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ABSTRACT
Real-world problems are usually composed of two or more
(potentially NP-Hard) problems that are interdependent on
each other. Such problems have been recently identified
as “multi-hard problems” and various strategies for solving
them have been proposed. One of the most successful of
the strategies is based on a decomposition approach, where
each of the components of a multi-hard problem is solved
separately (by state-of-the-art solver) and then a negotia-
tion protocol between the sub-solutions is applied to medi-
ate a global solution. Multi-hardness is, however, not the
only crucial aspect of real-world problems. Many real-world
problems operate in a dynamically-changing, uncertain en-
vironment. Special approaches such as risk analysis and
minimization may be applied in cases when we know the
possible variants of constraints and criteria, as well as their
probabilities. On the other hand, adaptive algorithms may
be used in the case of uncertainty about criteria variants or
probabilities. While such approaches are not new, their ap-
plication to multi-hard problems has not yet been studied
systematically. In this paper we extend the benchmark prob-
lem for multi-hardness with the aspect of uncertainty. We
adapt the decomposition-based approach to this new setting,
and compare it against another promising heuristic (Monte-
Carlo Tree Search) on a large publicly available dataset. Our
comparisons show that the decomposition-based approach
outperforms the other heuristic in most cases.

Keywords
Traveling Thief Problem; Co-evolution; Heuristics; Meta-
heuristics; Multi-objective optimization; Non-separable prob-
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1. INTRODUCTION
Real-world optimization problems have been studied and

solved in the past, but the work resulted in solutions tailored
to individual problems that could not be generalized. The
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reason for this limitation was the lack of appropriate mod-
els for the systematic study of salient aspects of real-world
problems. It was argued in [16] that there are five main
reasons behind the hardness of real-world problems: the de-
scriptional size of the problem, modeling issues, noise, con-
straints, and some psychological pressures on the designer,
when problems are big. In [15] real-world problems were cat-
egorized into two groups: (1) design/static problems, and
(2) operational/dynamic problems. The first category in-
cludes a variety of problems, such as Traveling Salesman
Problem (TSP), Vehicle Routing Problem (VRP), Knapsack
Problem (KP), etc. The second category includes problems
presented in the now-a-days industries (e.g. real-world sup-
ply chain). The author claimed that, although some of the
design/static problems (first category) are really hard and
most of the current research has been concentrated on those
problems, the problems from the second category (i.e. oper-
ational/dynamic problems) are much harder and represent a
huge opportunity for Evolutionary Algorithms. It was also
stated that the value of addressing the problems in the first
category does not have significant influence on solving the
problems in the second category [15].

One aspect of operational/dynamic problems: i.e. multi-
hardness was studied in [5], [20], where by a multi-hard
problem we mean a problem that is a non-trivial combi-
nation of classical (single) hard problems. The authors ar-
gued that most of real-world problems are really multi-hard
(where several potentially NP-Hard problems interact with
each other), while most of the current researches have been
concentrated on single-hard problems (Traveling Salesman
Problem, Knapsack Problem, Job Shop Scheduling, Vehicle
Routing Problem, etc). Also, it was stated that interdepen-
dency among components in multi-hard problems plays a
key role in the complexity of the problems. However, this
interdependency is not found in single-hard problems [4].

The above observations led to the formulation of an ab-
stract double-hard problem, called the Travelling Thief Prob-
lem (TTP) in [4], which is a non-trivial composition of two
well-studied classical problems: the Travelling Salesman Prob-
lem and the Knapsack Problem. The authors have obtained
some insights into the difficulty of multi-hard problems in
general through an evaluation of algorithms for solving TTP.
The goal was to compare known heuristics against algo-
rithms that aim to exploit the structure of a multi-hard
problem.

A lot of great work has been done in developing algo-
rithms for single-hard problems, and the best algorithms are
tuned to specific problems. Unfortunately, such problem-
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specific algorithms are extremely sensitive to changes in the
formulation of the problem, therefore are of no use when
some modifications are introduced (e.g. new constraints are
added). However, instead of throwing out our knowledge,
and instead of building new algorithms from scratch, it may
be possible to use existing algorithms as building blocks for
solving multi-hard problems. In [5] the authors have devel-
oped the idea of CoSolver and applied it to TTP obtaining
some promising results. The main idea behind CoSolver is
to decompose a multi-hard problem into sub-problems, solve
the sub-problems separately with some communication be-
tween the sub-problems, and then compose the solutions
back to obtain a solution to the initial problem (Figure 1).
In [20] CoSolver has been compared against a meta-heuristic
that we have thought of as most promising for multi-hard
problems: a Monte-Carlo Tree Search algorithm. Both al-
gorithms have been also compared to exact solutions for a
variety of instances of TTP, differing in difficulty and struc-
ture. Further, CoSolver has been extended by incorporating
heuristics instead of exact solvers for the TSP and KP com-
ponents of TTP. This extension has greatly improved the
scalability of CoSolver without compromising quality.

The aim of this paper is to address one additional aspect
of real-world problems: uncertain environment. We extend
the benchmark problem for multi-hardness (the Traveling
Thief Problem) with a new aspect of uncertainty. Then we
adapt the decomposition-based approach to this new setting,
and compare it against another promising heuristic (Monte-
Carlo Tree Search). To make the comparison sound, we
prepare a large publicly available dataset of generic instances
for the Traveling Thief Problem and its extensions.

