A Combined Generative and Selective Hyper-heuristic for
the Vehicle Routing Problem

Kevin Sim
School of Computing
Edinburgh Napier University
Merchiston Campus
Edinburgh, EH10 5DT

k.sim@napier.ac.uk

ABSTRACT

Hyper-heuristic methods for solving vehicle routing prob-
lems (VRP) have proved promising on a range of data. The
vast majority of approaches apply selective hyper-heuristic
methods that iteratively choose appropriate heuristics from
a fixed set of pre-defined low-level heuristics to either build
or perturb a candidate solution. We propose a novel hyper-
heuristic called GP-MHH that operates in two stages. The
first stage uses a novel Genetic Programming (GP) approach
to evolve new high quality constructive heuristics; these can
be used with any existing method that relies on a candi-
date solution(s) as its starting point. In the second stage,
a perturbative hyper-heuristic is applied to candidate solu-
tions created from the new heuristics. The new construc-
tive heuristics are shown to outperform existing low-level
heuristics. When combined with a naive perturbative hyper-
heuristic they provide results which are both competitive
with known optimal values and outperform a recent method
that also designs new heuristics on some standard bench-
marks. Finally, we provide results on a set of rich VRPs,
showing the generality of the approach.
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1. INTRODUCTION

The Vehicle Routing Problem (VRP) is a well known
optimisation problem, of considerable practical importance
within many industries. It exists in many forms, defined for
instance by characteristics of vehicles, the requirements of
the customers they service, or the type and the availabil-
ity of goods at a depot. Many sophisticated meta-heuristic
methods exist for tackling these difficult combinatorial opti-
misation problems; while they often find high quality solu-
tions, they tend to be specialised to specific variants of VRP.
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In recent years, attention has turned to hyper-heuristic ap-
proaches which aim to reduce the time required for algo-
rithm design by providing a general framework that con-
trols application of lower level heuristics. Although trading
algorithm-design time against quality, many promising re-
sults have been reported, e.g. [3].

Burke et al. [3] describe a classification of hyper-heuristics
which separates methodologies with respect to two dimen-
sions; the nature of the heuristic’ search space, and the
sources of feedback information. With respect to the heuris-
tic search-space, two methodologies are apparent. Selection
methods choose or select from existing heuristics while Gen-
eration methods generate completely new heuristics. Both
methods can be sub-divided into perturbative and construc-
tive heuristic methods. Perturbative methods iteratively
modify an initial candidate solution (in single-point hyper-
heuristic) or solutions (in multi-point hyper-heuristic), while
constructive methods consider partial (or empty) candidate
solutions, and iteratively extend them [4].

With respect to vehicle routing, the most common hyper-
heuristic approaches fall within the selection category, e.g.
[9, 16l 2I]. In the majority of approaches, a single feasi-
ble candidate solution is constructed according to a fixed
method, which is then operated on by the hyper-heuristic.
No attention is paid to the quality of the initial candidate
solution, which may limit the overall performance of the
heuristic. Improving on this, constructive methods such as
[9, 10] search the space of sequences of constructive and per-
turbative pairs of low-level heuristics. These sequences are
applied in order to both construct and improve partial solu-
tions. However, a potentially limiting factor here is the avail-
ability of a diverse set of constructive heuristics; for example,
Garrido [I0] uses a set of only four constructive heuristics; in
contrast, many more perturbative heuristics exist [3]. Mle-
jnek et al. use the same set of four constructive heuristics
in an evolutionary hyper-heuristic called HyperPOEMS [14]
that also combines selection of constructive and perturba-
tive methods. Addressing this weakness, Drake et al. [§]
propose a hyper-heuristic methodology that uses Grammat-
ical Evolution to simultaneously evolve novel constructive
and perturbative heuristics. Their proposed hyper-heuristic
initialises a single candidate solution using the construction
heuristic, that is then iteratively operated on by the new
perturbation heuristics.
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The contribution of this paper is twofold: First, the in-
troduction and evaluation of a novel method for generat-
ing new constructive heuristics. The method addresses the
two concerns raised above: the lack of available constructive
methods and the potentially limiting quality of construct-
ing a single weak candidate solution. The novel construc-
tion heuristics can be used in a purely constructive hyper-
heuristic methodology or with any hyper-heuristic or meta-
heuristic method that requires the creation of candidate
solutions. Secondly, we propose a new multi-point hyper-
heuristic method called GP-MHH that uses a two-stage pro-
cess. In the first phase, genetic programming (GP) is used to
evolve a population of construction heuristics. In the second
phase, the evolved heuristics are used to construct a popula-
tion of candidate solutions. A perturbative-selection hyper-
heuristic, given the name Memetic Hyper-heuristic (MHH),
is then applied. We show that even using a naive pertur-
bative strategy adapted from 2], the method outperforms
the recent grammatical evolution approach of Drake et al.

