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ABSTRACT
Real-world optimization problems typically include uncer-
tainties over various aspects of the problem formulation.
Some existing algorithms are designed to cope with stochas-
tic multiobjective optimization problems, but in order to
benchmark them, a proper framework still needs to be es-
tablished. This paper presents a novel toolkit that generates
scalable, stochastic, multiobjective optimization problems.
A stochastic problem is generated by transforming the ob-
jective vectors of a given deterministic test problem into
random vectors. All random objective vectors are bounded
by the feasible objective space, defined by the deterministic
problem. Therefore, the global solution for the determinis-
tic problem can also serve as a reference for the stochastic
problem. A simple parametric distribution for the random
objective vector is defined in a radial coordinate system, al-
lowing for direct control over the dual challenges of conver-
gence towards the true Pareto front and diversity across the
front. An example for a stochastic test problem, generated
by the toolkit, is provided.

Keywords
robust optimization; benchmark problems; multiobjective
optimization

1. INTRODUCTION
Uncertainties are inherent to real-world optimization prob-

lems. The sources of uncertainty can be broadly divided into
three categories: (i) changing or uncertain environmental
parameters, (ii) inaccuracy of evaluation methods, and (iii)
deviation of the actual solution from the identified nominal
solution. Therefore, the robustness of a candidate solution
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to the various uncertainties needs to be considered in addi-
tion to the predicted performance under nominal conditions.

The field of Robust Optimization has been gaining in-
creasing attention over the last two decades, including its
extension to robust multiobjective optimization (RMO). In
a robust optimization framework, a candidate solution is
favoured if it can demonstrate high performance in the face
of the various uncertainties. The objective and constraint
functions are treated as random variables, and robustness
metrics are used to assess and compare candidate solutions.
Common robustness metrics are the worst case scenario, or
aggregated indicators such as the expected value or vari-
ance [2].

The range of available algorithms for robust optimization
is constantly growing. In order to use the right algorithm
for a given application, it is important to clearly identify
the strengths and weaknesses of the different candidate al-
gorithms. This requires a benchmarking framework, similar
to those developed in the field of evolutionary multiobjective
optimization for deterministic problems. These frameworks
include assessment measures [20], test problems [1, 4, 11,
17, 19] and an experimental setting [1, 6, 10]. To our knowl-
edge, no such framework exists for RMO. This paper makes
a first contribution toward the development of a framework
by focusing on the test problem aspect. When benchmark-
ing multiobjective optimizers, a variety of properties can be
included in the test problems, including: geometry of the
optimal set in decision and objective spaces, scalability, sep-
arability, modality, bias, deceptive and flat regions. When
benchmarking robust multiobjective optimizers, these fea-
tures should be retained whist adding additional properties
relating to problem uncertainty.

There is a small literature on test problems for RMO.
Typically, in these studies, symmetric random noise is added
to the decision variables [3, 7, 14, 15, 16] or the objective
functions [5, 9, 12, 18] in a bespoke way that meets the re-
quirements for the specific uncertainties and definitions of
robustness being considered. The problem that is used to
benchmark every suggested algorithm is tailored to the type
of uncertainty and definition of robustness considered in the
study. For example, Deb and Gupta [3], Gaspar-Chuna et
al. [7] and Mirjalili and Lewis [14, 15, 16] considered varia-
tion in decision variables, and therefore robustness is defined
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as either sensitivity of the objectives to variations in decision
space, or as the averaged performance over a neighbourhood
of the candidate solution. The problems developed in these
studies are deterministic functions that demonstrate differ-
ences between the nominal Pareto front and the ‘robust’
front. Similarly, Goh and Tan [9], Knowles and Corne [12],
Syberfeldt et al. [18] and Fieldsend and Everson [5] used de-
terministic test problems with added noise to the objective
values to benchmark their algorithms. This type of prob-
lem is sufficient for the assumption that the ‘true’ objective
vector is masked by measurement noise. The algorithm is
required to overcome the noise and find the deterministic
Pareto front.