The structure of the paper is as follows. In the next sec-
tion, we discuss related work. Section 3 formally defines
the Probabilistic Traveling Thief Problem. In Section 4
we briefly recall Ordered Weighting Aggregation operators,
which are used in Section 7 to compare various behaviours
of our algorithms. Section 5 describes algorithms for multi-
hard problems in uncertain environments: CoSolver algo-
rithm, and Monte-Carlo Tree Search. Section 6 describes
the benchmark instances for our model problem. Section 7
presents results of experiments with solving benchmarks us-
ing proposed algorithms. Section 8 concludes the paper.

2. RELATED WORK
Traveling Thief Problem (TTP) was first introduced in [4]

as an example of multi-component optimization problem. It
was presented as a combination of two well-known problems
(Travelling Salesman Problem and Knapsack Problem). Au-
thors showed that finding optimum solutions for each sub-
problem do not guarantee finding the global solution, as the
interdependency between the two problems influences the
optimum solutions for the whole problem.

New algorithm (called CoSolver) for dealing with multi-
hard problems was introduced in [5], where communications
and negotiation processes between partial solutions were
studied. Authors proposed also a simple heuristic (called
Density-based Heuristic, DH) as a second approach. These
two methods were compared on some generated benchmark
TTPs. Results showed that the performance of CoSolver
was much better than DH. In [20] various variants of Co-
Solver have been compared against classical approach based
on Monte Carlo Tree Search.

In [4] it was argued that most of real-world problems

are multi-hard problems, while most of the current research
has been concentrated on single-hard problems (Traveling
Salesman Problem, Knapsack Problem, Job Shop Schedul-
ing Problem (see: [6], [9], and [26]), Vehicle Routing Prob-
lem (see: [25], etc.). Also, it was stated that interdepen-
dency among components in multi-hard problems plays a
key role in the complexity of these problems. However, this
interdependency is not found in designed single-hard prob-
lems.

Early attempts in solving multi-hard problems (described
as large scale optimization problems) include Newton’s meth-
ods and conjugate gradient methods [10], the partitioned
quasi-Newton method [11], and linear programming [3]. How-
ever, a major drawback of these methods is their dependency
on the algebraic formulation of a problem and the availabil-
ity of gradient information. For many real-world problems
where an algebraic formulation is intractable, simulation is
often used instead to obtain the evaluation of a potential so-
lution, by providing an output value for a given set of input
decision variable values. This sort of black-box optimization
is commonly seen in engineering and many other disciplines.
For black-box optimization problems, meta-heuristics such
as evolutionary algorithms (EAs) have a significant advan-
tage over the traditional derivative-dependent optimization
methods. Meta-heuristics do not rely on gradient informa-
tion, and are less likely to be stuck on local optima because
of their use of a population of candidate solutions. Fur-
thermore, recent development in the field of meta-heuristics
show that cooperative co-evolutionary EAs hold great promise
as it was shown in [29], [13], and [14] for such problems. Nev-
ertheless, significant challenges remain. Finally, there are
also modern research on bi-level (and, general, multi-level)
optimization, where optimization problems consist of several
sub-components related by some hierarchical dependencies
(see: [7] and [23]). In such setting, however, hierarchically
lower components do not take into account the optimization
tasks of upper components.

Uncertain environment may affect the objective function
and constraints. As a result optimal solution vary over time.
Different approaches have been proposed to deal with dy-
namic optimization problems. Evolutionary algorithms and
swarm intelligence methods have been shown to be partic-
ularly useful for handling such problems due to their self-
organizing nature [22]. Dealing with dynamically changing
constrains, on the other hand, is still a challenge of major
significance [21].

To solve such complex issues human computational po-
tential can be used [12]. This is completely new approach
to solve such problems and at the same time it is promising
and interesting direction of the research. Teams of human
decision makers and new heuristic algorithms could improve
solutions of these problems.

3. THE MODEL: A MULTI-HARD PROB-
LEM WITH UNCERTAINTY

Let us recall first Traveling Thief Problem (TTP). It con-
sists of n cities (i.e. nodes of a graph) together with a func-
tion d assigning to every pair i, j of cities a non-negative dis-
tance d(i, j) from i to j (d(i, j) plays the role of a weighted
edge from a node i to a node j in the graph; d(i, j) = +∞
means that there is no edge from i to j), and m items (each
has a profit pi and a weight wi) distributed in the cities.
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Figure 1: Decomposition of a problem on two sub-problems: A and B.

The availability of items is given by a function:

a(i) = {ci1, . . . , ciki}

which shows that item i is available at cities:

ci1, c
i
2, . . . , c

i
ki

where cij belongs to the set of cities {1, . . . , n}. It follows
from our notation, that ki copies of item i can be found over
all cities. Additionally, we are given the following constants:

• a non-negative real number R — the rent ratio;

• a natural number W — the capacity of the knapsack;

• two positive real numbers vmin ≤ vmax — the minimal
and maximal speed of “the traveler”.

The task is to find a complete tour Π visiting each city ex-
actly once (i.e. a permutation Π of the initial segment of
n positive natural numbers; abusing notation, we shall also
write Πn+1 for Π1; furthermore we assume that the permu-
tation is stable on the first city — i.e. Π1 = 1) and pick
items from the cities xi in a way that the total weight of
the picked items does not exceed W , and the total profit
(formulated in Eq. (1)) is maximized.