[8].

We evaluate our approach using two sets of problems: the
Solomon benchmark instances [20] and a new set of rich VRP
problems described in [I9]. Results are evaluated according
to the following criteria: performance; relation to optimality
(where known); comparison to published methods. We com-
pare the GP stage of GP-MHH to results obtained on the
Solomon instances using 7 standard constructive heuristics
and compare the complete procedure to the recent Gram-
matical Evolution approach from Drake [§] and to the op-
timal or best known solutions. To our knowledge the en-
couraging results presented here for the rich VRP instances
constitute the first attempt to improve upon the solutions
presented in [I9] and illustrate the generality of the approach
on highly constrained instances.

2. RELATED WORK

This section covers relevant background work relating to
hyper-heuristic approaches to Vehicle Routing Problems.

2.1 Perturbative-selection hyper-heuristics

These methodologies aim to improve a candidate solution
or solutions (in single-point and multi-point hyper-heuristic
respectively) through a process of automatically selecting
and applying a heuristic, choosing from a set of pre-defined
low-level strategies. Several applications of this method to
VRP are apparent in the literature.

Pisinger and Ropke [16] extend a large neighbourhood
search framework first presented in Shaw (1998) with an
adaptive layer that selects from a set of insertion and re-
moval heuristics to modify a solution. This layer either
intensifies or diversifies the search, according to scores for
each heuristic that are accumulated over the course of a
run. Seven ruin and two recreate heuristics are available for
selection. Tests on standard benchmarks from the literature
covering five variants of the vehicle routing problem showed
the method was highly promising, improving on the best
known solutions for some instances.

Meignan et al. [12] describe a self-adaptive and distributed
approach that combines agents and hyper-heuristics. A group
of agents concurrently explore the search space of a given
problem instance. Each agent modifies a solution with a set
of operators. The selection of these operators is determined

by heuristic rules, dynamically adapted by individual and
collective learning mechanisms. Evaluation on fourteen in-
stances of the Christofides benchmark [6] showed that the
approach was competitive with some other algorithms in
terms of speed and quality. Misir et al. [I3] address a real-
world problem relating to concrete delivery. They propose
a new move acceptance method that determines whether
a solution just modified by a heuristic should be accepted,
based on its quality and the current state of the search.
Their method adaptively sets the threshold value based on
previous history.

Walker al [21] describe a multi-point approach in which a
population of candidate solutions is first constructed stochas-
tically. Both crossover and perturbation operators are iter-
atively applied to improve the population. Heuristics are
selected at random in their baseline approach, or using an
online learning mechanism in an adaptive version.

2.2 Constructive-selective hyper-heuristics

In contrast to perturbative methods which start from a
candidate solution, Constructive-selective methodologies aim
to build a solution incrementally. Typically, a hyper-heuristic
methodology will iteratively select from a set of available
constructive heuristics until a complete solution is created.

Garrido and Castro [9] use a hill-climbing-based hyper-
heuristic to solve the capacitated vehicle routing problem
(CVRP) that selects from both constructive and perturba-
tive heuristics. Their hyper-heuristic manages a sequence of
constructive-perturbative pairs of low-level heuristics which
are applied sequentially in order to construct and improve
partial solutions. The low-level heuristic set includes four
constructive heuristics from the literature, and six well-known
perturbative heuristics. The approach was shown to be com-
petitive on the set of benchmark Christofides instances [6].
A further paper from same authors describes an evolution-
ary hyper-heuristic for solving the dynamic vehicle routing
problem (DVRP) [10]. As in their previous work, a sequence
of heuristics is evolved, now extended to include three types
of low-level heuristics: constructive, perturbative, and noise
heuristics. The approach provided competitive results when
compared against well- known methods from the literature.

