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ABSTRACT

A large spectrum of quality indicators has been proposed so far
to assess the performance of discrete Pareto set approximations in
multiobjective optimization. Such indicators assign, to any solution
set, a real-value reflecting a given aspect of approximation quality.
This is an important issue in multiobjective optimization, not only
to compare the performance and assets of different approximate al-
gorithms, but also to improve their internal selection mechanisms.
In this paper, we adopt a statistical analysis to experimentally inves-
tigate by how much a selection of state-of-the-art quality indicators
agree with each other for a wide range of Pareto set approxima-
tions from well-known two- and three-objective continuous bench-
mark functions. More particularly, we measure the correlation be-
tween the ranking of low-, medium-, and high-quality limited-size
approximation sets with respect to inverted generational distance,
additive epsilon, multiplicative epsilon, R2, R3, as well as hyper-
volume indicator values. Since no pair of indicators obtains the
same ranking of approximation sets, we confirm that they empha-
size different facets of approximation quality. More importantly,
our statistical analysis allows the degree of compliance between
these indicators to be quantified.

1. INTRODUCTION
Set quality indicators have been initially proposed in the late

1990s, and are still refined nowadays, in order to compare the out-
put of approximate multiobjective optimization algorithms. By
defining a total order between Pareto set approximations, they are
particularly relevant when the partial order induced by the Pareto
dominance relation is not sufficiently qualified to discriminate be-
tween different approximation sets. However, given their different
background, structural properties and focus in terms of quality, it
is with no surprise that the order obtained with respect to different
set quality indicators are sometimes contradictory. For instance, it
is often the case that the approximation set obtained by an Algo-
rithm A is pictured to be better than the one obtained by an Algo-
rithm B for some indicator, while the opposite is true for another
indicator; see e.g. [14]. In addition, set quality indicators can also
be seen as a support for multicriteria decision making, in the sense
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that they allow to provide the decision maker with a representative
subset of a potentially very large set of trade-offs for presenting a
compact and reliable “picture” of the Pareto front for the problem at
hand. In this regards, any indicator actually makes some assump-
tions about the decision maker preferences [26]. More recently,
those quality indicators have been plugged onto the design prin-
ciples of evolutionary and other approximate multiobjective opti-
mization algorithms; see e.g. [2, 4, 6]. This class of indicator-based
approaches seeks an approximation set of a given or bounded car-
dinality that maximizes or minimizes the indicator value, thus ex-
plicitly formalizing the goal of the search process [3, 20, 28].

The properties of state-of-the-art quality indicators have been
studied in terms of computational complexity, parameter depen-
dency, scaling invariance, and monotonicity with respect to set dom-
inance relations [16, 26, 29]. In particular, the proportion of non-
compliant decisions made by quality indicators with respect to dom-
inance relations has also been experimentally investigated in [16],
and the absolute difference in indicator values was investigated
in [12]. However, the relation between any two quality indica-
tors is far from being well understood. Actually, we usually do
not know precisely what are the differences in terms of quality or
in terms of interpretation each indicator is able to provide. Intu-
itively, this also depends on many factors such as the shape of the
Pareto front, the distribution of non-dominated vectors in the ob-
jective space, or some user-defined parameters. For instance, the
hypervolume is known to be largely affected by the choice of the
reference point [1, 15], particularly in the lexicographically optimal
regions of the Pareto front. As well, the hypervolume is believed to
favor convex regions over concave regions [27], and to give more
focus on knee points [1, 4]. Similarly, the distribution of solutions
from an approximation set optimizing the epsilon indicator clearly
depends on the shape of the Pareto front [5].

For all these reasons, it might be interesting to measure the agree-
ments and disagreements those quality indicators have in assessing
one approximation set better than another, depending on the prob-
lem characteristics, and given a large-picture of approximation set
quality. In this paper, we propose to adopt a statistical analysis in
order to experimentally investigate by how much (unary) quality
indicators agree with each other on the induced ranking of approx-
imation sets. Indeed, we do not aim at highlighting the difference
between quality indicators on some particular examples, but rather
to quantify this difference, i.e. by how much do they vary and not

why they do so. Our analysis extends results from [12, 23] by sys-
tematically analyzing the nonparametric rank correlations between
a selection of quality indicators, and by contrasting their associa-
tion across a large spectrum of approximation quality and problem
classes. More particularly, we are interested in the inverted gener-
ational distance [7], the additive and multiplicative versions of the
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epsilon indicator [29], the R2 and R3 indicators from the R-metric
family [10], and the hypervolume [27]. We believe that this se-
lection provides a representative sample of popular indicators from
today’s literature, most of them being monotonic with respect to
the conventional Pareto dominance relation [26]. However, in the
past, many researchers were still using indicators capable of con-
tradicting the Pareto dominance relation; see e.g. [16]. For this
reason, notice that a statistical analysis as conducted in the paper is
likely to result in much lower correlations for such non-monotonic
indicators. Based on this selection, we then compute the indica-
tor values of samples of possible low-, medium- and high-quality
approximation sets over a representative subset of multiobjective
optimization problems, particularly in terms of the Pareto front
shape. For this, we rely on the well-known multiobjective con-
tinuous functions from the CEC 2009 special session and competi-
tion on the performance assessment of multiobjective optimization
algorithms [25]. Based on this sample of approximation sets, we
measure the obtained value for each indicator and each approxi-
mation set from our sample, and we experimentally investigate the
correlation between indicator values. This allows us to quantify the
degree of compliance between any pair of quality indicators, and to
highlight their differences depending on the problem characteristics
and on the properties of approximation sets. This analysis gives a
first step towards a better understanding of the relations between
set quality indicators, and might provide important implications in
terms of performance assessment, algorithm design and decision
making in multiobjective optimization.