P =

m∑
i=1

pi[xi 6= 0]−R
n∑
i=1

ti,i+1 (1)

where P is the total profit, xi ∈ a(i)∪{0} represents the city
that the item i should be picked from (0 refers to not picking
the item at all), [xi 6= 0] is the Iverson bracket (i.e. equals 1
if xi 6= 0, and 0 otherwise) and ti,j is the time to travel from
Πi to Πj assuming the weight of all picked items by city Πi

is WΠi , which is given by the formula:

ti,j =
d(Πi,Πj)

vmax −WΠi

vmax−vmin
W

(2)

where WΠi is the total weight of the picked items from cities
{Π2,Π3, . . . ,Πi} (we assume that items from city Π1 = 1
are picked at the end of the tour). Note that, if more items
are picked while their total weight is smaller than W , the
value of ti,j grows which causes reducing the value of P
in Eq. (1). Also, by taking better tours in terms of total
distance, some possibly high quality items (items which have
a high profit) might only be available at the beginning of
the tour and, hence, by picking those items, the travel time
increases (items should be carried for a longer time), which
causes reduction in the value of P . This shows that the
interdependency between the two problems influences the
optimum solutions for the whole problem.

In Probabilistic Traveling Thief Problem (TTP-PROB)
each item is available to the thief at a certain probability.
The availability of items is given by a function:

a(i) = {[ci1, qi1], . . . , [ciki , q
i
ki ]}

where cij is the number of a city, and qij is the probability

that item i is available in city cij — i.e. when the thief enters

a city cij , the i-th item is available with probability qij . Just
like in TTP, the task is to maximize the total profit given in
Eq. (1). This time, however, this profit depends not only on
the strategy of the thief, but also on a particular scenario
— which items are available when the thief enters a city,
and which are not. Therefore, there may be various goals,
a thief wants to achieve. For example, one goal could be to
maximize the expected total profit. Another important goal
could be the minimisation of the risk of the total profit. Such
goals will be characterised by so-called “ordered weighted
averaging aggregation operators” (OWA), which we describe
in Section 4.

4. AGGREGATION OPERATORS
Ordered Weighted Averaging (OWA) operators are com-

monly used for decision-making under partial or complete
ignorance or for equitable optimization [28], [27].

The motive behind selecting the OWA operator for ag-
gregation of outcomes under uncertainty is the capability of
OWA to encompass a range of operators from minimum to
maximum, including various averaging operators like arith-
metic mean. The OWA operator provides a flexibility to in-
corporate decision maker’s preferences towards risk, includ-
ing risk propensity (risk seeking) and risk aversion (avoiding
risk) [24], [17]. The OWA operation involves three steps:
(1) reordering of the input parameters; (2) determining the
weights associated with the OWA operators; and (3) aggre-
gation process.

The first step of the OWA aggregation is ordering the
outcomes (given by a vector [r1, r2, . . . , rn]) from the worst
to the best. For example, for maximized outcomes (as in
our case), the outcomes should be ordered from smallest to
largest. Let π be permutation of {1, 2, . . . , n} such that:

rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n)

The OWA operator is a function F : Rn → R that can be
expressed as:

F ([r1, r2, . . . , rn]) =

n∑
i=1

wirπ(i) (3)

where for every i we have 0 ≤ wi ≤ 1, the sum
∑n
i=1 wi
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equals one, and π is like described above. Therefore an OWA
operator is completely determined by a vector of weights
w = [w1, w2, . . . , wn]. Classical examples include:

• the function choosing the maximal element is an OWA
operator corresponding to weights [0, 0, . . . , 1],

• the function choosing the minimal element is an OWA
operator corresponding to weights [1, . . . , 0, 0],

• the function taking the average of elements is an OWA
operator corresponding to weights [ 1

n
, 1
n
, . . . , 1

n
]

• the function taking the median of elements is an OWA
operator corresponding to weights wn

2
= 1 and wk = 0

where k 6= n
2

for even n; and wn−1
2

= 1
2
, wn+1

2
= 1

2

and wk = 0 where k 6∈ {n−1
2
, n+1

2
} for odd n.

Another interesting OWA operator takes its weights from
normalised binomial coefficients:

1

2n−1

[(
n− 1

0

)
,

(
n− 1

1

)
, . . . ,

(
n− 1

n− 1

)]
This is a “smoother” version of the median operator — it
prefers values that are close to the median. For this reason
we call this OWA operator “typical”. Two more useful OWA
operators correspond to weights that:

• 1
Hn,p

[
1
1p ,

1
2p , . . . ,

1
np

]
(p-th risk-avoiding operator)

• 1
Hn,p

[
1
np ,

1
(n−1)p

, . . . , 1
1p

]
(p-th risk-seeking operator)

where Hn,p =
∑n
k=1

1
kp

is the generalised harmonic number
of order p.

5. ALGORITHMS
In this section we show how to extend two most promising

algorithms for TTP described in [20] to algorithms for TTP-
PROB. One is a meta-heuristic, which is based on Monte-
Carlo Tree Search. The other bases on the idea of CoSolver
developed in [5] and [20].

5.1 Monte-Carlo Tree Search
The idea behind this heuristic is based on Monte-Carlo

Tree Search [1]. Starting from the initial city and the empty
knapsack we interchangeably perform the following two steps:

• (TSP Phase) extend the current route Π by a node
m and run a number of random simulations with the
extended route; the simulations are performed on c
random scenarios CΠ that are compatible with the
knowledge of item availability at the current route Π;
calculate the best profit pm from all simulations; add
to the route node m∗ having maximal profit pm∗

• (KP Phase) for every set item t that is available at the
current city, extend the knapsack by t and run a num-
ber of random simulations with the extended knap-
sack; the simulations are performed on c random sce-
narios CΠ that are compatible with the knowledge of
item availability at the current route ; add to the knap-
sack items t that increases the expected total profit P .