2.3 Heuristic generation methodologies

Generative hyper-heuristics are a relatively recent devel-
opment within the field. These approaches search a space
of heuristics constructed from component parts, rather than
a space of pre-defined heuristics. They therefore generate
new heuristics that can be later be reused on new problem
instances. The method has proved particularly successful
in both the scheduling domain [2] and packing domains [5].
However, to the best of our knowledge, the only example of
the use of a generative method within VRP is recent work
by Drake et al. [8] that uses grammatical evolution (GE)
as a tool to evolve the components of a variable neighbour-
hood search (VNS) framework. The framework generates a
new constructive heuristic to create a single initial solution,
along with new neighbourhood move operators to then per-
turb the solution. The framework is tested on a number of
benchmark instances, showing promising results on bench-
mark Capacitated Vehicle Routing Problems (CRVP) from
Augerat [I] but less well on routing problems from Solomon
[20] that contain time windows (VRPTW).



Conceptually, our approach is similar to that of Drake et
al. [8] in that we aim to generate novel constructive heuris-
tics from component parts. However, it differs in that we
focus on evolving a population of new constructive heuris-
tics, using GP rather than GE. The population of heuristics
is then used to construct a population of candidate solutions.
These can then be passed to any selective hyper-heuristic (or
meta-heuristic) that attempts to refine the solution(s).

IMPLEMENTATION
The new hyper-heuristic, named GP-MHH, is shown in

3.

Algorithm[l The hyper-heuristic defines two separate stages.

In Stage 1, a novel Genetic Programming (GP) approach is
used to automate the design of constructive heuristics for the
VRP. The population of heuristics generated are then used
to create a set of candidate solution(s) that are used to seed
the population of a perturbative hyper-heuristic algorithm.
Note that given a population of size p, then P > p candidate
solutions can be generated, given that random breaking of
ties when applying a heuristic introduces a stochastic ele-
ment. In Stage 2, we illustrate the approach using a simple
hyper-heuristic adopted from [21] as the perturbative hyper-
heuristic.

Algorithm 1 Two-stage hyper-heuristic GP-MHH
1: t < total function evaluations

2: Apply Genetic Programming algorithm GP(population
size = p, x < t evaluations)

3: C < final population from GP

4: Initialise P > 1 candidate solution(s) using set of C
heuristics

5: Apply Perturbative Hyper-Heuristic((t — ) evaluations)

Given the two stage process, it is necessary to divide the
evaluation budget between the two stages. In this work, we
used a fixed division for all instances in which the major-
ity of the budget is devoted to Stage 2. This is based on
preliminary experiments which suggested that the GP runs
stagnate quickly. We note however that in future, there is
much scope for using an adaptive approach which automat-
ically detects a lack of improvement in stage 1 and switches
to stage 2.

3.1 Constructive Hyper-heuristic

Genetic Programming is used to evolve a function that de-
termines a priority for each operation that can potentially be
inserted into the schedule. A construction heuristic is com-
posed of a route selector and a GP tree — the route selector
is assigned to each tree on initialisation, chosen from the list
in Table [l A heuristic iteratively builds a solution. Each
iteration the heuristic’s route selector chooses an open route
from those available and any jobs remaining to be scheduled
that meet the constraints of the associated vehicle are con-
sidered for insertion. Each suitable job is checked at each
position on the route. If all jobs on the route satisfy their
time constraints the job is added to a list of potential jobs.
The list is then ranked using the GP tree based upon charac-
teristics of the job under consideration and / or the previous
job visited. The job and position that emerges as the win-
ner is chosen for scheduling. In the case of a tie the job and
position to be scheduled next is chosen randomly from the
list of winners. The GP algorithm is given in Algorithm 21
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This is a conventional tree based algorithm: ramped half
and half is used for initialisation, and crossover and mutation
use the common subtree methods described in [T1].

