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ABSTRACT
A measure for estimating the convergence characteristics of
a set of non-dominated points obtained by a multi-objective
optimization algorithm was developed recently. The idea
of the measure was developed based on the Karush-Kuhn-
Tucker (KKT) optimality conditions which require the gra-
dients of objective and constraint functions. In this paper,
we extend the scope of the proposed KKT proximity mea-
sure by computing gradients numerically and evaluating the
accuracy of the numerically computed KKT proximity mea-
sure with the same computed using the exact gradient com-
putation. The results are encouraging and open up the pos-
sibility of using the proposed KKTPM to non-differentiable
problems as well.

Keywords
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1. INTRODUCTION
Karush-Kuhn-Tucker (KKT) optimality conditions are nec-

essary for a solution to be optimal for single or multi-objective
optimization problems [21, 22, 3]. These conditions require
first-order derivatives of objective function(s) and constraint
functions, although extensions of them for handling non-
smooth problems using subdifferentials exist [2, 22]. Al-
though KKT conditions are guaranteed to be satisfied at
optimal solutions, the mathematical optimization literature
is mostly silent about the regularity in violation of these
conditions in the vicinity of optimal solutions. This lack of
literature prohibits optimization algorithmists working par-
ticularly with approximation based algorithms that attempt
to find a near-optimal solution at best to check or evaluate
the closeness of a solution to the theoretical optimal solution
using KKT optimality conditions.
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However, recent studies have suggested interesting new
definitions of neighboring and approximate KKT points [14,
16, 1], which have been resulted in a KKT proximity mea-
sure [23, 14]. The study has clearly shown that a naive
measure of the extent of violation of KKT optimality condi-
tions cannot provide a proximity ‘measure’ to the theoretical
optimum, however, the KKT proximity measure (KKTPM)
that uses the approximate KKT point definition makes a
‘measure’ of closeness of a solution from the KKT point.
This is a remarkable achievement in its own right, as KK-
TPM allows a way to know the proximity of a solution from
a KKT point without actually knowing the location of the
KKT point. A recent study has extended the KKTPM pro-
cedure developed for single-objective optimization problems
to be applied to multi-objective optimization problems [9,
8]. Since in a multi-objective optimization problem with
conflicting objectives, multiple Pareto-optimal solutions ex-
ist, KKTPM procedure can be applied to each obtained so-
lution to obtain a proximity measure of the solution from
its nearest Pareto-optimal solution.

The KKTPM computation opens up several new and promis-
ing avenues for further development of evolutionary single
[15] and multi-objective optimization algorithms [6, 5]: (i)
KKTPM can be used for a reliable convergence measure for
terminating a run, (ii) KKTPM value can be used to iden-
tify poorly converged non-dominated solutions in a multi-
objective optimization problem, (iii) KKTPM-based local
search procedure can be invoked in an algorithm to speed
up the convergence procedure, and (iv) dynamics of KK-
TPM variation from start to end of an optimization run can
provide useful information about multi-modality and other
attractors in the search space.

In this paper, we extend the scope of KKTPM by evalu-
ating its accuracy with gradients computed numerically. If
a good enough accuracy is achieved, the computation of ex-
act gradient is not mandatory for KKTPM to be applied to
single and multi-objective problems. For this purpose, stan-
dard EMO results on a number of multi and many-objective
optimization problems are evaluated using numerical and
exact gradient based KKTPM values.

In the remainder of the paper, we first discuss the KK-
TPM computing methods in Section 2. We describe the
principle of KKT proximity measure for multi-objective op-
timization problems based on the achievement scalarizing
function (ASF) concept proposed in the multiple criterion
decision making (MCDM) literature. Also, we discuss three
fast yet approximate methods for computing the KKT prox-
imity measure without using any explicit optimization pro-
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cedure. Section 3 proposed numerical gradient method based
on central difference method for calculating the objective
and constraint differentiation instead of exact differentia-
tion. Section 4 compares the proposed numerical gradient
method with previously-published exact and approximate
KKTPM values on standard multi- and many-objective op-
timization problems including a few engineering design prob-
lems. Finally, conclusions are made in Section 5.