Algorithm 1: Monte-Carlo Tree Search for TTP-PROB

1: Π← ∅,K ← ∅
2: CΠ ← prepare c random initial scenarios
3: for i← 1 to n do
4: M ← possible extensions of partial cycle Π
5: for m ∈M do
6: Pm ← −∞
7: for k ← 1 to maxIter do
8: Π′ ← extend Π followed by m to a random cycle
9: K′ ← extend K with random items

according to scenario CΠ[k mod c]
10: P ′ ← profit(Π′,K′)
11: if P > Pm then
12: Πm ← Π′

13: Pm ← P
14: Π← extend partial cycle Π with such m∗ ∈M

that maximizes estimated profit Pm∗
15: CΠ ← prepare c random scenarios compatible with Π
16: Im

∗
← set of items available at city m∗

17: for t ∈ Im
∗
do

18: S ← 0
19: for k ← 1 to maxIter do
20: Π′ ← extend Π to a random cycle
21: K′ ← extend K with item t and random items

according to scenario CΠ[k mod c]
22: K′′ ← extend K with random items according

to scenario CΠ[k mod c]
23: P ′ ← profit(Π′,K′)
24: P ′′ ← profit(Π′,K′′)
25: if P ′ > P ′′ then S ← S + 1
26: else S ← S − 1
27: if S > 0 then K ← K ∪ {t}
28: return Π,K

until a complete tour is constructed (Alg. 1). The set CΠ

consists of scenarios randomly generated according to the
probabilities from a given instance, plus two additional sce-
narios: the optimistic scenario (all items with non-zero prob-
abilities are available) and the pessimistic scenario (no items
are available expect these with probability one). In the im-
plementation, MCTS uses a relatively small number 8 ≤ c ≤
16 of randomly generated “trail” scenarios. One reason for
this choice was to keep the running time of MCTS compara-
ble to the running time of CoSolver, but more importantly
we found that adding more random scenarios did not lead to
any significant improvement of the solutions. Another vari-
ant of the algorithm could use a fixed set of scenarios CΠ

and share it in all iterations, but we observed that our ap-
proach leads to a slightly more stable results due to a better
diversity in the scenarios.

5.2 Decomposition Algorithms
In [5] the authors identified two sub-problems of TTP —

one corresponding to a generalization of TSP, called Travel-
ing Salesman with Knapsack Problem (TSKP), and another
corresponding to a generalization of KP, called Knapsack on
the Route Problem (KRP). Roughly speaking, TSKP cor-
responds to the part of TTP where we know which items
are picked at which cities and the task is to find the optimal
route, whereas KRP corresponds to the part of TTP where
we are given a route of the thief, and the task is to find
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the optimal picking of the items. Here is a more detailed
description.

Traveling Salesman with Knapsack Problem (TSKP) con-
sists of n cities, a distance function d, a positive integer W
(the capacity of the knapsack), a non-negative real number
R (the rent rate) and a function w assigning to every node
i ∈ {1, 2, . . . , n} the total weight wi of items picked at i, and
two positive real numbers vmin ≤ vmax corresponding to the
minimal and the maximal speed of the traveler. The task
is to find a complete tour Π visiting each city exactly once,
such that the following is minimized:

T = −R
n∑
i=1

ti,i+1 (4)

where ti,i+1 is defined in the same way as in Eq. (2) from
Section 3.

Knapsack on the Route Problem (KRP) consists of n
cities, a function d assigning to a city i the cost d(i) of
traveling from city i to city i + 1 for i < n and from city n
to city 1 otherwise, and m items (each has a profit pi and a
weight wi) distributed in the cities. The availability of items
is given by a function a(i) = {ci1, . . . , ciki}. Additionally, we
are given a natural number W (the capacity of the knap-
sack), a non-negative real number R (the rent ratio) and
two positive real numbers vmin ≤ vmax corresponding to the
minimal and the maximal speed of the traveler. The task is
to find a function assigning to an item i a city xi ∈ a(i)∪{0}
where item i is picked (0 refers to not picking the item at
all) such that the collective total weight of items does not
exceed W , and the following is maximized:

P =

m∑
i=1

pi[xi 6= 0]−R
n∑
i=1

ti

ti =
d(i)

vmax −Wi
vmax−vmin

W

(5)

where Wi is the total weight of the picked items from cities
{2, . . . , i} (we assume that items from city 1 are picked at
the end of the tour).

Our decomposition of TTP-PROB is based on the above
approach with two exceptions: in a modified KRP the avail-
ability function is determined by a scenario, and in a mod-
ified TSKP there is given an initial partial tour that has to
be extended to the full tour. In fact both of the compo-
nents of TTP-PROB are easily reducible to the respective
components of TTP.

The negotiation protocol between these components is
presented as Alg. 2. Given an instance of TTP-PROB, Co-
Solver iteratively extends partial tour Π and partial picking
of items K by the following negotiations. We start by cre-
ating an instance of KRP that consists of all items from all
nodes and distances according to scenario c and d(k) equal
zero. After finding a solution K′′ for this instance, we create
an instance of TSKP by assigning to each city a weight equal
to the total weights of items picked at the city by KRP and
providing a partial tour Π. A solution for TTP at the initial
step consists of a pair K′′,Π′′, where Π′′ is the route found
as a solution to the instance of TSKP. Then the profit P ′

of the solution is calculated. If profit P ′ is better than the
best profit P that has been found so far, the process repeats
with distances between nodes adjusted along tour Π′′.