Algorithm 2 GP Pseudo Code

Require: Population = ()
Require: popSize,  perossovers
maxInitial Depth, maxDepth
1: while |Population| < popSize do
‘Population = Population + initialise Random Heuristic()
evaluate(Population)
. end while
. repeat
NewPopulation = ()
while |[NewPopulation| < popSize do
parentl = rouletteSelection(Population)
parent2 = rouletteSelection(Population)
if U[0,1) < perossover then
child = crossover(parentl, parent2)
else
child = parentl
end if
if U[0,1) < pmutation then
child = mutate(parentl, parent2)
end if
evaluate(child)
NewPopulation = NewPopulation U child
end while
NewPopulation = NewPopulation U Population
while |[NewPopulation| < popSize do
. removeW orst(NewPopulation)
24:  end while
25: until stopping criteria met

for stage 1 popSize 30 pcrossover 0.1 pmutation
maxlterations = 10 maxInitial Depth = 7 maxDepth = 17

Dmutation s maxlterations,

2
3
4
5
6
7
8
9
10
1
12
13
14:
15:
16:
17
18
19
20
21
22
23

— - 0.9

Table 1: Route Selectors

Name Description

FCFS First Route Available

FPJ Route with fewest possible jobs

FVFS Route using the first Instantiated Vehicle
LCFS Last Route Available

LTR Least used route by time

MPJ Route with most possible jobs

MSJ Route with most scheduled jobs

MTR Most used route by time

RR Random Route

The set of terminal nodes implemented are described in
Table[2l A wide variety of terminals are used so that the pro-
cedure generalises across a range of VRP types, e.g. those
with/without time windows etc. For the Solomon instances
the nodes designed to return temporal information relating
to travel times between customers simply return distance
as specified in [20]. Although the inclusion of these nodes
increases the search space, it has a significant benefit in en-
abling the method to be used across a range of VRP classes
(e.g VRPTW, CVRP etc.) [19]. The function nodes used are
+, —, X, + (protected divide returns co), compare(compares
2 child nodes a, b and returns —1,0,1 fora < b, a = b, a > b
respectively). IGTZ — (If child evaluates as greater than zero
then evaluate child 2 else evaluate child 3), Max-Returns
maximum of two child nodes.



Table 2: Terminal Nodes

Node Description
ADJ Average distance of proposed job to remaining jobs
DEM Demand
DCP Distance from current position
DD Distance from depot
CWDS Clarke Wright distance saving
DCPJ Avg Distance of current position to remaining jobs
FCFS First Come First Served
int Random Integer Value
SLDTW | Slack in TW (start of time window - time from depot)
MCDC Most constrained demand / capacity
rand Random
SdDist Standard deviation of distance to remaining jobs
SL Slack in TW (end of tw - unloading start)
SWD Sweep angle from depot position
SWC Sweep angle from current position
TCP Time from current position
TD Time from depot
CWTS Clarke Wright Time Saving
STW Start of time window
W Wait until Unloading Starts (start of TW - arrival)

3.2 Perturbative Hyper-heuristic

The perturbative hyper-heuristic that is investigated, de-
scribed by Algorithm [B] is inspired by the naive Iterated
Local Search (ILS) algorithm described in [21I] and built on
top of the HyFlex framework [I5]. We do not make use of
HyFlex here, but simply incorporate a modified version of
the algorithm into GP-MHH. The ILS hyper-heuristic de-
scribed in [2I] uses a set of mutation operators and a set of
local search operators that are iteratively applied to improve
on a single solution. In contrast the approach described here
is implemented as a population based search incorporating
two crossover operators as well as the same set of muta-
tion and local search operators used in [2I]. This allows
Algorithm Bl to take advantage of the diverse set of solutions
produced by the constructive heuristics evolved during stage
1. Additionally the constructive heuristics from stage 1 are
used to repair infeasible solutions created during the appli-
cation of evolutionary operators.

The ILS algorithm described in [2I] has a variety of dif-
ferent ruin-create, mutation and local search operators at
its disposal. In the system described here there is no dis-
tinction made between ruin-create operators and mutation
operators. When selecting a mutation operator, the algo-
rithm selects randomly from the set of all mutation and all
ruin-create operators available. In addition to being used to
initialise the population of the HH, the constructive heuris-
tics evolved in the first stage are also incorporated into some
of the evolutionary operators. When required to recreate or
repair a partial solution, the ruin-recreate heuristics and the
crossover heuristics randomly select a constructive heuristic
taken from the final population evolved in stage 1. The evo-
lutionary operators available to the HH are listed below. A
fixed value of o = 10 is used as the search depth for all local
search and ruin-create heuristics.
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Algorithm 3 MHH Pseudo Code