The remainder of the paper is organized as follows. In Sec-
tion 2, we recall some definitions related to multiobjective opti-
mization and we describe the quality indicators under consideration
in our study. In Section 3, we present the setup of the experiments.
In Section 4, we provide a throughout correlation analysis on the
CEC 2009 benchmark functions. Finally, we conclude the paper
and discusses further research in the last section.

2. BACKGROUND
In this section, we introduce the necessary definitions and pro-

vide a selection of conventional quality indicators from the multi-
objective optimization literature.

2.1 Multiobjective Optimization
Let us assume that we are given an arbitrary multiobjective op-

timization problem (X, f), where X is the solution space, and
f = (f1, . . . , fi, . . . , fd) is an objective function vector such that
fi is to be minimized for all i ∈ {1, . . . , d}. Let Z = f(X) be the
objective space, Z ⊆ IRd. Each solution x ∈ X is associated with
an objective vector z ∈ Z such that z = f(x). An objective vector
z ∈ Z is dominated by an objective vector z′ ∈ Z (z ≺ z′) iff
∀i ∈ {1, . . . , d} : z′i 6 zi and ∃i ∈ {1, . . . , d} such that z′i < zi.
Two objective vectors z, z′ ∈ Z are mutually non-dominated iff
z 6≺ z′ and z′ 6≺ z. An objective vector z⋆ ∈ Z is Pareto opti-

mal or non-dominated iff there does not exists a z ∈ Z such that
z⋆ ≺ z. Analog definitions can be formalized for solutions x ∈ X
by using the associated objective vectors z ∈ Z, such as z = f(x).
The Pareto front Z⋆ ⊆ Z is the set of non-dominated objective
vectors; the Pareto set X⋆ ⊆ X is a set of solutions that maps to
the Pareto front, i.e. f(X⋆) = Z⋆. One of the most challenging is-
sue in multiobjective optimization is to identify the Pareto set/front,
or a good approximation of it for complex problems. More partic-
ularly, EMO and other approximate algorithms aim to identify an
approximation set of limited cardinality, ideally a subset of the ex-
act Pareto set/front, that is to be presented to the decision maker
for further consideration. For the sake of clarity, we will focus on

Pareto front approximations in the following sections. This can be
easily extended by considering the mapping of a Pareto set approx-
imation to the objective space.

2.2 Quality Indicators
A (unary) quality indicator is a function 2Z → IR that assigns

each approximation set to a (scalar) value reflecting its quality [26].
In the following, we select and introduce a subset of conventional
quality indicators from the multiobjective literature. The reader is
referred to [14, 16, 26, 29] for a broader review. Let A ⊆ Z be a
set of mutually non-dominated objective vector (i.e. a Pareto front
approximation, or approximation set), and R ⊆ Z be a reference
set (ideally the exact Pareto front when it is discrete, i.e. R = Z⋆).
In the following, we assume that there does not exist any vector
in A that dominates a vector in R; i.e. ∀r ∈ R, 6 ∃a ∈ A such that
r ≺ a. In other words, the reference set R weakly dominates any
approximation set A [29].

IGD: The inverted generational distance [7] is an inverted version
of the generational distance [22], see also [21] for a detailed expla-
nation. It gives the average distance between any point from the
reference set R and its closest point from the approximation set A.

IGD(A) :=
1

|R|

√

∑

r∈R

min
a∈A

||a− r||22

The euclidean distance (L2-norm) in the objective space is usu-
ally used for distance calculation. Obviously, the smaller the IGD
value, the closer the approximation set from the reference set. An
indicator value of 0 actually implies R ⊆ A.

EPS: The epsilon indicator family [29] gives the minimum factor
by which the approximation set has to be translated in the objective
space in order to (weakly) dominate the reference set. The additive

epsilon indicator (EPS(+)) is based on an additive factor.

EPS(+)(A) := max
r∈R

min
a∈A

max
i∈{1,...,d}

(ai − ri)

The multiplicative version (EPS(×)) is based on a multiplicative
factor, and assumes that all objective function values are strictly
positives.

EPS(×)(A) := max
r∈R

min
a∈A

max
i∈{1,...,d}

(ai/ri)

Both epsilon indicator versions are to be minimized; and EPS(+)(A) =
0 or EPS(×)(A) = 1 implies that R ⊆ A.

R: The family of R-metrics [10] are based on a set of utility func-
tions. A utility function u : Z → IR maps an objective vector to
a scalar value based on specified parameters. A typical example is
the weighted Chebyshev scalarizing function defined below.

uλ(z) = max
i∈{1,...,d}

λi ·
∣

∣z⋆i − zi
∣

∣

where z ∈ Z is a candidate objective vector, z⋆ ∈ IRd is the
ideal point (i.e. z⋆i = minz∈Z zi, i ∈ {1, . . . , d}) and λ ∈ IRd

is a weighting coefficient vector. By defining a set of uniformly-
defined weighting coefficient vectors Λ such that for all λ ∈ Λ,
λ = (λ1, . . . , λi, . . . , λd), λi ≥ 0 and

∑d

i=1 λi = 1, the R2 and
R3 indicators can be defined as follows.

R2(A) :=
1

|Λ|

∑

λ∈Λ

(

min
r∈R

uλ(r)−min
a∈A

uλ(a)
)

R3(A) :=
1

|Λ|

∑

λ∈Λ

minr∈R uλ(r)−mina∈A uλ(a)

minr∈R uλ(r)
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Once again, both R2 and R3 indicators are to be minimized; and
R2(A) = 0 or R3(A) = 0 implies R ⊆ A.

