
Simulated Annealing as a Pre-Processing Step for
Force-Directed Graph Drawing

Farshad Ghassemi Toosi
Department of CSIS
University of Limerick

Limerick, Ireland
farshad.toosi@ul.ie

Nikola S. Nikolov
Department of CSIS
University of Limerick

Limerick, Ireland
nikola.nikolov@ul.ie

Malachy Eaton
Department of CSIS
University of Limerick

Limerick, Ireland
malachy.eaton@ul.ie

ABSTRACT
We report on our findings using Simulated Annealing (SA)
as a preprocessing step for force-directed graph drawing.
Our proposed SA algorithm finds a smart initial vertex place-
ment (instead of a random initial vertex placement) in order
to decrease the chance of having edge crossings (local min-
ima) and also to decrease the number of required iterations
from start placement to the final placement.

Keywords
Routing and layout; Simulated Annealing ; Fitness evalua-
tion; Combinatorial optimization; Running time analysis

1. INTRODUCTION
Force-directed graph drawing is probably the most pop-

ular approach to finding aesthetically pleasing 2D layouts
of general graphs [3, 6]. This is due to a number of factors
which include the relative simplicity of implementation and
the reasonable running time. Moreover, the final result typ-
ically emphasises the structure of the graph and exhibits a
relatively low number of edge crossings, which is an indicator
for the aesthetic qualities of the layout [8].

For reasons of efficiency, the initial layout required as an
input to force-directed graph algorithms is typically a ran-
dom one, i.e. a layout in which vertices are assigned ran-
dom coordinates [1, 3–5, 10]. Nevertheless, as illustrated in
Figs. 1(a) and 1(b), the choice of an initial layout can greatly
influence the outcome of a force-directed graph drawing al-
gorithm. The initial layout for Figure 1(a) is chosen by our
algorithm and the initial layout in Figure 1(b) is chosen ran-
domly. If a force-directed graph drawing is considered as a
a solution to the problem of minimising the number of edge
crossings in the final layout, then the choice of an initial lay-
out can help a force-directed algorithm avoid local minima.
Finding such smart initial layouts is a hard combinatorial
optimization problem, thus a heuristic approach to it such
as genetic algorithms or simulated annealing can potentially
be very beneficial.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931660

Simulated annealing is a heuristic technique that mimics
the process undergone by misplaced atoms in metal when
heated up and then slowly cooled down [12]. In previous
work, simulated annealing has been used as a graph-drawing
algorithm for finding straight-line layouts of general undi-
rected graphs [2]. In our work we do not use simulated
annealing for drawing a graph, we instead use it as a pre-
possessing step for well-known force-directed graph drawing
algorithms.

In this paper we report the utilisation of a simulated an-
nealing algorithm for quickly choosing a good starting point
for a classical force-directed algorithm. We report experi-
mental results with our algorithm as a pre-processor to the
Fruchterman and Reingold force-directed graph-drawing al-
gorithm [4]. A similar idea is exploited in previous work,
where a genetic algorithm is used instead of simulated an-
nealing [9] .

2. SIMULATED ANNEALING ALGORITHM
Simulated Annealing usually starts with a randomly gen-

erated candidate as a solution. The temperature of the sys-
tem is initially high therefore the candidate is allowed to
modify itself by a high rate (proportional to the temper-
ature) with the hope of finding a better solution. As the
temperature gets lower (system is getting cooler) the can-
didate modifies itself with lower rate until the system is, so
called, frozen, and no more modification is allowed. The
operation which does the modification on the candidate is
called Mutation. In section 2.2 we introduce our SA algo-
rithm by describing its fitness function and the required op-
erators. A candidate (ordering) in our algorithm represents
a sequence of vertex indices. We consider a discrete drawing
space and represent a layout by a circle which can be easily
converted to a linear environment for the sake of computa-
tional simplicity. The considered circle has a radius equal to
1 and its border is divided by |N| (number of vertices in the
graph). Two different orderings for the same graph with 9
vertices are shown in Figure 2. Figures 2(a) and 2(b) show
how two different orderings [5-3-2-1-4-7-8-9-6], generated
by simulated annealing, and [2-1-5-7-9-6-8-4-3], generated
randomly, on a circle create two different initial vertex place-
ments according to their orderings. Figure 2(c) represents
the final placement (layout) by Fruchterman and Reingold
algorithm [4].