Require: ConstructiveHeuristics fromStagel # 0

Require: Population = ()

Require: popSize,
maxlterations

1: while |Population| < popSize do

Pcrossover, Pmutation, PlocalSearch;

2: constructiveHeuristic = U[ConstructiveHeuristics]
3: Population = Population+constructive H euristic#Solution
4: end while

5: evaluate(Population)

6: repeat

7 parentl = tournamentSelection(Population)

8: parent2 = tournamentSelection(Population)

9: if U[0,1) < perossover then

10: child = crossover(parentl, parent2)

11:  else

12: child = parentl

13: end if

14: if U[0,1) < pmutation then

15: mutation Heuristic = U[MutationHeuristics]
16: child = mutate(child)

17: end if

18: if U[0,1) < piocaiSearch then

19: localSearchHeuristic = U[LocalSearchHeuristics|
20: child = conductLocalSearch(child)

21: end if

22: evaluate(child)

23: Population = replaceW orstPopulation, child

24: until stopping criteria met

0.8

for stage 2 popSize 40 perossover
PlocalSearch = 0.8 maxlterations = 9700

= = 0.2 pmutation

Mutation / Ruin Create Operators

~Two-opt: Swap the position of two consecutive customers
on a route.

—-Or-opt: Moves two consecutive customers on a route to a
different place.

—-Shift: Moves a customer to another suitable route.
—Interchange: Swaps two customers from different compati-
ble routes.

~Time-based radial ruin: Removes U[l,a]% of customers
from the solution based upon the proximity of their time
window to a randomly chosen time within the duration of
the complete schedule.

—Location-based radial ruin: Removes U[1, a]% of customers
from the solution, based upon the proximity of their location
to a randomly chosen customer.

Local Search Operators

These heuristics are applied « times with equal or improved
solutions retained after each application.

—Shift: Moves a customer to a different route.
—Interchange. Swaps two customers from different routes.
—Two-opt: Swaps the end sections of two routes.

—~GENI: A customer is moved between two adjacent cus-
tomers on a different route that are closest to it.

Crossover Operators

—Combine: Using two parent solutions, U[25%, 75%] of routes
are copied from one parent to create a single offspring. Any
non-conflicting routes from the second parent are added and
the remaining customers are inserted using a randomly se-
lected constructive heuristic from the first stage.

—Longest Combine All routes from two parent solutions are
considered in descending order of the number of customers
served. Any routes without duplicate customers that re-
spect all of the problem constraints are added to create an
offspring. Remaining customers are reinserted as before.



4. EXPERIMENTS

Two datasets are used for evaluation. The first is the
Solomon benchmark set [20] that contains 56 instances of
Capacitated Routing Problems with time-windows, divided
into 6 classes, reflecting the layout of the customers and the
tightness of the time constraints. The total summed route
distance is used for fitness with no vehicle penalties.

The second set is a new set of Rich VRP instances that
was recently described in[I9] and can be accessed from [I8].
These new instances incorporate many real-world features
and constraints including heterogeneous, multi-compartment
capacitated vehicle fleets, customer access and driver restric-
tions and include realistic travel times and travel distances
derived from a real road network. We use a subset of 120
instances numbered 1001200 through 1001319 that use cus-
tomers with locations correlated to population density sur-
rounding a single urban depot extending in all directions into
rural areas up to 240 minutes round trip travel time from
the depot. The 120 instances are split into sets of 10 using
12 parameter combinations relating to number of vehicles
(4, 8,16,32) and duration of time windows (60,120,240 min-
utes). Here, we use the authors suggested objective fitness
metric which takes into account fixed and variable vehicle
costs, penalties for broken constraints and outsourcing costs
related to undelivered jobs. For details the reader is directed
to the original publication. Unfortunately optimal solutions
values are not known — however, the authors do provide
a baseline result calculated from the method by which the
problems were generated, which we compare to. We inves-
tigate the following questions:

e Do automatically generated construction heuristics com-
pete with human-designed equivalents across a range
of benchmark instances?

e Given a fixed number of evaluations, does dividing the
budget between constructive and perturbative stages
outperform a purely constructive hyper-heuristic?

e To what extent does GP-MHH compare to the known
optimal/baseline solutions?

e To what extent does GP-MHH compare to existing
hyper-heuristic methods?