2. A BRIEF REVIEW OF KKTPM
In this section, we first summarize the KKTPM com-

putation procedure based on exact gradients of objective
and constraint functions, suggested in an earlier study [8].
Thereafter, we discuss a computationally fast yet approxi-
mate KKTPM computational procedure which has been re-
cently proposed [7].

2.1 Exact KKT Proximity Measure
Authors [8] used the definition of an approximate KKT

solution to suggest a KKT proximity measure (KKTPM)
for any iterate (solution), xk ∈ Rn for an M -objective opti-
mization problem of the following type:

Minimize(x) {f1(x), f2(x), . . . , fM (x)},
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.

(1)

For a given iterate xk, they formulated an achievement scalar-
ization function (ASF) optimization problem [24]:

Minimize(x) ASF(x, z,w) = maxMm=1

(
fm(x)−zm

wm

)
,

Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.
(2)

To have a worse KKTPM value for weak Pareto-optimal so-
lutions, an augmented version of the ASF [19] is employed in
the original study. The reference point z ∈ RM in the objec-
tive space was then considered as an utopian point and each
component of the weight vector w ∈ RM is set as follows:

wi =
fi(x

k)− zi√∑M
m=1(fm(xk)− zm)2

. (3)

Thereafter, the KKT proximity measure was computed by
extending the procedure developed for single-objective prob-
lems elsewhere [14]. Since the ASF formulation makes the
objective function non-differentiable, a smooth transforma-
tion was first made by introducing a slack variable xn+1

and reformulating the optimization problem (equation 2) as
follows:

Minimize(x,xn+1) F (x, xn+1) = xn+1,

Subject to
(
fi(x)−zi

wk
i

)
− xn+1 ≤ 0, i = 1, . . . ,M,

gj(x) ≤ 0, j = 1, 2, . . . , J.
(4)

The KKTPM optimization problem for the above smooth
objective function was rewritten for an extended variable set
y = (x;xn+1), as follows:

Minimize(εk,xn+1,u) εk +
∑J
j=1

(
uM+jgj(x

k)
)2
,

Subject to ‖∇F (y) +
∑M+J
j=1 uj∇Gj(y)‖2 ≤ εk,∑M+J

j=1 ujGj(y) ≥ −εk,(
fj(x)−zj

wk
j

)
− xn+1 ≤ 0, j = 1, . . . ,M,

uj ≥ 0, j = 1, 2, . . . , (M + J).
(5)

In the above problem, the constraints Gj(y) are given as
follows:

Gj(y) =

(
fj(x)− zj

wkj

)
− xn+1 ≤ 0, j = 1, 2, . . . ,M,(6)

GM+j(y) = gj(x) ≤ 0, j = 1, 2, . . . , J. (7)

The value of ε∗k at the optimal point of the above problem
(Equation 5) corresponds to the exact KKTPM value. It
was proven in the follow-up study [7] that for any feasible
solution xk, ε∗k ≤ 1. Based on this fact, the exact KKTPM
was defined as follows:

Exact KKT Proximity Measure(xk) ={
ε∗k, if xk is feasible,

1 +
∑J
j=1

〈
gj(x

k)
〉2
, otherwise.

(8)

On a number of multi and many-objective optimization
problems, the above exact KKTPM was able to provide use-
ful properties [8]:

1. In general, a solution closer to the true Pareto-optimal
front has a better KKTPM value, thereby providing an
almost monotonic characteristic of the KKTPM sur-
face on the objective space.

2. Every Pareto-optimal solution has the smallest KK-
TPM value of zero.

3. For every feasible solution, the KKTPM value has a
value smaller than or equal to one.

4. Weak Pareto-optimal solutions have worse KKTPM
values than non-weak Pareto-optimal solutions.

5. Non-dominated solutions parallel to the true Pareto-
optimal front in the objective space have similar KK-
TPM values.

6. Above properties have allowed KKTPM to be used as
a termination criterion for set-based multi-objective
optimization algorithms, such as EMO methods.

2.2 Approximate KKTPM Computation Method
A flip side of the computational procedure of KKTPM is

that it involves solution of an optimization problem stated
in Equation 5 at every trade-off solution. However, the re-
sulting optimization problem is quadratic and specialized
methodologies such as quadratic programming method can
be employed to solve it quickly. A later study [7] proposed
an optimization-less approximate procedure for estimating
KKTPM values, which we briefly discuss here.