The greatest contribution towards a general framework
for creating RMO problems is the work of Goh et al. [8].
In their study, the authors identified some features required
from an RMO test problem:

1. The existing challenges of a deterministic multiobjec-
tive test problem.

2. Tradeoffs between optimality and robustness.
3. Scalability of the stochastic components.

Additionally, a novel method to transform deterministic test
problems into stochastic problems was presented in the study.
The method is based on a parametric configurable noise
function that can be inserted into different parts of the de-
terministic problem. In this manner, the stochastic problem
can include uncertain decision variables, parameters and/or
evaluation functions. However, Goh et al.’s method is an
indirect approach to specifying the desired features. It re-
quires a deep understanding of the deterministic problem
to properly control the stochastic properties of the resulting
function. The generalisability of the approach is therefore
somewhat limited.

This study presents a new approach to RMO test problem
generation that allows for direct control of the stochastic
properties of the test problem, whilst retaining the benefits
of re-use of existing, well-designed and familiar deterministic
test problems. As part of this approach, Goh et al.’s list of
requirements for RMO problems is extended. The following
uncertainty characteristics need to be controlled in order to
create meaningful benchmark problems:

1. Distribution of the uncertain objective vector. This in-
cludes correlation between the objectives, central ten-
dency, variance, skewness etc.

2. Constant or changing distribution for different solu-
tions.

In case the distribution is not constant, the way it changes
dictates additional properties:

3. Increasing/decreasing uncertainty towards more opti-
mal regions.

4. Separate contribution for the uncertainty of individual
decision variables and/or objectives.

5. Changes of the uncertainty due to interacions between
decision variables and/or objectives.

Additionally, these requirements should also be addressed
by the benchmark problem:

6. Existence of a similar deterministic problem to serve as
a well-understood reference for optimal performance.

7. Confinement of the random objective vectors to the
feasible objective space of the deterministic problem.

Taking inspiration from the WFG toolkit developed for de-
terministic multiobjective problems [11], this study encapsu-
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Figure 1: Information flow in a CODeM uncertainty
generator. A random objective vector Z is generated
according to the deterministic decision and objec-
tive vectors x and z, and their relative locations in
decision and objective spaces X and Z, respectively.

lates a novel toolkit for generating scalable, stochastic, mul-
tiobjective optimization problems. The toolkit, named after
the Complex Optimization and Decision Making group (CO-
DeM) from the University of Sheffield, addresses the above
requirements, and can serve as a base for a wider framework
for benchmarking algorithms for RMO. An open-source C++

implementation of the toolkit is available online from https:
//github.com/UoS-CODeM/CODeM-Toolkit. The various
components of the toolkit are described in Section 2, In Sec-
tion 3, the usage of the toolkit is demonstrated by creating a
stochastic benchmark problem. Section 4 concludes the pa-
per with the advantages and limitations of the current work
and the outstanding work required to establish a complete
framework for benchmarking algorithms for RMO.

2. UNCERTAINTY GENERATOR TOOLKIT
In this section, the CODeM toolkit for generating stochas-

tic multiobjective optimization problems is introduced. A
block diagram for a CODeM generated uncertain problem is
depicted in Figure 1. It consists of a deterministic problem
and an uncertainty generator. Consider a general stochastic
multiobjective test problem that maps a vector x from the
decision space X ⊆ Rnx to a random vector Z in objective
space Z ⊂ Rnz . In our approach, first a decision vector
x is evaluated by the deterministic objective functions to
produce a deterministic objective vector z. Next, a random
objective vector Z is generated by the uncertainty genera-
tor, according to the relative location of the solution in both
decision and objective spaces.

2.1 Geometric Representation of Uncertainty
All operators within the toolkit use normalised descrip-

tions of the decision and objective spaces, and the random
objective vector is also defined in normalised objective space.
Before a candidate solution is being processed by the uncer-
tainty generator, it is first normalised as follows:

x̃i =
xi − xi,lb
xi,ub − xi,lb

, i = 1, . . . , nx, (1)

z̃j =
zj − z?j
z??j − z?j

, j = 1, . . . , nz, (2)

where xi,lb and xi,ub are the lower and upper bounds, re-
spectively, of the ith decision variable, and z? and z?? are
the ideal and anti-ideal vectors, respectively1. Whenever a
sample z̃′ is drawn from the normalised random objective

1The toolkit assumes minimization of all objectives. If an
objective needs to be maximized, its inverse should be used.
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(a) The magnitude is de-
scribed by a probability
density function with a fi-
nite support between the
lower and upper limits of
the feasible, normalised ob-
jective space.
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(b) Once the magnitude ρ
is sampled, the vector per-
turbs on a p-norm sphere
with radius ρ within a max-
imum angle. The norm p
determines the curvature of
perturbation.

