–1128, 2013.

[6] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[7] J. R. Koza. Human-competitive results produced by genetic
programming. Genetic Programming and Evolvable Machines,
11(3-4):251–284, Sept. 2010.

[8] P. R. Langdon W.B. Foundations of Genetic Programming.
Springer-Verlag Berlin Heidelberg, 2002.

[9] A. Moraglio, K. Krawiec, and C. G. Johnson. Geometric
semantic genetic programming. In Proceedings of the 12th
international conference on Parallel Problem Solving from
Nature - Volume Part I, PPSN’12, pages 21–31, Berlin,
Heidelberg, 2012. Springer-Verlag.

[10] S. Silva. Reassembling operator equalisation: A secret revealed.
In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, pages 1395–1402,
New York, NY, USA, 2011. ACM.

[11] S. Silva and E. Costa. Dynamic limits for bloat control in
genetic programming and a review of past and current bloat
theories. Genetic Programming and Evolvable Machines,
10(2):141–179, 2009.

[12] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10(2):99–127, 2002.

[13] L. Trujillo, P. Legrand, G. Olague, and J. LéVy-VéHel.
Evolving estimators of the pointwise hölder exponent with
genetic programming. Inf. Sci., 209:61–79, Nov. 2012.

[14] L. Trujillo, L. Muñoz, E. Galván-López, and S. Silva. neat
genetic programming: Controlling bloat naturally. Information
Sciences, 333:21 – 43, 2016.

[15] E. Z-Flores, L. Trujillo, O. Schütze, and P. Legrand. EVOLVE
- A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation V, chapter Evaluating the Effects
of Local Search in Genetic Programming, pages 213–228.
Springer International Publishing, Cham, 2014.

[16] E. Z-Flores, L. Trujillo, O. Schütze, and P. Legrand. A local
search approach to genetic programming for binary
classification. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO ’15,
pages 1151–1158, New York, NY, USA, 2015. ACM.

996