We may obtain various variants of CoSolver algorithms by
plugging various KRP and TSKP components in the nego-

Algorithm 2: CoSolver for TTP-PROB

1: Π← ∅,K ← ∅
2: for i← 1 to n do
3: C ← prepare a random scenario
4: dk ← 0,Wk ← 0, P ← −∞
5: for r ← 1 to MaxIter do
6: K′′ ← solve KRP with pk, wk, dk and parameter

Wk on scenario C and initial picking K
7: Wk ←

∑
i∈K′′ wi[0 < xi ≤ k]

8: Π′′ ← solve TSKP with Wk, d and initial path Π
9: P ′′ ← calcObj (K′′,Π′′)

10: if P ′′ > P ′ then
11: P ′ ← P ′′

12: Π′ ← Π′′

13: K′ ← K′′

14: dk ← d(Πk,Πk+1)
15: else break
16: extend Π with the next node m according to Π′

17: extend K with items from K′ at node m
18: return Π,K

tiation protocol. It was suggested in [20] that in most cases
the following approach works the best. The KRP compo-
nent is heuristically reduced to the classical KP [20] and
then solved by a weighted greedy approach as explained in
[18]. The TSKP component is heuristically reduced to the
classical TSP [20] and then solved by the state-of-the-art
heuristics (e.g. Concorde [8], which bases on Chained Lin-
Kernighan method [2]).

6. BENCHMARKS
In order to compare performance of the proposed algo-

rithms, we have prepared a generic framework for generating
classes of TTP-PROB instances. Each class is composed of
three independent components: meta, graph, items, associ-
ations and scenarios that are explained in the below. De-
pending on parameters configuration of these components
one is able to create separate classes of TTP-PROB in-
stances. All instances used in our benchmarks are publicly
available at the website [19].

1. Meta. The meta component describes parameters of
the thief — i.e. knapsack-capacity, rent rate, minimal
velocity and maximal velocity. By tunning these pa-
rameters we can alter relative importance of TSP or
KP components in a TTP. As an example, a smaller
value for the rent rate (w.r.t. the value of items) makes
the contribution of the TSP component minimal. In
an extreme case, the TSP component is completely ig-
nored if the rent rate is zero. Also, by increasing the
value of the rent rate the value of items (total profit)
becomes less important in the final objective value,
consequently, the solution for the KP component have
smaller impact on the total objective. This is also the
case for the value of vmax − vmin . As an example, lets
assume that vmin is a constant (say, 0.1). If the value
of vmax − vmin becomes zero, the value of velocity, cal-
culated by vmax − (vmax − vmin)Wc

W
, where Wc is the

total weight of the picked items, becomes a constant
for any value of available capacity (calculated by Wc

W
).

Thus, picking any item has no impact on the speed of
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the travel, and hence, one can completely decompose
the TTP instance to two independent sub-problems
(TSP component and KP-component) and solve them
separately through maximizing the profit in the KP
component and minimize the tour distance.

2. Graph. The graph component describes the TSP as-
pect of TTP-PROB — i.e. it describes the graph of
cities and distances between cities. To build a com-
petitive set of benchmarks, we decided to use a well-
known public database of symmetric and asymmetric
TSP instances. The database is available at:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

3. Items. The items component describes the KP as-
pect of TTP-PROB — i.e. it describes items as pairs
weight-profit. We used a two-step procedure to build
our benchmarks. In the first step we generated sets of
items according to the formula:

w ∈ [wmin, wmax]

p = wδ(1 + ργ)
(6)

where the weight of an item is uniformly sampled from
the interval [wmin, wmax], δ is the scaling factor, ρ is
a normal random variable with mean 0 and standard
deviation 1 and γ is a deviation parameter. In the
second step each set of items was rescaled according to
the role of the node that the items would be assigned to
by the associations component. We used a parabolic
rescaling along “the best path in a graph” — i.e. if we
are given n sets of items, then the value p of each item
in k-th set is rescaled according to the formula:

p′ = a+ (b− a)

(
2k

n

)2

(7)

where a and b are parameters such that items from n
2

-
th set are rescaled by a, and items from the first and
the last sets are rescaled by b.

4. Associations. The associations component links items
with nodes in a graph — i.e. it describes which items
are available in which nodes at which probabilities. To
make the connection between KP and TSP compo-
nents highly non-trivial, we built the set of associations
in the following way: for a given graph we found the
best TSP route and according to it ordered the nodes;
the k-th node was assigned items from the k-th set of
items generated by parabolic rescaling. Therefore, sta-
tistically the most profitable items were assigned to the
cities that are near to the middle of the optimal route.
Probabilities of items were chosen uniformly from the
interval [0, 1].

5. Scenarios. The scenarios component for a given in-
stance says which items turn to be available at which
cities when the thief enters them. Scenarios are cru-
cial to guarantee that both of our algorithms work in
the same environment. The scenarios are generated
uniformly according to the probabilities of items. Ad-
ditionally two scenarios are attached: the worst-case
scenario (there are no available items) and the best-
case scenario (all items are available).