RHV: The hypervolume [27, 29] gives the multidimensional vol-
ume of the portion of the objective space that is weakly dominated
by an approximation set.

HV(A) :=

∫ zmax

zmin

αA(z)dz

such that:

αA(z) :=

{

1 if ∃a ∈ A such that z ≺ a

0 otherwise

In practice, only the upper-bound vector zmax ∈ IRd is required to
compute the hypervolume; this parameter is called reference point.
In the following, we will be interested in the relative hypervolume
indicator (RHV), that is the relative deviation of the approximation
set’s hypervolume to the reference set’s hypervolume.

RHV(A) :=
HV(R)− HV(A)

HV(R)

This allows us to consider minimizing indicator values as well, such
that RHV(A) = 0 means that R ⊆ A.

2.3 Properties
In this section, we summarize a number of properties from [16,

26, 29] that describe the quality indicators presented above.

Monotonicity: An indicator is monotonic with respect to the weak
Pareto dominance relation (Pareto-compliant in [16, 29]) if for any
approximation set that dominates another approximation set, its in-
dicator value is better; i.e. a monotonic indicator does not disagree
with the (partial) order induced by the dominance relation [26]. All
the indicators presented in the previous section are monotonic, with
the exception of IGD, despite its regular use as an absolute perfor-
mance metric. A strict version of monotonicity can also be defined
by considering the standard Pareto dominance relation and a strict
inequality between indicator values. The hypervolume is the only
known indicator that satisfies the strict monotonicity property [29].
Notice that an empirical analysis of the degree of monotonicity for
some non-monotonic indicators are reported in [11, 16].

Scaling invariance: An indicator is scaling invariant if the order
of approximation sets induced by the indicator values remains the
same when applying a monotonic transformation of the objective
function values. However, as the indicators under consideration
all explicitly exploit the objective function values, none of them
actually satisfies this scaling invariance property, except of course
if the hypervolume reference point is transformed accordingly.

Parameters and problem knowledge: In our definitions of the
quality indicators, a reference set R is always required, although
hypervolume could be used without any reference set. In addition,
the definition of R2 and R3 is based on the ideal point and on a user-
given number of weighting coefficient vectors, while the definition
of RHV is based on a reference point that must be specified by
the practitioner. Actually, the ordering of the approximation sets
induced by the hypervolume is known to by affected be the setting
of this reference point [26].

Computational complexity: Since an in-depth experimental anal-
ysis may require the comparison of a large number of approxima-
tion sets, and given that an indicator can potentially be integrated
into the search process of an approximate algorithm, the computa-
tional resources required to compute an indicator value constitute

and important feature of the indicator characteristics. Obviously,
the computational complexity for IGD, EPS and the R-metrics is
polynomial in the objective space dimension, the approximation
set cardinality and the reference set cardinality (as well as the num-
ber of weighting coefficient vectors for R2 and R3), whereas it is
exponential in the number of objectives for the hypervolume [26].

3. EXPERIMENTAL SETTING
In this section, we shall describe the benchmark functions, the

approximation set samples, the parameter setting, and the corre-
lation measure of our experimental analysis. All the experiments
have been conducted in R [19], using the ggplot2 [24], emoa [17],
and mco [18] packages.

3.1 CEC 2009 Benchmark Functions
In order to analyze the indicator values of approximation sets

and their correlation, we consider nine multiobjective continuous
functions from the CEC 2009 special session and competition on
the performance assessment of constrained and bound-constrained
multiobjective optimization algorithms [25]. This set of bench-
mark functions has been specifically designed to resemble com-
plicated real-life optimization problems. They present different
properties in terms of dimension, separability, multi-modality, and
shape of the Pareto front. More particularly, we consider all the un-
constrained (bound-constrained) functions UF01–10, with the ex-
ception of UF05 which contains a very limited number of points
belonging to the Pareto front. The first six problems consist of
two-objective functions, whereas the last three problems consist of
three-objective functions, all to be minimized. The Pareto front
from UF01, UF02 and UF03 is convex, the one from UF04, UF08
and UF10 is concave, and the one from UF06, UF07 and UF09 is a
line or plane. In addition, there are gaps in the Pareto front of UF06
and UF09. Notice that, for all problems, all objective functions
roughly have the same range, and the objective function values of
solutions from the Pareto set all lie in [0, 1]. The formulation of
these test functions can be found in [25]; we consider them under
their original setting.

During the CEC 2009 competition, the competing algorithms
were run multiple times for a maximum number of function eval-
uations. For each problem instance, the average IGD indicator
value of the final approximation sets was the only figure of merit
for comparing the algorithms. Notice, however, that the IGD used
in [25] is a slight variation of the original IGD [7] that we use in
the current paper. This results in having different IGD-values but
the ranking of approximation sets is exactly the same in both defi-
nitions; i.e. the Kendall rank correlation coefficient τ = 1, see Sec-
tion 3.4. In addition, the organizers provided a source code to gen-
erate a set of uniformly distributed points along the Pareto front in
the objective space, which is available at the following URL: http:
//dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm. We used
it for computing a reference set R for each function in our analysis.
The cardinality of this reference set is provided in Table 1 for each
function.