A natural addition would be the comparison of GP-MHH
to a purely perturbative approach, i.e. running the MHH
algorithm from a randomly initialised population. Initial
experiments indicated that this resulted in very poor results
(partly as a result of the relatively small computational bud-
get allowed) and hence we have not included these experi-
ments in the paper. Future comparisons to a perturbative
hyper-heuristic that uses an informed heuristic to construct
an initial population would be instructive.

All reported results are from 30 repeated runs of the sys-
tem. Algorithm parameters are as described above. A total
function-evaluation budget of 10,000 evaluations is used in
all experiments. For experiments that use only GP (i.e. no
Stage 2), the population is of size of 500 and evolves for 20
generations. In the two-stage experiments, stage 1 is allo-
cated only 300 evaluations, with the GP using a population
of 30 for 10 generations.
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This parameter was chosen based on preliminary experimen-
tation that indicated that following initial rapid improve-
ment, GP makes slow progress. Results presented in the
following section back up this observation. All other pa-
rameters for the GP and MHH algorithms are specified in
Algorithms 2] and

S. RESULTS

Hypothesis H1: the newly evolved constructive heuristics
produce higher quality solutions than existing construction
heuristics.

To investigate the quality of the newly evolved constructive
heuristics as stand-alone heuristics, we compare results to
7 construction heuristics from the literature [20] and to the
known optimal on the Solomon set. Three of these heuristics
(SAV, S, I1) were used by [9} 10} [I4] as low-level heuristics
in selective hyper-heuristic methods. The RVRP dataset is
not used in this test, as the constraints of these instances
mean the construction heuristics available in the literature
are not applicable without significant modification due to
the complex constraints on vehicle types and customers.

Results are given in Table Values in columns 2-8 are
replicated directly from [20]. The penultimate column shows
the best results obtained (and standard deviation) using
heuristics evolved by the GP element of GP-MHH (i.e. with-
out MHH) obtained from 30 runs and 10,000 function eval-
uations. Where there is a blank cell, no results were give in
[20]. In each case, results are averaged over all instances in
each of the 6 problem sets. The GP algorithm outperforms
the human-designed heuristics on 5 out of 6 classes, only
being narrowly beaten by Solomon’s Insertion heuristic, 11,
on class R1.

Hypothesis H2: A two-phase approach split between con-
struction and perturbation produces higher quality solutions
that devoting the same number of evaluations to a purely
constructive method

Figure [0 considers the 56 Solomon instances separated into
the standard classes (C1,C2, R1, R2, RC1, RC2). For a
given class, in each of 30 runs, we sum the results of each
instance across the class and divide by the summed known-
optimal, hence providing a measure of proximity to optimal
(as used in [§]). Figure [l compares: (1) the result at the
end of stage 1 (S1-GP), i.e. after 300 evaluations of GP; (2)
the result obtained from 10,000 evaluations of GP only (S2-
GP); (3) the result obtained from running GP-MHH (both
stages) for 10,000 evaluations (S2-GP-MHH).

For each of the 6 sets, we observe (as expected) that S2-
GP, i.e. GP run for 10,000 iterations outperforms S1-GP
(300 iterations) although for set C2, the difference is less
marked. GP-MHH outperforms both S2-GP and S1-GP on
all sets. Shapiro-Wilk tests confirm that we cannot reject
the null hypothesis that the data is normally distributed,
hence we apply a t-test; for class C2 (S1-GP compared to
S2-GP) and class RC2 (S2-GP compared to S2-GPMHH)
the differences are significant at the 95% confidence level.
For all other pairs, the p-values obtained are << 0.01, hence
results are strongly significant.



Table 3: Comparison between generated heuristics (GP) and 7 human heuristics.