Figure 2: A representation of a random objective
vector.

vector, it is scaled back to the original objective space to
obtain the sampled objective vector z′:

z′j = z?j + z̃′j(z
??
j − z?j), j = 1, . . . , nz. (3)

Since this paper discusses the internals of the CODeM
toolkit, all vectors are assumed to be normalised. For the
sake of clarity, the tilde notation is omitted hereafter. Unless
otherwise stated, x and z refer to normalised decision and
objective vectors, respectively.

The CODeM toolkit uses polar representation to describe
vectors in objective space. A deterministic objective vector
z is represented by its magnitude and direction:

z = zẑ, (4)

where z is the vector’s Euclidean length, and ẑ is its direction
vector, defined on the nz − 1 simplex, i.e.,

ẑ =
z∑
zi
, i = 1, . . . , nz. (5)

A distribution of a random objective vector Z is also de-
fined in a similar manner. It is represented by a univariate
distribution for its magnitude Z and another distribution
for its direction vector Ẑ. The geometric representation of
a random bi-objective vector is demonstrated in Figure 2.

For a given direction ẑ, the magnitude is defined in a nor-
malised scale ρ ∈ [0, 1], where 0 corresponds to the lower
bound of the feasible objective space in the ẑ direction, and
1 to the upper bound (see Figure 2(a)). The toolkit enables
the user to describe ρ as a random variable, and control its
probability density function (PDF) f(ρ). The support of
f(ρ) is the interval 0 ≤ ρ ≤ 1. In this manner the toolkit
makes sure that for every direction, the magnitude of the ob-
jective vector is bounded within the feasible objective space.

The direction vector is also represented by a random vec-
tor Ẑ. It follows a uniform distribution among all direction
vectors v̂ that lie within a maximum (Euclidean) distance δ
from the deterministic direction vector ẑ:

Ẑ ∼ U

({
v̂ ∈ Rnz

∣∣∣∣∣ ‖v̂ − ẑ‖2 ≤ δ and

nz∑
i=1

v̂i = 1

})
.

(6)
To make sure every sample from the uncertain objective

vector will reside within the feasible objective domain, the
shape of the domain is considered when the uncertain vector

0 0.5 1

z1

0

0.5

1

z2

p = 0:5

p = 1

p = 2

p = 10

Figure 3: The positive quadrant of a p-norm unit
circle for different values of p.

is defined. Once a direction vector ẑ′ is sampled from the un-
certain direction Ẑ, it is projected onto a unit hyper-sphere
of norm p. The new direction vector, denoted ẑ′p becomes:

ẑ′p =
ẑ′

‖ẑ′‖p
. (7)

The norm p defines the curvature of perturbation. Figure 3
depicts the first quadrant of a two-dimensional unit circle
with different norms. When a norm larger than p = 1 is
used, the perturbed objective vector follows a concave ge-
ometry, and a norm smaller than p = 1 follows a convex
geometry. The effect of the norm p on the directional per-
turbation can be seen in Figure 2(b).

2.2 Parametric Description of Uncertainty
An uncertain objective vector generated by the uncer-

tainty generator is composed of three components:
1. Univariate distribution function for the radial compo-

nent.
2. Maximum perturbation distance for the random direc-

tion vector.
3. Curvature norm for perturbations in the perpendicular

direction.
These components can either remain constant or change ac-
cording to the properties of the candidate solution. For ex-
ample, the perturbation norm can stay constant for prob-
lems with simple geometric shapes and vary according to
direction for more complicated shapes of the objective space.

2.2.1 Parametric Distributions
The radial component of an uncertain objective vector is

defined as a PDF f(ρ) over the interval ρ ∈ [0, 1]. The PDF
is composed of n simple parametric distribution functions:

f(ρ) =

n∑
i=1

wifi(ρ), where

n∑
i=1

wi = 1. (8)

Three basic distributions are currently available to choose
from, all defined in a similar fashion according to their posi-
tion and locality. The position defines where the distribution
function resides on the interval, and the locality defines how
concentrated the pdf is in this region.

Uniform Distribution. A uniform distribution U(lb, ub) is
defined by two parameters: lower bound lb ∈ [0, 1] and lo-
cality l ∈ [0, 1]. The upper bound ub is a function of the
lower bound and locality:

ub = 1− l(1− lb). (9)
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The magnitude of the probability function is 1/(ub− lb).
For l = 1, the PDF has infinite value at lb, i.e., lb is the
deterministic value of ρ.