Table 1: Typical performance of Alg. 1 and 2.
Typical

few unif few parab uniform parabolic KP based
CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS

att48 387 283 -126 -681 3940 1395 -3595 -11920 1585 696
bayg29 98 104? -67 -119 1967 1240 -1325 -2675 1048 413
bays29 97 95 -62 -116 1979 1197 -1320 -3176 1049 325
berl52 145 96 -49 -331 3374 1504 -3131 -10809 1645 569
br17 88 121? 36 9 754 570 -499 -861 416 181
braz58 434 289 -129 -741 2333 841 -1558 -6975 1186 387
burm14 126 84 -40 -43 1497 1261 -1095 -1358 773 253
dant42 232 132 -70 -516 4036 1385 -2992 -9567 1850 448
eil51 153 97 -42 -275 1430 685 -959 -3790 713 374
eil76 579 315 -185 -1512 3411 945 -3425 -14267 1425 563
fri26 29 59? -82 -121 1818 1006 -769 -2134 1098 293
ft53 126 86 -162 -424 3806 1603 -3224 -10123 1689 574
ft70 485 514? -450 -755 3444 2486 -2958 -5685 1903 572
ftv33 51 55? -64 -132 2127 1147 -1763 -4885 951 421
ftv35 234 170 -241 -515 2110 1297 -1534 -4346 978 475
ftv38 125 87 -16 -70 1763 1099 -1774 -4334 678 227
ftv44 294 254 -219 -686 2566 1157 -1643 -6037 1106 457
ftv47 377 288 -133 -585 3797 1384 -3634 -10413 1840 535
ftv55 388 153 -269 -1176 4306 1134 -3398 -13441 1878 836
ftv64 142 138 -232 -856 4011 892 -3545 -15408 1734 687
ftv70 590 223 -323 -1607 2563 569 -2655 -11633 1149 350
gr17 148 120 38 15 854 517 -471 -800 398 237
gr21 160 109 -28 -95 2166 1282 -1484 -2598 985 418
gr24 199 185 35 -66 1730 1325 -1319 -3236 891 349
gr48 364 284 -235 -633 3918 1689 -3543 -11448 1586 501
hk48 352 287 -142 -661 3837 1646 -3555 -11703 1586 492
p43 163 131 -166 -198 1577 1510 -1312 -2110 678 332
pr76 490 274 -191 -1658 3610 725 -3394 -16716 1523 503
ry48p 386 286 -129 -553 3950 1839 -3590 -9573 1851 475
swiss42 165 116 -71 -442 3992 1730 -3133 -9276 1850 666
ulyss16 154 130 -9 -39 1539 1135 -670 -1163 913 317
ulyss22 31 73? -93 -134 1788 1148 -1006 -1824 917 399

7. EXPERIMENTAL RESULTS
We have prepared a set of benchmarks for TTP-PROB

using components described in Section 6. It is out of the
scope of this paper to compare our algorithms on all pre-
pared instances, therefore in the below we discuss only the
most interesting cases:

• (uniform items) vmin = 1.0, vmax = 2.0; the knapsack
capacity W is set to the total weight of all items di-
vided by 4; the rent rate R is set to the value that
balances the average time along the best path and the
average total profit of items from a full knapsack; the
total number of items is between 2n and 8n, where n
is the number of cities in the graph; the minimal and
maximal weight of an item are: wmin = 1, wmax = 100;
the scaling parameter δ is 1.0; the deviation parame-
ter γ is set to 0.4 (see: Eq. (6)); and a = b = 1 (see:
Eq. (7)),

• (parabolic items) like uniform items, but parabolic pa-
rameters are: a = 8, b = 1,

• (uniform few items) like uniform items, but the total
number of items is between n

8
and n

2
,

• (parabolic few items) like parabolic items, but the total
number of items is between n

8
and n

2
,

• (KP Centric) like parabolic items, but the rent rate R
is 210 times smaller.

The full set of benchmarks together with the results is pub-
licly available at the website [19].

We limited the time that can be spent by an algorithm on
a single scenario to one minute, and focused on the quality
of the solutions (i.e. the performance of an algorithm). Since
the performance of an algorithm on a given instance depends
on a particular scenario (i.e. which items appear when the
thief enters a city), to compare various aspects of algorithms
we used OWA operators. Results obtained by CoSolver and
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Table 2: Average performance of Alg. 1 and 2.
Average

few unif few parab uniform parabolic KP based
CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS

att48 342 250 -143 -687 3743 1035 -3638 -11831 1533 553
bayg29 95 84 -67 -118 1880 1022 -1298 -2836 1015 351
bays29 94 90 -61 -113 1886 987 -1293 -3218 1017 298
berl52 145 105 -64 -344 3271 1086 -3200 -10601 1618 494
br17 85 113? 21 -9 737 525 -503 -867 405 167
braz58 399 230 -143 -782 2280 591 -1613 -7003 1123 341
burma14 105 92 -40 -43 1433 1043 -1124 -1343 765 252
dant42 224 122 -83 -550 3804 1095 -3018 -9959 1783 412
eil51 152 78 -58 -315 1362 561 -1020 -3795 677 299
eil76 537 230 -240 -1506 3296 644 -3459 -14594 1385 450
fri26 40 55? -82 -122 1704 859 -769 -2231 1075 308
ft53 129 98 -162 -441 3423 1250 -3292 -10233 1539 551
ft70 464 441 -471 -790 3309 2180 -3023 -5722 1777 510
ftv33 68 51 -65 -144 1991 983 -1805 -4721 953 398
ftv35 235 165 -232 -514 2040 1115 -1606 -4350 914 402
ftv38 105 83 -22 -77 1705 924 -1776 -4187 692 228
ftv44 263 217 -217 -673 2434 948 -1684 -6008 978 397
ftv47 323 247 -149 -625 3635 1098 -3679 -11003 1752 477
ftv55 382 120 -258 -1177 4062 768 -3458 -13576 1864 638
ftv64 150 109 -230 -848 3777 606 -3584 -15227 1551 517
ftv70 556 184 -325 -1659 2459 274 -2722 -11984 1099 333
gr17 131 118 23 -1 807 452 -476 -809 394 186
gr21 159 97 -28 -95 2103 1140 -1548 -2672 980 371
gr24 182 152 35 -66 1675 1199 -1355 -3224 881 290
gr48 319 239 -227 -637 3746 1332 -3591 -11446 1534 513
hk48 306 236 -156 -703 3670 1153 -3601 -11951 1534 449
p43 154 125 -174 -232 1605 1258 -1412 -1985 664 272
pr76 493 209 -245 -1604 3427 169 -3430 -16871 1450 435
ry48p 346 237 -145 -565 3751 1466 -3640 -9745 1733 470
swiss42 162 99 -84 -470 3767 1390 -3173 -9646 1783 589
ulyss16 140 126 -9 -47 1468 1001 -671 -1203 913 280
ulyss22 43 68? -93 -130 1725 1020 -1024 -1901 843 342