SAV | SWT I1 12 NN S GP(s.d) Lit Opt
Ci1 976.20 | 987.40 | 951.90 | 1049.80 | 1103.30 | 1171.20 | 940.80 | 893.50(12.7) | 828.38
Cc2 692.70 | 921.50 | 1072.70 | 963.10 | 711.90 | 603.54(9.5) | 589.86
R1 | 1498.90 | 1517.20 | 1436.70 | 1638.70 | 1651.70 | 1600.10 | 1499.70 | 1462.01(12.2) | 1210.34
R2 1402.40 | 1470.70 | 1474.60 | 1472.30 | 1448.60 | 1189.48(9.6) | 951.03
RC1 1596.50 | 1874.40 | 1849.70 | 1800.00 | 1804.50 | 1580.07(8.7) | 1384.16
RC2 1682.10 | 1797.60 | 1816.40 | 1754.70 | 1735.70 | 1446.81(30.4) | 1119.24

Algorithm B3 $1-GP B8 S2-GP B S2-GPMHH
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Figure 1: Solomon instances: comparison of GP-
MHH at Stage-1, Stage-2 and GP only heuristic

For RVRP, as previously indicated, we compare results
obtained with GP-MHH to the baseline published at [19].
Table [] shows the results obtained, averaged over the 12
classes corresponding to different parameter combinations.
In the first column V prefixes the number of vehicles and
TW prefixes the duration of the time windows in minutes.
Values for best, median and standard deviation are the re-
sult of 30 runs at the end of Stage-1 and the end of Stage-2.
In each case, the obtained results is divided by the baseline
result to obtain a proximity value. Note all results obtained
by GP-MHH — including those from Stage-1 only (300 eval-
uations) — provide an improvement on the baseline (> 1.0).
The Stage-1 results highlight the effectiveness of the con-
struction heuristics. We reiterate the statement made earlier
that the human-designed construction heuristics are not ap-
plicable to these instances, therefore the heuristics evolved
using only Stage-1 can be considered useful. As with the
Solomon instances, it is clear that considerable improvement
is gained by running the two-stage GP-MHH.

Hypothesis H3: Results are competitive w.r.t to known op-
timal/baseline solutions

As indicated in the introduction section, hyper-heuristics

cannot be expected to compare with specialised meta-heuristics.

However, given the ubiquity of the Solomon instances in the

Table 4: Proximity to known results using GP-MHH
on RVRP problem sets

Stage 1 GP Stage 2 MHH
Problem Set | Best | Med | SD | Best | Med | SD
V4TW60 1.33 | 1.29 | 0.03 | 1.44 | 1.41 | 0.02

V4TW120 1.15 | 1.13 | 0.01 | 1.28 | 1.22 | 0.03
V4TW240 1.24 | 1.20 | 0.02 | 1.40 | 1.36 | 0.03
V8TWG60 1.12 | 1.10 | 0.01 | 1.26 | 1.22 | 0.02
V8TW120 1.30 | 1.27 | 0.02 | 1.51 | 1.44 | 0.03
V8TW240 142 | 1.36 | 0.02 | 1.59 | 1.52 | 0.03
V16TW60 1.15 | 1.12 | 0.01 | 1.27 | 1.24 | 0.02
V16TW120 1.31 | 1.27 |1 0.02 | 1.43 | 1.39 | 0.02
V16TW240 1.54 | 1.50 | 0.02 | 1.72 | 1.66 | 0.03
V32TW60 1.41 | 1.36 | 0.02 | 1.50 | 1.47 | 0.03
V32TW120 1.59 | 1.55 | 0.02 | 1.72 | 1.67 | 0.02
V32TW240 1.78 | 1.74 1 0.02 | 1.92 | 1.87 | 0.02

VRP literature, it is informative to compare GP-MHH in
more detail to the known optimal solutions. For each class
of problems, we record the proximity of the best solution
from the 30 runs on each of the n instances in each class.
Figure 2l shows the distribution of results per class (i.e each
box represent the n instances in the class). Note the for
C1 and C2, a number of optimal instances are found. The
median per class is within 90% of optimal for 3 classes, and
within 80% for the remaining three. This suggests that GP-
MHH is competitive, given only 10,000 function evaluations
it finds high quality solutions very quickly.

For RVRP, we can only compare to the baseline values
provided by [17] determined from the problem generation
procedure. Figure Bl shows the results, split into 12 classes.
We remark that some sets appear more difficult than others
(e.g. S9- S12) and that the algorithm appears consistent:
the inter-quartile range is small for each set. It is clearly
possible to significantly improve on the baseline results. As
this appears to be the first published results on this instance
set it additionally provides a new benchmark for other re-
searchers.
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Figure 3: RVRP: comparison of best results ob-
tained across each class to baseline solutions

Hypothesis H4: Results are competitive with other hyper-
heuristic methods that evolve constructive heuristics.