There are three constraint sets to the optimization task
stated in Equation 5. The first constraint requires the com-
putation of the gradients of F and G functions and can be
rewritten as:

εk ≥

∥∥∥∥∥
M∑
j=1

uj
wkj
∇fj(xk) +

J∑
j=1

uM+j∇gj(xk)

∥∥∥∥∥
2

+

(
1−

M∑
j=1

uj

)2

.

(9)
The second constraint can be rewritten as follows:

εk ≥ −
M∑
j=1

uj

(
fj(x

k)− zj
wkj

− xn+1

)
−

J∑
j=1

uM+jgj(x
k).

(10)
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Since xn+1 is a slack variable, the third constraint will be
satisfied by setting

xn+1 =
M

max
j=1

(
fj(x

k)− zj
wkj

)
. (11)

The first approximation proposed in [7] (referred here as
the ‘Direct’ method) ignored the second constraint given in
Equation 10 and only the first (quadratic) constraint is used
to find the KKTPM value. This is explained in Figure 1. In

Figure 1: Second constraint governs at iterate xk which is
not a KKT point.

this case, the second constraint gets automatically satisfied
at a point where the first constraint is feasible. The respec-
tive optimization problem is equivalent to solving a set of
linear system of equations and the process gives rise to the
following approximate KKTPM value:

εDk = 1− 1TM×1u
D
M −

(
GTuDJ

)2
. (12)

Since uDm ≥ 0, uDj ≥ 0, and GGT is a matrix with positive

elements, it can be concluded that εDk ≤ 1 for any feasible
iterate xk. The previous study [7] also observed that this
scenario happens only when the following condition is true
at (uDM ,u

D
J )-vector:

1− 1TM×1u
D
M −

(
GTuDJ

)2
≥ −GTuJ , (13)

or, 1TM×1u
D
M −

(
GTuDJ

)(
1− GTuDJ

)
≤ 1. (14)

For a more generic scenario, illustrated in Figure 2, in
which the condition 14 is not satisfied for an iterate xk,
ε∗k 6= εDk and in fact ε∗k > εDk . Authors proposed approximate
values of ε∗k by using three computationally fast approaches,
which we discuss in the following subsections.

2.2.1 Adjusted KKTPM Computation Method
From the direct solution uD and corresponding εDk (point

‘D’ in the Figure 2), we compute an adjusted point ‘A’
(marked in the figure) by simply computing the εk value
from the second constraint boundary at u = uD, as follows:

εAdj
k = −GTuDJ . (15)

Figure 2: Second constraint governs at iterate xk which is
not a KKT point.

2.2.2 Projected KKTPM Computation Method
Next, we consider another approximation method using

uDj . This time, we make a projection from the direct solu-

tion (point ‘D’) (uD, εDk ) on the second (linear) constraint
boundary and obtain the projected KKTPM value (for point
P), as follows:

εPk =
GT
(
εDk G − uDj

)
1 + GTG . (16)

2.2.3 Estimated KKTPM Computation Method
After calculating above approximate KKTPM values on

many test problems and on a number of engineering design
problems, the authors have suggested an aggregate KKTPM
value by averaging them and referring to it as the estimated
KKTPM, as follows:

εest =
1

3

(
εDk + εPk + εAdj

k

)
. (17)

On a number of multi and many-objective optimization
problems, the above approximate KKTPM values were found
to be extremely well correlated to the exact KKTPM val-
ues and in most cases the difference was small [7]. This
study allowed a computationally fast way to compute KK-
TPM values for multiple trade-off points in a multi-objective
optimization algorithm.

3. PROPOSED NUMERICAL GRADIENT KKT
PROXIMITY MEASURE

Although the approximate KKTPM computational pro-
cedure enabled a fast approach to computing KKTPM, it
still required the knowledge of exact gradients of objective
and constraint functions at every solution. In this section,
we investigate the accuracy of both exact and approximate
KKTPM computation procedures when gradients are com-
puted numerically. The purpose of this study is that if a
good enough accuracy can be obtained, the KKTPM proce-
dure becomes more flexible and more widely applicable.