3.2 Sampling Strategy
We consider the following strategies in order to sample a subset

of all possible approximation sets for each function.

low-Q: We generate a number of µ = 100 solutions at random in
the solution space, i.e. following a uniform distribution within the
boundary provided for each problem variable [25], from which we
extract the subset of non-dominated vectors.

med-Q: We run a black-box (randomized) EMO algorithm with
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Table 1: Description of the nine benchmark functions used in the experimental analysis and of the average cardinality of the sample

of approximation sets.

feasible Pareto front reference avg. approximation set size
problem # objectives (d) fi-range fi-range Pareto front structure set size low-Q med-Q high-Q

UF01 2 [0, 07] [0, 1] convex no gap 1 000 8.43 100.00 100.00
UF02 2 [0, 05] [0, 1] convex no gap 1 000 11.55 100.00 100.00
UF03 2 [0, 10] [0, 1] convex no gap 1 000 6.92 99.95 100.00
UF04 2 [0, 02] [0, 1] concave no gap 1 000 46.97 99.93 100.00
UF06 2 [0, 25] [0, 1] line gaps 1 000 6.51 83.72 100.00
UF07 2 [0, 07] [0, 1] line no gap 1 000 7.31 100.00 100.00
UF08 3 [0, 25] [0, 1] concave no gap 2 025 18.6 100.00 100.00
UF09 3 [0, 25] [0, 1] plane gaps 2 025 17.87 100.00 100.00
UF10 3 [0, 99] [0, 1] concave no gap 2 025 17.54 99.91 100.00

a population size µ = 100, and consider the subset of mutually
non-dominated approximate solutions identified by the algorithm
as an approximation set. In our experiments, NSGA-II [8] is per-
formed for 1 000 generations, using the SBX crossover operator
with a rate 0.7 and a polynomial mutation with a rate 0.2.

high-Q: We sample uniformly at random a subset of µ = 100 solu-
tions from the reference set. This means that the obtained approx-
imation set does not contain any dominated solutions, but actually
contains ten times less elements than within the reference set for
two-objective problems, and approximately twenty times less ele-
ments for three-objective problems, respectively.

Each sampling strategy is repeated 1 000 times for each multiobjec-
tive problem under consideration. The average cardinality of the
obtained approximation sets is reported in Table 1. In Section 4,
we analyze the correlation between the indicator values obtained
by these approximation set samples.

3.3 Parameter Setting
As reported in Table 1, each approximation set contains at most

µ = 100 solutions. For each function, we consider a fixed refer-
ence set of 1 000 solutions for d = 2 and 2 025 for d = 3. Notice
that, for all problems, the objective function values of all solutions
lie in [0, fmax]. In order to avoid any issue in the computation of
the indicators, in particular for EPS(×), we simply shift the objec-

tive function values in the hyper-box [1, fmax + 1]d without mod-
ifying the shape of the Pareto front. The ideal point z⋆ ∈ IRd is
then defined such that z⋆i = 1 for all i ∈ {1, . . . , d}.

For computing the R-metrics, we generate a set of |Λ| = 100
uniformly-defined weighting coefficient vectors, and we use the
ideal point z⋆ as a reference point. At last, we analyze the impact
of the reference point zmax on the hypervolume indicator with two
different settings: (i) zmax

i = fmax, and (ii) zmax
i = 1.1 × fworst

for all i ∈ {1, . . . , d}, such that fmax is the maximum objective
function value for the problem under consideration, and fworst is
the worst objective function value found for a given problem and
a given sampling strategy. In other words, the first hypervolume
setting with fmax, denoted by RHV (max), corresponds to the anti-
ideal point and only depends on the problem under consideration.
On the contrary, the second hypervolume setting with fworst, de-
noted by RHV (worst), is more tight and depends not only on the
problem, but also on the sampling strategy. For high-quality ap-
proximation sets, the hypervolume reference point based on the
setting with fworst actually corresponds to the nadir point, shifted
by a factor of 1.1 in order to ensure that it is strictly dominated by
any objective vector from the approximation sets.

3.4 Measuring Correlation
In order to measure the association between the indicator val-

ues obtained by a given sample of approximation sets, we consider
the Kendall rank correlation coefficient τ [13], which is a rank-
based nonlinear correlation coefficient measure. Indeed, we do not
provide a more conventional Pearson correlation coefficient, which
gives the linear relationship between the indicator values. Instead,
we focus on the ranking of approximation sets obtained within each
indicator, i.e. by how much do the indicators rank the approxima-
tion sets similarly. In other words, we are not interested in the cor-
relation between the values obtained by each indicator, but rather
on the underlying ranking they obtain within the sample of approx-
imation sets. This is also the reason why we decided not to perform
a (multiple) linear regression analysis.

Let us consider two arbitrary indicators I1 and I2 to be mini-
mized, and a pair (A1, A2) of approximation sets from our sample.
The pair is said to be concordant if I1(A1) > I1(A2) ∧ I2(A1) >
I2(A2), or if I1(A1) < I1(A2) ∧ I2(A1) < I2(A2). On the
contrary, the pair is said to be discordant if I1(A1) > I1(A2) ∧
I2(A1) < I2(A2), or if I1(A1) < I1(A2) ∧ I2(A1) > I2(A2). If
I1(A1) = I1(A2) or I2(A1) = I2(A2), the pair is neither concor-
dant nor discordant. The Kendall coefficient τ quantifies the dif-
ference between the proportion of concordant and discordant pairs
among all possible pairwise approximation sets. It is defined as
follows:

τ =
(% concordant pairs)− (% discordant pairs)

% pairs

The coefficient τ ranges in [−1, 1], from perfect disagreement (τ =
−1), to perfect agreement (τ = 1). When τ is approximately zero,
the indicator values are said to be independent.