Triangular Distribution. A triangular distribution is also
defined over the interval [lb, ub]. The lower and upper bounds
are determined via the parameters lb and l, like for the uni-
form distribution. The PDF of a triangular distribution ei-
ther linearly increases or linearly decreases. Increasing tri-
angular distribution is defined:

ft↑(ρ) =

{
2(ρ−lb)
(ub−lb)2 , for lb ≤ ρ ≤ ub,

0, otherwise.
(10)

Decreasing triangular distribution is defined:

ft↓(ρ) =

{
2(ub−ρ)
(ub−lb)2 , for lb ≤ ρ ≤ ub,

0, otherwise.
(11)

Smooth Peak Distribution. The toolkit provides an addi-
tional smooth distribution, borrowed from the field of quan-
tum mechanics. This distribution typically describes the lo-
cation of a particle in an infinitely deep potential well (also
known as “particle in a box”) [13, pp. 59–65]. The parti-
cle has zero probability to exist outside a defined interval,
and a certain probability to exist anywhere within the in-
terval. Since it is a smooth function, the probability at the
boundaries is zero.

The PDF is composed of k basis functions of the form

bn(ρ) = A sin (nπρ), n = 1, . . . , k, (12)

where A is a normalisation factor. Every basis function is
multiplied by a complex coefficient

cn =

√
Nn exp (−N)

n!
exp (−i(n+ 0.5)πr), (13)

where r is a position parameter for ρ and N is a locality
parameter. A higher value of N corresponds to a narrower
distribution function around ρ = r. For consistency with
the other distributions in the toolkit, a locality parameter
l ∈ [0, 1] is defined such that

N = 9 l + 1. (14)

The smooth peak PDF is defined in the interval ρ ∈ [0, 1]:

fp(ρ) =

∣∣∣∣∣
k∑
n=1

cnbn(ρ)

∣∣∣∣∣
2

. (15)

For a complex number c = a + ib, the operator |c|2 is the
squared modulus, i.e., |c|2 = a2 + b2.

A summary of the parametric distributions available in
the toolkit is provided in Table 1. Figure 4 depicts how
a PDF is constructed from three basic distributions with
different weights.

2.3 Direction Perturbation
As described in Section 2.1, the uncertain direction vector

Ẑ is controlled by the parameter δ–the radius of perturbation
from the deterministic direction vector ẑ. An additional
parameter that defines the perturbation in the perpendicular
directions is the curvature norm p.

Both parameters can be varied according to the charac-
teristics of the candidate solution as explained in Section 2.4

Distributions Usage Parameters

Smooth
Peak

fp(r, l) r tendency

Increasing
Triangular

ft↑(lb, l) lb lower bound

Decreasing
Triangular

ft↓(lb, l) l locality

Uniform fu(lb, l)

Table 1: Parametric distributions in the toolkit.
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(a) PDFs of three parametric distributions.
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(b) PDF of the augmented distribution.

Figure 4: A PDF of the objective vector magnitude,
combined from three parametric distributions.
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2.4 The Uncertainty Kernel
The various parameters defining the uncertain objective

vector are based on the deterministic properties of the can-
didate solution in design and objective spaces. These prop-
erties can be seen as the kernel of the uncertain objective
vector. The kernel, denoted by the vector Ψ, is composed
of nx + nz + 2 parameters:

Ψ = [Ψr,Ψs,Ψx,1, . . . ,Ψx,nx ,Ψz,1, . . . ,Ψz,nz ] ,

0 ≤ Ψi ≤ 1, i = 1, . . . , nx + nz + 2.
(16)

Remoteness parameter Ψr. Remoteness from the deter-
ministic Pareto front is defined in a similar fashion to ρ in
Section 2.1:

Ψr =
z − zl

zu − zl , (17)

where zl = zlẑ corresponds to the Pareto optimal vector
with the same direction as the deterministic objective vector
z, and zu = zuẑ corresponds to an upper bound for this
direction.