MCTS algorithms have been compared against each other
according to four types of behaviours as described in Sec-
tion 4: typical (Table 1), average (Table 2), cubical (i.e. of
order 3) risk-avoiding (Table 3) and cubical risk-seeking (Ta-
ble 4). Each algorithm was run five times on a single sce-
nario: we removed the best and the worst solutions and
took the average of the remaining three solutions as the re-
sult (rounded to the nearest integer). It should be noted
that the complexity of TTP (let alone its probabilistic ver-
sion PTTP) makes the problem intractable by any exact
algorithm on instances of any reasonable size (as explained
in [20], there is no polynomial constant-factor approxima-
tion algorithm for TTP unless P = NP), therefore we were
not able to compare the results obtained by our algorithms
against the best solutions attainable with the perfect knowl-
edge.

The results presented in Tables 1, 2, 3 and 4 show that Co-
Solver with integrated problem-specific components of TTP-
PROB outperforms MCTS on most instances (we marked by
“?” the only entries where MCTS was better than CoSolver).
In fact, CoSolver performed strictly better on all instances
excluding “uniform few items”, in which cases MCTS was
able to outperform CoSolver 6 times on typical behaviour,
3 times on average behaviour and 13 times on risk-seeking
behaviour (out of 32 times in each case). This confirms our
initial hypothesis that when faced with a new real-world
problem, instead of building an algorithm from scratch, it
may be more reasonable to use existing algorithms as build-
ing blocks for the problem and focus the work on negotiation
protocols between the components.

Notice also, that it is not generally true that MCTS be-
haves in a more risk-seeking manner than CoSolver, as it
may be suggested by the above analysis. By computing
the average gaps from the results produced by CoSolver to
the results produced by MCTS according to different be-
haviours, one may actually discover the opposite: MCTS is
more risk-avoiding and less risk-seeking than CoSolver. The
average gaps are: 1501 for the typical behaviour, 1538 for

Table 3: Risk-avoiding performance of Alg. 1 and 2.
Risk-
avoiding

few unif few parab uniform parabolic KP based
CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS

att48 8 -99 -230 -694 301 -1478 -4029 -11797 472 -140
bayg29 17 0 -67 -125 471 -327 -1629 -3717 552 6
bays29 17 0 -67 -109 472 -424 -1628 -3709 552 -14
berl52 40 -34 -128 -430 110 -1694 -3794 -10706 371 -86
br17 12 5 -41 -83 260 -79 -596 -1098 303 6
braz58 67 -92 -214 -834 232 -1139 -2083 -7240 351 -66
burm14 16 14 -40 -42 378 -160 -1238 -1504 479 18
dant42 94 -50 -123 -588 450 -1679 -3681 -11497 666 -154
eil51 22 -50 -122 -409 102 -565 -1375 -4196 192 -35
eil76 97 -210 -371 -1685 20 -2178 -4036 -15236 218 -160
fri26 14 -9 -82 -153 535 -291 -1011 -2696 654 9
ft53 21 -39 -162 -492 210 -1256 -3738 -9737 368 -105
ft70 68 -23 -497 -880 271 -499 -3547 -6074 503 9
ftv33 16 -11 -70 -183 242 -694 -2026 -4852 363 -23
ftv35 51 -36 -201 -547 128 -593 -1975 -5193 195 -30
ftv38 15 4 -32 -83 270 -486 -1868 -4026 348 -34
ftv44 43 -67 -238 -664 233 -798 -2124 -6232 274 -42
ftv47 43 -70 -231 -695 281 -1640 -4096 -11994 537 -142
ftv55 131 -142 -268 -1409 308 -2415 -4078 -15028 525 -150
ftv64 27 -93 -231 -772 136 -2174 -4192 -15886 270 -164
ftv70 140 -195 -381 -1627 -45 -1769 -3220 -12297 154 -149
gr17 16 11 -41 -61 276 -80 -592 -811 299 11
gr21 87 1 -28 -109 540 -366 -1949 -3427 634 2
gr24 132 -6 35 -86 280 -249 -1649 -3355 367 1
gr48 40 -75 -238 -745 317 -1521 -4014 -12216 472 -147
hk48 40 -68 -232 -831 293 -1805 -4020 -13206 472 -170
p43 29 -18 -197 -221 142 -90 -1657 -1885 185 -16
pr76 93 -248 -372 -1565 43 -2312 -4030 -16248 246 -194
ry48p 44 -68 -230 -634 296 -1241 -4086 -11350 513 -105
swiss42 92 -63 -123 -498 465 -1458 -3716 -10990 666 -96
ulyss16 57 10 -9 -59 631 -28 -764 -1278 721 19
ulyss22 15 4 -93 -128 385 -225 -1204 -2028 441 16

the average behaviour, 1868 for the risk-seeking behaviour,
and 1435 for the risk-avoiding behaviour. This may be
explained by the fact that the MCTS-based algorithm, as
purely stochastic, performed in a more uniform way. The
seemingly contradictory observation that MCTS was not
able to outperform CoSolver on any instance according to
the risk-avoiding behaviour, but was better than CoSolver
on 13 instances from “uniform few items” according to the
risk-seeking behaviour, follows from the fact that when there
are very few almost equally good items, then CoSolver as be-
ing optimistic about further possibilities may unnecessarily
waste good items that are available at a given moment and
end up with nothing.