2.1 Fitness
Our fitness function aims at minimizing the total length

between certain pairs of vertices in the graph. Normally any

997

http://dx.doi.org/10.1145/2908961.2931660

(a)

(b)

Figure 1: Two different initial layouts of the same
graph leading to two different outcomes, using 6
and 12 iterations respectively of the Fruchterman-
Reingold force-directed graph drawing algorithm.

(a) (b)

(c)

Figure 2: A graph with 9 vertices with two differ-
ent orderings with their corresponding initial ver-
tex placements (2(a) and 2(b)) respectively. The
actual layout using the Fruchterman and Reingold
algorithm is shown in Figure 2(c).

pair of nodes is either adjacent or non-adjacent. Finding
the theoretical distance between non-adjacent pairs is an
expensive process especially if the graph is large. With a less
expensive process one can find only those non-adjacent pairs
with length equal to 2. The idea of the employed function
for the fitness function is similar to the one proposed by
the Kamada and Kawai algorithm [5]; meaning that our
proposed SA tries to minimize the length between adjacent
pairs and those pairs in which their theoretical distance is
equal to 2. Starting from the first vertex in the ordering,
each vertex is given a polar coordinate starting from 0 to 2π.
See Figure 3. The fitness of layout L of graph G = (V,E)
with a set of vertices V = {v1, v2, . . . , vn} and a set of edges
E ⊆ V ×V is expressed in Equation (1) where e.vP and t.vP
are the polar coordinate of the vertex v and |e.vP − e.uP | is
the distance between e.vP and e.uP . T is the set of vertex
pairs with theoretical distance equal to 2.

f(L) =
∑
e∈E

|e.vP − e.uP |+
∑
t∈T

|t.vP − t.uP | (1)

Using this fitness function, connected groups of vertices
tend to be placed closer to each other therefore it makes a
better starting point for the actual force-directed algorithm.

2.2 Mutation
Mutation is an operation which makes changes on can-

didate solutions. There are several different mutation op-
erations [7]. Exchange Mutation (EM) [7] is the mutation
operation that we have employed in this work. This opera-
tion selects two random individuals and swaps their position
in the ordering, see Figure 4.

Figure 4 shows an example of mutation on only one pair
of individuals. The number of pairs which are applied for
mutation is proportional to the temperature of the system,
meaning that, at the beginning of the SA process a larger
number of pairs are applied for mutation. As the system gets
cooler (temperature decreases), the number of pairs under-
going mutation gets smaller as well.

998

Table 1: Results of applying SA as a pre-processor for Fruchterman-Reingold.

Graph n m SA-planar R-planar SA-cross R-cross SA-run (s) R-run (s)
1 7 7 100 75 0 0.25 0.0022 0.002
2 39 45 35 17 0.86 1.11 0.3 0.2
3 51 63 90 80 0.31 0.72 0.57 0.46

Table 2: Results from experiments with 512 graphs from Rome repository.

No. Avg. Avg. No. SA > R R > SA SA > R R > SA SA R
L Total n m Cross% Cross% No.Graphs No.Graphs time(s) time(s)
L1 512 9 11.55 11% -3% 186 82 0.0061 0.0048
L2 125 26.2 29.56 7% -1% 39 7 0.09 0.074
L3 213 26.62 36.86 19% -0.6% 175 13 0.097 0.08

Figure 3: One example of an ordering on a circle
with their poplar coordinates, e.g. the distance be-
tween the nodes 3 and 5 is the same as the distance
between the nodes 2 and 8 and it is equal to 1.41.

Figure 4: An example of Exchange Mutation on an
ordering.

3. EXPERIMENTAL RESULTS
In order to evaluate our system we ran the force-directed

algorithm of Fruchterman and Reingold [4] both with a ran-
domly generated initial layout and with our SA algorithm
for the same graphs and compared the number of edge cross-
ings in the final force-directed layouts. The best individual
found by our algorithm is the initial vertex placement for
start point of the actual force-directed algorithm. We com-
pared the force-directed algorithm using two different initial
vertex placements one randomly generated and another one
SA created. We measured the running time to create the
SA initial vertex placement, the number of edge crossings
are given in Table 1.