4. CORRELATION ANALYSIS
Descriptive statistics (average and standard deviation) on the ob-

tained indicator values are provided in Table 2. Although those
indicator values are not directly comparable since their distribution
obviously depends on the indicator and the test case (benchmark
function and sampling strategy) under consideration, we can still
notice that the average value and the standard deviation typically
decrease with the sampling quality. This means that the better the
sample of approximation sets, the smaller the expected indicator
value, and the smaller the variation around the mean. The only no-
table exception is for the hypervolume with a tight reference point
RHV (worst), because the setting of the reference point is differ-
ent for each sampling strategy in this case. The table also reports
the number of tied indicator values over all pairs of approximation
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Table 2: Average indicator value (avg) and standard deviation (sd) for each benchmark function, approximation quality level (low-Q,

med-Q, high-Q) and set quality indicator. For each setting, the proportional number of occurrences where a pair of approximation

sets obtained the same indicator value is also reported (t). All values are rounded to 10−2, t is given as a percent.

IGD (×10) EPS (+) EPS (×) R2 R3 RHV (max) RHV (worst)

avg (sd) t avg (sd) t avg (sd) t avg (sd) t avg (sd) t avg (sd) t avg (sd) t

low-Q 0.41 (0.04) 0 1.19 (0.09) 0 1.97 (0.08) 0 0.57 (0.05) 0 0.65 (0.06) 0 0.23 (0.02) 0 0.36 (0.03) 0
UF01 med-Q 0.03 (0.01) 0 0.17 (0.04) 0 1.14 (0.04) 0 0.03 (0.01) 0 0.03 (0.01) 0 0.02 (0.01) 0 0.05 (0.02) 0

high-Q 0.00 (0.00) 0 0.03 (0.01) 2 1.02 (0.01) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.00) 0

low-Q 0.20 (0.02) 0 0.61 (0.04) 0 1.52 (0.05) 0 0.28 (0.02) 0 0.32 (0.03) 0 0.18 (0.02) 0 0.28 (0.02) 0
UF02 med-Q 0.02 (0.01) 0 0.10 (0.03) 0 1.09 (0.03) 0 0.01 (0.00) 0 0.01 (0.00) 0 0.01 (0.01) 0 0.03 (0.01) 0

high-Q 0.00 (0.00) 0 0.03 (0.01) 2 1.02 (0.01) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.00) 0

low-Q 0.35 (0.02) 0 1.13 (0.08) 0 2.09 (0.09) 0 0.62 (0.04) 0 0.70 (0.04) 0 0.18 (0.01) 0 0.35 (0.02) 0
UF03 med-Q 0.07 (0.02) 0 0.33 (0.08) 0 1.33 (0.08) 0 0.09 (0.03) 0 0.10 (0.03) 0 0.05 (0.01) 0 0.24 (0.05) 0

high-Q 0.00 (0.00) 0 0.03 (0.01) 1 1.02 (0.01) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.00) 0

low-Q 0.07 (0.00) 0 0.22 (0.01) 0 1.20 (0.02) 0 0.08 (0.00) 0 0.10 (0.00) 0 0.21 (0.01) 0 0.34 (0.01) 0
UF04 med-Q 0.02 (0.00) 0 0.08 (0.01) 0 1.05 (0.01) 0 0.01 (0.00) 0 0.02 (0.00) 0 0.03 (0.01) 0 0.08 (0.01) 0

high-Q 0.00 (0.00) 0 0.03 (0.01) 1 1.02 (0.01) 1 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.01) 0 0.02 (0.01) 0

low-Q 1.74 (0.20) 0 4.60 (0.44) 0 4.69 (0.31) 0 2.40 (0.22) 0 2.90 (0.26) 0 0.25 (0.02) 0 0.39 (0.03) 0
UF06 med-Q 0.10 (0.04) 0 0.42 (0.16) 0 1.41 (0.16) 0 0.11 (0.06) 0 0.13 (0.06) 0 0.02 (0.01) 0 0.19 (0.07) 0

high-Q 0.00 (0.00) 0 0.02 (0.01) 2 1.01 (0.01) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.00) 0

low-Q 0.42 (0.04) 0 1.36 (0.12) 0 2.30 (0.15) 0 0.67 (0.06) 0 0.79 (0.07) 0 0.27 (0.02) 0 0.41 (0.03) 0
UF07 med-Q 0.06 (0.06) 0 0.31 (0.25) 0 1.28 (0.27) 0 0.07 (0.08) 0 0.08 (0.09) 0 0.04 (0.04) 0 0.11 (0.12) 0

high-Q 0.00 (0.00) 0 0.03 (0.01) 4 1.02 (0.01) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.00 (0.00) 0 0.01 (0.00) 0

low-Q 0.67 (0.07) 0 2.47 (0.20) 0 3.34 (0.19) 0 0.85 (0.06) 0 0.92 (0.07) 0 0.15 (0.02) 0 0.28 (0.02) 0
UF08 med-Q 0.06 (0.00) 0 0.69 (0.09) 0 1.69 (0.10) 0 0.06 (0.01) 0 0.06 (0.01) 0 0.00 (0.00) 0 0.04 (0.01) 0

high-Q 0.02 (0.00) 0 0.18 (0.05) 5 1.17 (0.06) 6 0.01 (0.00) 0 0.01 (0.00) 0 0.00 (0.00) 0 0.09 (0.01) 0