Symmetry parameter Ψs. Symmetry is considered as the
similarity of the objective vector’s components. A perfectly
symmetric vector is one with identical components, i.e., with

the direction vector ẑ =
[

1
nz
, . . . , 1

nz

]
. A perfectly asym-

metric vector has one non-zero component, and zeros for
the rest. The Euclidean length of the direction vector can
take value between ‖ẑ‖ = 1/

√
nz, if the vector is perfectly

symmetric, and ‖ẑ‖ = 1, if the vector is perfectly asymmet-
ric. The symmetry parameter Ψs can take values between 0
and 1 based on its direction ẑ:

Ψs =
‖ẑ‖max − ‖ẑ‖
‖ẑ‖max − ‖ẑ‖min

,

where: ‖ẑ‖min =
1√
nz

, ‖ẑ‖max = 1.

(18)

Decision vector parameters Ψx. For every decision vari-
able xi, where i = 1, . . . , nx, the decision parameter Ψx,i is
equal to x̃i in Equation 1.

Objective vector parameters Ψz. For every objective zj ,
where j = 1, . . . , nz, the objective parameter Ψz,j is equal
to z̃j in Equation 2.

2.5 Transformation Functions
The toolkit offers a set of functional operators to manip-

ulate the kernel’s parameters when they are used as param-
eters of the uncertain vector. All functions accept a value
Ψ ∈ [0, 1] and transform it into a value Φ(Ψ) ∈ [0, 1]. Ta-
ble 2 contains a list of the available transformation operators
and their description. Figure 5 depicts the transformation
functions.

2.6 Sampling
Every sample of an uncertain objective vector Z results

in a different objective vector z′. The following procedure
describes how a sample is generated by the toolkit: First,
a sample ρ′ is drawn from the magnitude univariate distri-
bution Z. Next, a sample direction vector ẑ′ is drawn from

Ẑ. Next, the direction vector is projected on a p-norm unit
hypersphere to obtain ẑ′p. Next, the normalised sample z̃′ is
generated by multiplying the sampled magnitude and direc-
tion: z̃′ = ρ′ẑ′p. Finally, z′ is obtained by rescaling z̃′ to the
original objective space using Equation (3).

The sampling computational cost is considerately smaller
than the cost of calculating the deterministic objective vec-
tor z and the uncertainty kernel Ψ. Once Z and Ψ are de-
fined, there is no need to recalculate them for every sample.
In contrast to other uncertain black-box evaluation functions
that require a new evaluation of the evaluation functions
for every sample (e.g., [8]), the computational complexity of
large samples from a CODeM generated vector is moderate.

3. USING THE CODEM TOOLKIT
The following procedure describes how to use the CODeM

toolkit to generate a stochastic multiobjective optimization
problem:

1. Define a deterministic multiobjective problem
2. Define a radial probability function:

(a) Choose parametric distributions
(b) For each distribution, define parameters as func-

tions of kernel parameters
(c) Assign a weight for each distribution

3. Define the directional distribution:
(a) Define perturbation radius as a function of kernel

parameters
(b) Define perturbation curvature norm as a function

of kernel parameters

3.1 An Example Stochastic Test Problem
The following example problem is provided to demon-

strate to use the toolkit.

Deterministic Problem. A variant2 of DTLZ1 [4] is used.
It is a scalable, separable, multimodal problem, with nz − 1
variables responsible for the direction of the objective vec-
tor, and the remainder for its magnitude. The feasible ob-
jective space is bounded between two parallel hyperplanes∑nz
j=1 zj = 0.5 and

∑nz
j=1 zj = 1.125(nx − nz + 1) + 0.5.

Radial Probability Function. A uniform distribution with
the deterministic value as the lower bound. The locality of
the distribution is inversely correlated to the optimality of
the deterministic vector. Solutions that are very far from
the deterministic front (i.e., Ψr ≥ 0.5) have no radial uncer-
tainty at all (i.e., maximum locality). As the solutions get
closer to the deterministic front, the locality decreases, and
the degree of radial uncertainty increases:

f(ρ) = fu

(
ρ,Ψr, 0.9 + 0.1ΦZ(Ψr, 0.0, 1.0)

)
. (19)

Directional Distribution. The Pareto front of the deter-
ministic problem is affine. Therefore, the perturbation norm
p = 1 is used. The perturbation radius δ is very small for
high symmetry, and higher at the boundaries of the objec-
tive space:

δ = 0.02 + 0.1ΦLD(Ψs). (20)

2The 100 scaling factor is removed from the distance func-
tion g(xM ) in [4].
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Function Description Parameters Definition

Linear Decrease Function values decrease at a con-
stant rate.