KKTPM requires gradient information of the original ob-
jective functions and constraints at the point at which the
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KKTPM value needs to be computed. The original study
used exact gradients for most examples but demonstrated
by working with numerical gradient computation (forward
difference method) on a single problem that the induced er-
ror is small and is proportional to the step size used for
numerical gradient computation. In this paper we make a
systematic and more detailed study of computing KKTPM
values with numerical gradients. Gradients are calculated
using two-point central difference method [20].

For a specified point vector x and a step size vector ∆x,
the partial derivative of a function for i-th variable is given
as follows:

∂f(x)

∂xi
=
f(x + eTi ·∆x)− f(x− eTi ·∆x)

2(eTi ·∆x)
. (18)

Here ei is the unit vector describing the i-th variable axis. A
little thought will reveal that every numerical gradient com-
putation requires 2n solution evaluations (n is the number of
variables). Since the same 2n solutions will be used to com-
pute all objective and constraint functions for their deriva-
tive values, a total of 2n solution evaluations are needed to
compute all gradients numerically for a trade-off solution.
Thus, a total of 2nNT solution evaluations are required
to complete an entire optimization run involving N non-
dominated solutions computed for a total of T generations.

4. RESULTS
We are now ready to evaluate the KKTPM values com-

puted using numerical gradients compared to the exact KK-
TPM values.

We present simulation results on a number of test prob-
lems and a few engineering design problems. In all simu-
lations, we use NSGA-II [12] for bi-objective problems and
NSGA-III [11, 17] for three and higher objective problems,
although other recent EMO methods can also be used. For
problems solved using NSGA-II and NSGA-III, we use the
simulated binary crossover (SBX) operator [10] with pc =
0.9 and ηc = 30 and polynomial mutation operator [6] with
pm = 1/n (where n is the number of variables) and ηm = 20.
All other parameters are shown in Table 1.

For each problem, the non-dominated points obtained at
each generation are recorded and both optimal and approxi-
mate KKTPM values are computed using exact and numer-
ical gradients. Three different step size values (∆xi = 10−2,
10−3 and 10−4) are chosen to show the level of accuracy
obtained for each case.

4.1 Bi-Objective Test Problems
First, we present results of our proposed numerical gra-

dient based KKTPM procedure applied to a number of bi-
objective constrained and unconstrained problems. For all
problems, we compare our results with the optimal and esti-
mated KKTPM values obtained with gradient functions for
an identical number of solution evaluations.

First, we consider results on two specific test problems to
illustrate in detail that our exact or approximate KKTPM
using mathematical or numerical gradients for calculating
KKTPM have very similar values. We consider the con-
strained problem SRN [6] for this purpose. Figure 3 presents
the relationship between the exact KKTPM with mathe-
matical and numerical gradients for each non-dominated so-
lution in each generation of an NSGA-II run. The x-axis
marks the exact KKTPM for each individual using exact

Table 1: Parameters used in the study are shown here.
Columns represent from left to right: problem name, pop-
ulation size, number of generations used by the EMO algo-
rithm.

Problem Popsize # Gen. for EMO
ZDT1 40 200
ZDT2 40 200
ZDT3 40 200
ZDT4 48 300
ZDT6 40 200
TNK 12 250
BNH 200 500
SRN 200 500
OSY 200 1000
DTLZ1(3) 92 1000
DTLZ1(5) 212 1000
DTLZ1(10) 276 2000
DTLZ2(3) 92 400
DTLZ2(5) 212 400
DTLZ2(10) 276 1000
DTLZ5(3) 92 500
WELD 60 500
CAR 92 1000

Figure 3: Exact KKTPM values with mathematical and nu-
merical gradients on problem SRN.

mathematical gradient functions. As mentioned earlier, for
feasible solutions the proposed KKTPM values lie within
zero and one. The y-axis marks the exact KKTPM values
for the same individuals using numerical gradients computed
using the central difference method with a step size of 10−4

for each variable. It is clear from the plot that there is a
perfect correlation between the two quantities for each non-
dominated solution. This is a remarkable result and sug-
gests that the numerical gradients can be used to compute
the KKTPM values.

Figure 4 shows the relationship between mathematical
and numerical gradient based approximate KKTPM values
computed for non-dominated solutions using different step
sizes. Once again, a perfect correlation even with a step
size of 0.01 is obtained. This indicates that numerical gra-
dients can replace the exact mathematical gradient function
computation even for computing the approximate KKTPM
values for speeding up the overall computational process.