8. CONCLUSIONS AND FURTHER WORK
Our long-term goal is to provide a broad new methodol-

ogy for integration of real-world problems, progressing from
simpler couplings of silos and sequences, to heterogeneous
highly connected models.

In this paper we addressed one additional aspect of real-
world problems: uncertain environment. We proposed a
new model problem that extends the Traveling Thief Prob-
lem with the aspect of uncertainty and showed how both
the decomposition-based approach and Monte-Carlo Tree
Search can be adapted to this new setting. We also pre-
pared a public database of instances for this new problem.

Our benchmark confirms that CoSolver outperforms clas-
sical MCTS-based algorithms. Moreover, classical imple-
mentation of MCTS algorithm exhibits more risk-avoiding
and less risk-seeking behaviour than CoSolver. It is an
interesting question whether we can adjust this behaviour
by using OWA-driven approach in the exploration phase in
MCTS. We leave it for future work.

In future work we will also be interested in extending our
model problem with additional aspects that may be found
in real-world systems, and in developing new decomposition-
based methodologies for such extensions.
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Table 4: Risk-seeking performance of Alg. 1 and 2.
Risk-
seeking

few unif few parab uniform parabolic KP based
CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS CoSo MCTS

att48 493 373 -122 -658 6081 1218 -3646 -10537 2483 761
bayg29 116 33 -67 -110 2804 1061 -1341 -2712 1271 329
bays29 115 79 -48 -106 2807 1208 -1337 -3146 1272 338
berl52 92 146? -47 -336 5699 1262 -3153 -10468 2512 477
br17 120 150? 38 13 1093 696 -491 -795 463 219
braz58 475 236 -147 -747 3652 842 -1690 -7053 1555 310
burm14 89 127? -40 -43 2185 1132 -1130 -1351 901 310
dant42 213 208 -81 -581 5862 1643 -2945 -8971 2655 497
eil51 213 98 -74 -361 2354 645 -1057 -3644 934 240
eil76 471 229 -267 -1491 5675 898 -3239 -15176 2214 398
fri26 36 73? -82 -98 2408 1069 -699 -1900 1282 313
ft53 90 155? -162 -463 5344 1306 -3229 -10135 2250 827
ft70 380 483? -518 -841 5436 2609 -3101 -5935 2555 581
ftv33 89 65 -63 -134 3362 1719 -1812 -4358 1468 508
ftv35 327 166 -209 -510 3336 1272 -1711 -4529 1320 522
ftv38 88 117? -33 -102 2857 1074 -1786 -4330 946 260
ftv44 248 291? -227 -623 3681 1408 -1649 -5957 1479 406
ftv47 321 294 -130 -605 6036 1474 -3641 -12116 2495 683
ftv55 420 171 -235 -1080 6282 1534 -3418 -13144 2708 535
ftv64 178 86 -228 -845 6180 995 -3578 -15349 2480 490
ftv70 484 272 -316 -1605 4639 350 -2711 -12497 1730 550
gr17 134 163? 40 18 1105 496 -457 -929 463 240
gr21 194 68 -28 -81 3150 1496 -1539 -2888 1349 400
gr24 202 143 35 -38 2869 1617 -1411 -3737 1193 212
gr48 326 300 -227 -658 6068 1680 -3602 -11242 2484 1030
hk48 335 266 -139 -796 6032 1081 -3613 -10711 2484 729
p43 122 150? -197 -253 2773 1639 -1443 -1783 1025 271
pr76 482 252 -270 -1498 5706 -60 -3208 -16667 2208 763
ry48p 389 307 -125 -557 6085 1702 -3611 -9891 2511 891
swiss42 104 181? -82 -491 5840 1984 -3096 -9248 2655 751
ulyss16 134 164? -9 -62 1942 1117 -749 -1412 1078 360
ulyss22 36 75? -93 -121 2536 1326 -1125 -1918 972 343
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Automatic wave-equation migration velocity inversion
using multiobjective evolutionary algorithms.
Geophysics, 73(5):VE61, 2008.

[23] E.-G. Talbi. Metaheuristics for Bi-level Optimization.
Springer Publishing Company, Incorporated, 2013.

[24] S. Tesfamariam and R. Sadiq. Probabilistic risk
analysis using ordered weighted averaging (owa)
operators. Stoch Environ Res Risk Assess, 22:1–15,
2006.

[25] P. Toth and D. Vigo. The Vehicle Routing Problem.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001.

[26] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K.
Lenstra. Job shop scheduling by simulated annealing.
Oper. Res., 40(1):113–125, Jan. 1992.

[27] A. Wierzbicki. Trust and Fairness in Open,
Distributed Systems. Springer, 2010.

[28] R. Yager. On ordered weighted averaging aggregation
in multicriteria decision making. IEEE Transactions
on Systems, Man, and Cybernetics, 18:183–190, 1988.

[29] Z. Yang, K. Tang, and X. Yao. Large scale
evolutionary optimization using cooperative
coevolution. Information Sciences, 178(15):2985–2999,
2008.

388