We have also run Fruchterman and Reingold on a few
bigger sets of graphs with both randomly generated initial
layout and also with our SA algorithm. The first dataset
L1 we used in our experimental study consists of 512 planar
graphs from the Rome Graphs dataset 1 with vertex count
9 the results are listed in Table 2. The second dataset L2 is
comprised 125 randomly generated cactus graphs. The last
dataset L3 is a list of 213 star-shaped graphs which have
been generated randomly based on the number of branches
(see Table 2).

The ordering in Figure 2(a) creates more clear initial ver-
tex placement for the actual drawing algorithm than the
ordering in Figure 2(b). We have found that a more clear
initial vertex placement (like the one in Figure 1(a)) not
only causes a lower number of edge crossings (see Figure 1)
but it also reduces the number of iterations in the actual
algorithm; Figure 5 shows two drawings for the same graph
with two different initial vertex placements; the drawing in
Figure 5(a) gets to the final layout using less number of it-
erations than the drawing in Figure 5(b). This can be also
realized in Figure 1 which Figure 1(a) needs less movement
to get into the optimal layout compared with the one in Fig-
ure 1(b). Figure 5 shows a force-directed algorithm with two
different start points (one starts with random initial vertex
placement Figure 5(b) and another one starts with SA initial
vertex placement Figure 5(a)).

1http://www.graphdrawing.org/data/

999

(a)

(b)

Figure 5: Force-Directed algorithm with two differ-
ent initial vertex placement; Random initial vertex
placement 5(b) and SA initial vertex placement 5(a).

4. CONCLUSIONS
In this work we propose to us simulated annealing as

a preprocessing stage for force-directed graph drawing al-
gorithms. Our proposed algorithm finds a graph layout
that can be subsequently used as a smart initial layout by
any force-directed algorithm. Our experimental study with
the Fruchterman-Reingold on different graphs gives evidence
that our algorithm improves the chances of finding a planar
layouts of planar graphs and leads to a decreased number of
edge crossings in the layouts of non-planar graph. This idea
potentially can be used for node-placement process for the
class of multilevel force-directed algorithms [11].

5. REFERENCES
[1] G. Di Battista, P. Eades, R. Tamassia, and I. G.

Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall, 1999.

[2] R. Davidson and D. Harel. Drawing graphs nicely
using simulated annealing. ACM Trans. Graph.,
15(4):301–331, October 1996.

[3] P. Eades. On the future of graph drawing: Invited talk
at the 18th International Symposium on Graph
Drawing.
http://graphdrawing.org/gd2010/invited.html,
Accessed: 2015-06-08.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software:
Practice and Experience, 21(11):1129–1164, 1991.

[5] T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Inf. Process. Lett.,
31(1):7–15, April 1989.

[6] S. G. Kobourov. Force-directed drawing algorithms. In
Roberto Tamassia, editor, Handbook of Graph
Drawing and Visualization, volume 81 of Discrete
Mathematics and Its Applications, chapter 12, pages
383–408. Chapman and Hall/CRC, 2013.

[7] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga,
I. Inza, and S. Dizdarevic. Genetic algorithms for the
travelling salesman problem: A review of
representations and operators. Artif. Intell. Rev.,
13(2):129–170, April 1999.

[8] H. Purchase. Which aesthetic has the greatest effect
on human understanding? In Giuseppe DiBattista,
editor, Graph Drawing, volume 1353 of Lecture Notes
in Computer Science, pages 248–261. Springer Berlin
Heidelberg, 1997.

[9] F. Ghassemi Toosi, N. S. Nikolov, and M. Eaton.
Evolving smart initial layouts for force-directed graph
drawing. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO Companion ’15,
pages 1397–1398, New York, NY, USA, 2015. ACM.

[10] W. T. Tutte. How to draw a graph. Proc. London
Math. Society, 13(52):743–768, 1963.

[11] C. Walshaw. A multilevel algorithm for force-directed
graph drawing. In Joe Marks, editor, Graph Drawing,
volume 1984 of Lecture Notes in Computer Science,
pages 171–182. Springer Berlin Heidelberg, 2001.

[12] E. Weisstein. Simulated annealing. From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/SimulatedAnnealing.html,
Accessed: 2016-03-21.

1000

http://graphdrawing.org/gd2010/invited.html

	Introduction
	Simulated Annealing Algorithm
	Fitness
	Mutation

	Experimental Results
	Conclusions
	References