ΦLD(Ψ) = 1−Ψ

Skewed Increase Function values increase at a
changing rate. Sensitive to
changes of high Ψ values when
0 < α < 1 and low values when
α > 1.

α > 0 Skewness ΦSI(Ψ, α) = Ψα

Skewed Decrease Function values decrease at a
changing rate. Sensitivity as for
ΦSI.

α > 0 Skewness ΦSD(Ψ, α) = 1−Ψα

Zero on Value Parapolic function of width β with
a minimum (α, 0). Function val-
ues equal to 1 outside α± β/2.

α ∈ [0, 1] Zero value ΦZ(Ψ, α, β) = min
(

4(Ψ−α)2

β2 , 1
)

β > 0 Width

One on Value Parapolic function of width β with
a maximum (α, 1). Function val-
ues equal to 0 outside α± β/2.

α ∈ [0, 1] One value ΦO(Ψ, α, β) = max
(

1− 4(Ψ−α)2

β2 , 0
)

β > 0 Width

Table 2: Transformation functions.
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Figure 5: Transformation functions.
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This increases the difficulty in finding the boundary solu-
tions.

The problem is scalable in both decision and objective
spaces. Its variants with two and three objectives are de-
picted in Figure 6. Ten randomly generated solutions were
evaluated by the stochastic problem, together with a smaller
set of evenly spaced Pareto optimal solutions to the deter-
ministic problem. For every solution, the deterministic ob-
jective vector z is marked with a grey circle, and 50 samples
from the random objective vector Z are marked with black
dots.

4. CONCLUSIONS
This study has articulated the need for a framework for

benchmarking robust multiobjective optimization algorithms
and identified the requirements for test problems that would
form a key component of the framework. Based on these re-
quirements, the CODeM toolkit has been proposed. The
toolkit possesses the following advantages:

1. With the use of a small number of operators, various
challenges can be easily included.

2. All operators are parametric, which allows the user to
create meaningful benchmarks with arbitrary difficul-
ties.

3. Readily available deterministic benchmark problems
can be used, without the need to manipulate their in-
ternal structure in a bespoke manner.

4. Interesting combinations of challenges introduced by
the deterministic function and the uncertainty gener-
ator can be created.

5. The toolkit ensures all uncertain objective vectors are
defined within the feasible deterministic objective space.
This means the deterministic optimal set can serve as
a reference for the optimal robust set, and for the ap-
proximation set obtained by the algorithm.

6. Difficulty due to uncertainty is related to the main
challenges of multiobjective optimization, i.e., spread
and convergence. Increased uncertainty in the radial
direction hinders convergence while increased uncer-
tainty in the perpendicular directions makes it more
difficult to find a set with a good spread across the
robust front.

Nevertheless, the toolkit also has some limitations due to
the use of a radial coordinate system to describe random
objective vectors:

1. The feasible objective space must be known to ensure
the random objective vectors are bounded by the de-
terministic objective space. To describe the objective
space in radial coordinates, a functional relation must
be identified between the deterministic direction vec-
tor and the boundaries of the objective space in this
direction. It might be difficult to describe objective
spaces with complicated geometries such as discon-
nected spaces or the presence of ‘holes’ within the ob-
jective space. These examples require a description
of infeasible intervals between the lower and upper
boundaries. However, once the infeasible intervals are
identified, it becomes straightforward to limit the ran-
dom objective vectors to the feasible space, by setting
the PDF over the infeasible intervals to zero.

2. It is not possible to define uncertainty on a per-objective
basis and, as a consequence, it is also not possible to

define an objective to possess no uncertainty. These
issues can be resolved by excluding objectives of this
type from the generator and defining their uncertainty,
where it exists, separately.

4.1 Future Work
This study is a crucial first step towards the establish-

ment of a benchmarking framework for RMO. Other aspects
of the framework that still require consideration include ro-
bustness indicator definitions, development of performance
indicators, and a structured procedure for comparing algo-
rithms according to useful hypotheses.

Once a prototype framework is established, the following
studies can be made as a direct continuation to this study:

1. Generation of a test suite using the toolkit, addressing
various challenges for RMO.

2. Identification of robust Pareto fronts according to dif-
ferent robustness indicators.

3. Comparison of algorithms across instances of problems
taken from the test suite. Of particular interest will be
the extent to which algorithms explicitly designed for
RMO are able to outperform existing, state-of-the-art,
deterministic optimizers.
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