low-Q 0.68 (0.07) 0 2.41 (0.22) 0 3.30 (0.20) 0 0.84 (0.06) 0 0.90 (0.06) 0 0.14 (0.01) 0 0.24 (0.02) 0
UF09 med-Q 0.05 (0.02) 0 0.41 (0.11) 0 1.41 (0.11) 0 0.05 (0.01) 0 0.05 (0.01) 0 0.00 (0.00) 0 0.03 (0.01) 0

high-Q 0.01 (0.00) 0 0.10 (0.02) 9 1.08 (0.02) 5 0.01 (0.00) 0 0.01 (0.00) 0 0.00 (0.00) 0 0.04 (0.01) 0

low-Q 3.38 (0.32) 0 10.55 (0.93) 0 10.81 (0.73) 0 4.06 (0.26) 0 4.45 (0.28) 0 0.17 (0.01) 0 0.28 (0.02) 0
UF10 med-Q 0.08 (0.02) 0 0.85 (0.11) 0 1.85 (0.11) 0 0.12 (0.06) 0 0.13 (0.06) 0 0.00 (0.00) 0 0.04 (0.04) 0

high-Q 0.02 (0.00) 0 0.17 (0.05) 5 1.16 (0.06) 6 0.01 (0.00) 0 0.01 (0.00) 0 0.00 (0.00) 0 0.09 (0.01) 0

sets for each test case, i.e. the proportional number of occurrences
where a pair of approximation sets is neither concordant nor discor-
dant in the computation of the Kendall rank correlation coefficient
(τ ). For all indicators but the epsilon indicator variants, we actually
never observe any tied indicator values. For the epsilon indicators,
the number of pairs that are neither concordant nor discordant are
always below 10%.

Let us now analyze the correlation between the indicator val-
ues obtained by the sample of approximation sets for the different
problem functions. It is obviously not possible to report the scat-
ter plot for each test case and each pair of indicators due to the
large amount of data. Instead, Figure 1 reports the Kendall rank
correlation coefficient between all pairs of set quality indicators
for each benchmark function and each sampling strategy. We de-
cided to split the correlation values into different groups, from a
very high negative correlation (τ < −0.75) to a very high positive
correlation (τ > 0.75), as well as an additional group containing
test cases which were reported to be non-significant by the Kendall
coefficient test with a p-value of 0.05. The figure provides the cor-
relation between any pair of indicators (on the x− and y−axes)
for each problem function (from top to bottom) and each sampling
strategy (from left to right). The higher the correlation degree, the
higher the agreement between the two corresponding indicators,
the darker the corresponding area on the heat-map.

Overall, the indicators under consideration are never in conflict
one against another, as there is never a significant amount of nega-
tive correlation. Indeed, for all the test cases, the τ value is actually
always larger than 0.07 when it is significant. However, there does

not exist any two indicators that fully agree with each other on any
of the problem functions (τ < 1.00). The few test cases where the
τ value is larger than 0.98 actually correspond to indicators from
the same family. This confirms that the performance of multiobjec-
tive optimizers cannot be assessed properly by a single set quality
indicator, and that each performance metric actually measures a
different facet of approximation quality. We analyze those corre-
lations in detail, and more importantly, we quantify them for each
indicator below.

IGD: Let us start with the inverted generational distance. For low-
quality approximation sets, the correlation degree between IGD and
any other indicator is quite low (τ < 0.5, expect for EPS(+) where
τ < 0.75). For medium-quality approximation sets, this correla-
tion seems to get higher, but τ remains below 0.75 for all the in-
stances but two-objective problems with a linear Pareto front (UF06
and UF07). It is also worth noticing the strong effect of concav-
ity on the correlation of IGD with other indicators for medium-
quality approximation sets. Indeed, for concave problems, those
correlation values drop substantially. For high-quality approxima-
tion sets, IGD is actually slightly correlated with RHV (worst) for
two-dimensional convex Pareto front (τ > 0.5), but not for other
problems (τ < 0.5). This means that one could be a reasonable
estimator of the other on those cases. This trends is roughly the
same for all other indicators but EPS(+), which is moderately cor-
related with IGD for all two-objective problems, but not as much
for three-objective problems.

Overall, the IGD indicator is fairly correlated with EPS(+) and
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Figure 1: Heat-map Kendall rank correlation τ for each pair of set quality indicators (displayed on both axes), each sampling strategy

(low-Q, med-Q, high-Q) and each problem function (UF01–UF10).
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RHV, especially when the later is based on the (slightly shifted)
worst-found objective function values for the sampling strategy un-
der consideration. On the contrary, the correlation is very low
for EPS(×) and RHV (max). The correlation with the remain-
ing indicators is lower for low-quality approximation sets than for
medium- and high-quality approximation sets. Let us remind that
IGD is the only indicator considered in our analysis which is not

(weakly) monotonic with respect to the Pareto dominance relation.
This means that IGD agrees more with monotonic indicators for
good approximation sets than for bad ones. As a consequence,
IGD might actually be an acceptable measure for algorithm perfor-
mance assessment. Notice that some experiments on the number
of non-compliant measures made by IGD with respect to Pareto
dominance have been recently reported in [11].

As a side remark, the results of the CEC 2009 competition, which
were based on IGD only, might actually be different if another in-
dicator was used to assess the performance of the competing algo-
rithms. It would be worth revisiting those results with a set of com-
plementary quality indicators. Indeed, the competition winner, and
more importantly the understandings we have from the competing
algorithms, might change while using another, or several others, in-
dicator(s) to assess the quality of the identified approximation sets.