Next, we consider the BNH problem which is solved using
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(a) Approximate KKTPM us-
ing step size 10−2 for SRN.

(b) Approximate KKTPM us-
ing step size 10−3 for SRN.

(c) Approximate KKTPM us-
ing step size 10−4 for SRN.

Figure 4: Approximate KKTPM values with mathematical
and numerical gradients for different step sizes on SRN.

NSGA-II with a population of size 40. Figure 5 shows the
variation of exact KKTPM values of non-dominated solu-
tions from the start to finish of multiple runs of NSGA-II
with mathematical and numerical gradients. The figure de-

Figure 5: Exact KKTPM values with and without numerical
gradient on BNH problem.

picts that both methods (with and without numerical gradi-
ent) have the same values for KKT proximity measure. To
illustrate the effect of step size used in numerical gradient,
we plot the variation between estimated KKTPM with and
without numerical differentiation in Figure 6. It can be ob-
served that there is no need to use a very small step size
in the gradient computation for KKTPM computation and
get into the difficulties of numerical instabilities – a value of
0.01 as a step size (1% of the variable range) is adequate for
KKTPM computation purpose.

To evaluate the issue further, next, we conduct extensive
simulation studies on a wide range of bi-objective problems.

(a) Approximate KKTPM us-
ing step size 10−2 for BNH.

(b) Approximate KKTPM us-
ing step size 10−3 for BNH.

(c) Approximate KKTPM us-
ing step size 10−4 for BNH.

Figure 6: Approximate KKTPM values with mathematical
and numerical gradients for different step sizes on BNH.

In all our simulations, we run each problem and calculate
the estimated KKTPM values using the mathematical and
numerical differentiation methods.

Our bi-objective simulations include set of test problems:
ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [25]. Figures 7a
to 7e present the KKTPM values for ZDT1 to ZDT6 prob-
lems solved using NSGA-II. Mathematical and numerical
gradients of all objective and constraint functions are used
to compute the approximate KKTPM values. We obtained
similar results for exact KKTPM values as well, but for
brevity, we do not show them here.

Figures 8 and 9 show similar plots for two other con-
strained problems: OSY and TNK, respectively. For most
solutions of this problem, the correlation is high, except for
some very small KKTPM values for which the numerical
KKTPM values differ from the exact KKTPM values. To
make the overall approach more accurate, the KKTPM can
be computed with numerical gradients having a coarse step
size early on (when the KKTPM values are large) and as
the generations progress and KKTPM values get smaller,
numerical gradients can be computed with a smaller step
size.

It is clear from these figures that for all problems the nu-
merical gradients produce very similar approximated KK-
TPM values compared to that obtained using mathematical
gradients.

It is clear that the proposed approach achieves the very
similar values for the KKTPM computing using both opti-
mal and approximate estimated methods with a very high
positive coefficient of correlation.

4.2 Three and Many-objective DTLZ Problems
We now consider three and many-objective DTLZ test

problems [13]. Figures 10a to 10c show the variation of KK-
TPM values on three-objective DTLZ1, DTLZ2, and DTLZ5
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(a) Approximated KKTPM
for ZDT1.

(b) Approximate KKTPM
for ZDT2.

(c) Approximate KKTPM for
ZDT3.

(d) Approximate KKTPM
for ZDT4.

(e) Approximate KKTPM for
ZDT6.

Figure 7: Approximate KKTPM values with mathematical
and numerical gradients on bi-objective unconstrained ZDT
problems.

Figure 8: Approximate KKTPM values for OSY.

Figure 9: Approximate KKTPM values for TNK.

problems. Problems are solved using NSGA-III procedure.
We observe that the same values for KKTPM with mathe-
matical and numerical gradients are obtained.

To demonstrate the advantage of using numerical gradi-
ents with NSGA-III on many-objective problems, we further
consider five and ten-objective DTLZ1 and DTLZ2 prob-
lems. Figures 11a, 11b, 11c and 11d show the relationships
between estimated approximate KKTPM values with math-
ematical and numerical gradients on five and ten-objective
DTLZ problems. The KKTPM values with numerical gra-
dients is significantly close to KKTPM values with math-
ematical gradients on all DTLZ problems. In general, the
numerical approach is able to get the very similar KKTPM
values to the exact differentiation approach.