To the best of our knowledge, the only other hyper-heuristic
method that evolves novel construction heuristics is gram-
matical evolution hyper-heuristic from [8] called GE-PHH,
who evaluate their method on 6 of the Solomon instances.
Their results are obtained using a budget of 50,000 evalua-
tions — 5 times more than the 10,000 used here. A com-
parison is given in Table Bl in which we compare the best
result found using GP-MHH directly to the best result from
[8]. GP-MHH outperforms GE-PHH method on 4 of the 6
instances indicating it is extremely competitive with similar
methods.
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Table 5: Comparison of GP-MHH with GE-PHH on
6 of Solomon’s 100 customer instances

GE-PHH / GP-MHH /
Instance | Optimal Proximity Proximity
C101 827.3 902.65 (0.92) 828.94 (1.00)
C102 827.3 1198.97 (0.69) 917.12 (0.90)
R101 1637.7 | 1766.81 (0.93) 1878.64 (0.87)
R102 1466.6 | 1596.97 (0.92) 1764.30 (0.83)
RC101 1619.8 1871.22 (0.87) | 1700.62 (0.95)
RC102 1457.4 1771.46 (0.82) | 1618.04 (0.90)

6. CONCLUSIONS

The paper describes a novel hyper-heuristic for solving
vehicle routing problems. The new hyper-heuristic uses a
two-stage process in which a fixed evaluation budget is split
between constructive and perturbative stages. In contrast to
the vast majority of hyper-heuristic approaches to VRP, we
evolve nowvel construction heuristics during the first phase.
We know of only one other method that achieves this (most
simply sequence existing construction heuristics). Our hyper-
heuristic differs from [§] in using standard Genetic Program-
ming to evolve heuristics that prioritise a set of operations
that can be scheduled. In contrast to [§] whose method
evolves a single construction heuristic using grammatical
evolution, we evolve a population of new construction heuris-
tics. The population can be used with any single-point or
multi-point perturbation hyper-heuristic by providing can-
didate solution(s) as a starting point. In addition, the pop-
ulation of evolved heuristics can be used to seed an initial
population of a meta-heuristic method.

Experiments have shown that the evolved constructive
heuristics are effective as stand-alone heuristics when com-
pared to existing constructive heuristics. Furthermore, we
have shown that by implementing them within a two-stage
hyper-heuristic that follows up construction of a high-quality
candidate solutions with an iterated local search phase, high
quality results can be obtained. The two-stage hyper-heuristic
is both competitive with existing methods on benchmarks,
and shows significant improvement over a constructive only
method over equivalent numbers of evaluations.

In addition, we have shown the applicability of the ap-
proach to real-world VRPSs through testing on a recently
published set of data. This is a key contribution of the pro-
posed method: existing constructive heuristics such as the
well-known Clarke-Wright algorithm [7] cannot be applied
to rich VRPs due to the complexity of the constraints encap-
sulated in the problems, e.g. relating to vehicle types and
customer requirements. Significant modification of these
heuristics would be required in order to construct candi-
date solutions that could be modified by a hyper-heuristic.
This is a serious issue for the hyper-heuristic community if
it wishes to move forward by showing its algorithms are ap-
plicable in the real-world. Not only does the new method
provide a mechanism for constructing candidate solutions to
these instances, it also provides the first benchmark data on
this dataset for use by others researching in this area.



7.

FUTURE WORK

A number of interesting potential directions exist for fu-
ture work.

8.

e We intend to consider an adaptive strategy that auto-
matically determines when to switch between stages,
by monitoring the progress of the stage 1 generative
hyper-heuristic algorithm to determine when the algo-
rithm is stagnating.

Replacing the naive hyper-heuristic strategy used in
stage 2 with a more sophisticated perturbative ap-
proach is likely to yield further benefits

Replacing the hyper-heuristic used in the second stage
with a variety of readily available meta-heuristic algo-
rithms would allow further analysis of the benefits of
initialising the population using an ensemble of auto-
matically generated constructive heuristics.

Finally an interesting research direction is to evaluate
the reusability of the heuristics, i.e. can a heuristic
evolved for one instance construct good solutions when
applied to a different instance.
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