EPS: Unsurprisingly, EPS(+) and EPS(×) are highly correlated
with each other for medium- and high-quality approximation sets
(τ is always larger than 0.5, and most of time than 0.75). How-
ever, they are only slightly correlated with each other for low-
quality approximation sets, as with any other indicator. With re-
spect to the remaining indicators, there is a low correlation between
the EPS indicators and R2, R3 or RHV (τ < 0.75), except for
medium-quality approximation sets with a linear or planar Pareto
front (UF06, UF07, UF09). EPS is also moderately correlated with
IGD, as already mentioned above. Let us remind that EPS(+) and
EPS(×) are the only indicators for which we observed tied indica-
tor values. This might explain the tendency to have smaller Kendall
rank correlation coefficient τ compared with other indicators.

R: The R-metrics globally show higher correlation degrees. As
expected, R2 and R3 are highly correlated with each other for all
functions and all types of approximation set samples. The τ value
is actually larger than 0.91 on all the test cases. As mentioned be-
fore, the R-metrics are only moderately correlated with IGD and
EPS. In fact, the correlation degree seems to be particularly small
for low-quality approximation sets and for medium-quality approx-
imation sets with a concave Pareto front (UF04, UF08, UF10). At
last, the correlation between the R-metrics and RHV is particularly
high for low- and medium-quality approximation sets for all prob-
lem functions (τ is always higher than 0.5, except for UF04 and
medium-quality approximation sets where it is below). However,
for high-quality approximation sets, this correlation degree drops
substantially, even if the correlation with RHV (worst) remains sig-
nificant for some of the problem instances, with two objectives and
a Pareto front which is not convex. But overall, and compliant with
the results reported in [23], the correlation between R2 or R3 and
RHV is is in average the highest we obtained for a pair of indicators
belonging to two different families.

RHV: Finally, we focus on the correlation coefficients for RHV.
Both settings of RHV, with a tight and a wide reference point, de-
noted as RHV (worst) and RHV (max) respectively, are highly cor-
related with each other for low- and medium-quality approximation
sets on all functions (τ > 0.75, except for UF04). This correlation
largely decreases for high-quality approximation sets, particularly
for UF06 whose Pareto front is discontinuous. As also pointed out
in [1, 15], this means that the hypervolume indicator might rank

high-quality approximation sets quite differently depending on the
position of the reference point, in our case either as the (shifted)
nadir point or at the maximum objective function vector. In fact, ad-
ditional experiments, not reported here due to space restriction, re-
veal that the correlation between RHV indicator values with differ-
ent settings of the reference point is always very high for low- and a
medium-quality approximation sets (except, once again, for UF04,
i.e. the only instance with a two-dimensional concave Pareto front),
while the setting appears to be more sensitive for high-quality ap-
proximation sets, particularly when there are gaps on the Pareto
front (UF06 and UF09).

In addition, as reported above, RHV is slightly to moderately
correlated with IGD and EPS, whereas it is significantly correlated
with R2 and R3 for low- and medium-quality approximation sets,
but not as much for high-quality approximation sets. This would
actually suggest that the R2 or R3 indicator could potentially be
used to approximate the hypervolume indicator at the early stages
of an indicator-based search process, as does the R2-based multiob-
jective search algorithm from [6], while computationally expensive
hypervolume calculations would be dedicated to the latest refine-
ments, when the approximation set gets closer to the Pareto front.
Of course, this would need to be carefully calibrated depending on
data like the number of objectives, the number of points in the ref-
erence set and in the approximation set, but also on practitioner
parameters like the number of weighting coefficient vectors, which
all polynomially increase the complexity of R2 and R3, whereas the
hypervolume complexity increases exponentially with the objective
space dimension. It would then be worth measuring the impact of
the number of weighting coefficient vectors on the ability of the
R-metrics to estimate the ranking induced by the hypervolume.

5. CONCLUSIONS
In this paper, we experimentally investigated the degree of corre-

lation between the order induced by different set quality indicators.
Our analysis highlights important insights for the performance as-
sessment, the interpretation of preferences, and the design of al-
gorithms in multiobjective optimization. First, our findings clearly
confirms the well-known fact that there does not exist a single set
quality indicator which is able to capture all the aspects of approx-
imation quality, even if none of them are clearly in conflict with
another. Second, the correlation of the epsilon indicator with the
other indicators from our analysis is overall very low. This means
that this indicator actually focus on complementary aspects with
respect to other indicators, but also that it does not allow to cap-
ture all the facets of approximation quality. The same reasoning
applies for the inverted generational distance. For this reason, we
plan to revisit the data from the CEC 2009 competition, where the
inverted generational distance was the single performance measure
under consideration, in order to enhance our knowledge and under-
standings of the competing algorithms by means of supplementary
indicators. Moreover, the hypervolume shows a high correlation
with the R-metrics for completely random solution sets to better
approximations identified by some evolutionary algorithm. As a
consequence, it would be worth investigating more thoroughly the
estimation of the computationally prohibitive hypervolume with the
R2 or R3 indicator, as it might for instance enable to speed up the
selection process of an indicator-based approach using the hyper-
volume, such as SMS-EMOA [4] or HypE [2]. At last, we plan
to extend our analysis with (i) additional indicators such as the av-
eraged Hausdorff distance [21], (ii) additional sampling strategies
potentially mapping to populations maintained by EMO algorithms
while the search process evolves by taking inspiration from [9], and
(iii) additional problem classes, in particular with respect to the
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number of objectives. This will hopefully allow us to increase our
knowledge on the relations between set quality indicators in multi-
objective optimization, as well as the underlying mechanisms that
explain their differences.