4.3 Engineering Design Problems
Finally, we include two engineering design problems: welded-

beam design (WELD) [18] and car-side-impact (CAR) [17]
problems. In Figures 12a and 12b, the numerical gradient
based KKTPM values show a significant correlation with ex-
act differentiation technique. As can be seen from the CAR
problem, a difference between KKTPM values obtained us-
ing the numerical differentiation and exact differentiation
methods exists for a few non-dominated solutions, but an
overall correlation between the two quantities is very high.

4.4 Accuracy of Numerical gradient KKTPM
The above description between the two sets of KKTPM

values is shown graphically. Since the correlation is visually
observed to be very high, we did not compute the correla-
tion coefficient before. In this section, we present just that
to quantify the relationships between the KKTPM values
obtained by mathematical and numerical gradients.

Table 2 presents the correlation coefficient between esti-
mated approximate KKTPM values computed using math-
ematical and numerical gradients for all the problems con-
sidered in this study. A high correlation coefficient between
these two measures is observed from the table. For most
problems, a correlation coefficient of one is achieved, while
the worst value of 0.991 is observed for DTLZ1-10 problem.

5. CONCLUSIONS
In this study, we have proposed a new numerical gradient

based procedure for computing KKTPM values which can
be used with any EMO algorithm as a termination condi-

530



(a) Approximate KKTPM values for DTLZ1.

(b) Approximate KKTPM values for DTLZ2.

(c) Approximate KKTPM values for DTLZ5.

Figure 10: Approximate KKTPM values with and without
numerical gradient on three-objective DTLZ problems.

Table 2: Correlation coefficient between approximate KK-
TPM values computed using mathematical and numerical
gradients for multi and many-objective optimization prob-
lems of this study.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1.000 1.000 1.000 1.000 1.000

BNH TNK SRN OSY CAR
1.000 1.000 1.000 0.997 0.999

WELD DTLZ1-3 DTLZ1-5 DTLZ1-10 DTLZ2-3
1.000 0.995 1.000 0.991 0.999

DTLZ2-5 DTLZ2-10 DTLZ5
1.000 1.000 1.000

(a) Approximate KKTPM
values for five-objective
DTLZ1.

(b) Approximate KKTPM
values for 10-objective
DTLZ1.

(c) Approximate KKTPM
values for five-objective
DTLZ2.

(d) Approximate KKTPM
values for 10-objective
DTLZ2.

Figure 11: Approximate KKTPM values with mathemati-
cal and numerical gradients on five and 10-objective DTLZ
problems.

(a) Estimated KKTPM for CAR (3 obj.)

(b) Estimated KKTPM for WELD (2 obj.)

Figure 12: Estimated KKTPM values with and without nu-
merical gradient on two engineering design problems.
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tion or in improving its operators for a better convergence.
The KKTPM provides the convergence property of a non-
dominated point without knowing the true Pareto-optimal
front. It has been emphasized that a highly correlated KK-
TPM computed using a numerical gradients with the math-
ematically computed gradients will make the KKTPM ap-
proach more widely applicable.

Simulation results on a number of two-objective, three-
objective, and many-objective unconstrained and constrained
problems have demonstrated clearly that a numerical gra-
dient computation (with a step size of 1% of the variable
range) produces accurate KKTPM values in most problems.
While most problems has shown to have a correlation coef-
ficient of one, the worst correlation of 99.1% has been re-
ported.

These results are encouraging and give us motivation to
launch a more detailed study so that the proposed method-
ology can now be applied to a wide variety of problems. For
this purpose, the use of sub-differentials [4] and other KKT
optimality theories [14] can be used with our proposed nu-
merical KKTPM construction methodology and applied to
non-differentiable problems. We are also currently pursing
an adaptive step-size reduction strategy for numerical gra-
dient computations based on the current level of KKTPM
values for improving the accuracy of KKTPM computation.
The study should encourage researchers to pay more atten-
tion to KKTPM and other theoretical optimality properties
of solutions in arriving at a faster and more theoretically-
sound multi-objective optimization algorithms.
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