Acknowledgements. The authors would like to acknowledge Fabio Daolio

and Joshua Knowles for fruitful discussions related to the results presented

in the paper. This work was partially supported by the Japanese-French

JSPS-Inria project “Threefold Scalability in Any-objective Black-Box Op-

timization” (2015-2017).

6. REFERENCES
[1] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler.

Hypervolume-based multiobjective optimization: Theoretical
foundations and practical implications. Theoretical

Computer Science, 425:75–103, 2012.

[2] J. Bader and E. Zitzler. HypE: An algorithm for fast
hypervolume-based many-objective optimization.
Evolutionary Computation, 19(1):45–76, 2011.

[3] M. Basseur, A. Goëffon, A. Liefooghe, and S. Verel. On
set-based local search for multiobjective combinatorial
optimization. In Conference on Genetic and Evolutionary

Computation (GECCO 2013), pages 471–478. ACM, 2013.

[4] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA:
Multiobjective selection based on dominated hypervolume.
European Journal of Operational Research,
181(3):1653–1669, 2007.

[5] K. Bringmann, T. Friedrich, and P. Klitzke. Efficient
computation of two-dimensional solution sets maximizing
the epsilon-indicator. In Congress on Evolutionary

Computation (CEC 2015), pages 970–977, Sendai, Japan,
2015. IEEE Press.

[6] D. Brockhoff, T. Wagner, and H. Trautmann. R2
indicator-based multiobjective search. Evolutionary

Computation, 23(3):369–395, 2015.

[7] C. A. Coello Coello and N. C. Cortés. Solving multiobjective
optimization problems using an artificial immune system.
Genetic Programming and Evolvable Machines,
6(2):163–190, 2005.

[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation, 6(2):182–197,
2002.

[9] J. Derrac, S. García, S. Hui, P. N. Suganthan, and F. Herrera.
Analyzing convergence performance of evolutionary
algorithms: A statistical approach. Information Sciences,
289:41–58, 2014.

[10] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of
approximations of the non-dominated set. Technical Report
IMM-REP-1998-7, Institute of Mathematical Modeling,
Technical University of Denmark, 1998.

[11] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima.
Modified distance calculation in generational distance and
inverted generational distance. In Evolutionary

Multi-Criterion Optimization (EMO 2015), volume 9019 of
Lecture Notes in Computer Science, pages 110–125,
Guimarães, Portugal, 2015. Springer.

[12] S. Jiang, Y.-S. Ong, J. Zhang, and L. Feng. Consistencies and
contradictions of performance metrics in multiobjective
optimization. IEEE Transactions on Cybernetics,
44(12):2391–2404, 2014.

[13] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1-2):81–93, 1938.

[14] J. Knowles and D. Corne. On metrics for comparing
non-dominated sets. In Congress on Evolutionary

Computation (CEC 2002), pages 711–716, Piscataway, NJ,
USA, 2002. IEEE Press.

[15] J. Knowles and D. Corne. Properties of an adaptive archiving
algorithm for storing nondominated vectors. IEEE

Transactions on Evolutionary Computation, 7(2):100–116,
2003.

[16] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the
performance assessment of stochastic multiobjective
optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Zurich,
Switzerland, 2006. (revised version).

[17] O. Mersmann. emoa: Evolutionary Multiobjective

Optimization Algorithms, 2012. R package version 0.5-0.

[18] O. Mersmann. mco: Multiple Criteria Optimization

Algorithms and Related Functions, 2014. R package version
1.0-15.1.

[19] R Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013.

[20] G. Rudolph, O. Schütze, C. Grimme, C. Domínguez-Medina,
and H. Trautmann. Optimal averaged Hausdorff archives for
bi-objective problems: theoretical and numerical results.
Computational Optimization and Applications, (to appear).

[21] O. Schutze, X. Esquivel, A. Lara, and C. A. Coello Coello.
Using the averaged Hausdorff distance as a performance
measure in evolutionary multiobjective optimization. IEEE

Transactions on Evolutionary Computation, 16(4):504–522,
2012.

[22] D. A. V. Veldhuizen and G. B. Lamont. Evolutionary
computation and convergence to a Pareto front. In Genetic

Programming (GP 1998), pages 221–228, 1998.

[23] S. Wessing and B. Naujoks. Sequential parameter
optimization for multi-objective problems. In Congress on

Evolutionary Computation (CEC 2010), pages 1–8,
Barcelona, Spain, 2010.

[24] H. Wickham. ggplot2: elegant graphics for data analysis.
Springer, New York, USA, 2009.

[25] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and
S. Tiwari. Multiobjective optimization test instances for the
CEC 2009 special session and competition. Working Report
CES-887, School of Computer Science and Electrical
Engineering, University of Essex, 2008.

[26] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of
Pareto set approximations. In Multiobjective Optimization –

Interactive and Evolutionary Approaches, volume 5252 of
Lecture Notes in Computer Science, chapter 14, pages
373–404. Springer, 2008.

[27] E. Zitzler and L. Thiele. Multiobjective optimization using
evolutionary algorithms — a comparative case study. In
Parallel Problem Solving from Nature (PPSN V), volume
1498 of Lecture Notes in Computer Science, pages 292–301.
Springer, Amsterdam, The Netherlands, 1998.

[28] E. Zitzler, L. Thiele, and J. Bader. On set-based
multiobjective optimization. IEEE Transactions on

Evolutionary Computation, 14(1):58–79, 2010.

[29] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. Grunert da Fonseca. Performance assessment of
multiobjective optimizers: An analysis and review. IEEE

Transactions on Evolutionary Computation, 7(2):117–132,
2003.

588




