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ABSTRACT

Modern massive data sets often comprise of millions of records
and thousands of features. Their efficient processing by tra-
ditional methods represents an increasing challenge. Feature
selection methods form a family of traditional instruments
for data dimensionality reduction. They aim at selecting
subsets of data features so that the loss of information, con-
tained in the full data set, is minimized. Evolutionary fea-
ture selection methods have shown good ability to identify
feature subsets in very-high-dimensional data sets. Their
efficiency depends, among others, on a particular optimiza-
tion algorithm, feature subset representation, and objective
function definition. In this paper, two evolutionary meth-
ods for fixed-length subset selection are employed to find
feature subsets on the basis of their entropy, estimated by
a fast data compression algorithm. The reasonability of the
fitness criterion, ability of the investigated methods to find
good feature subsets, and the usefulness of selected feature
subsets for practical data mining, is evaluated using two
well-known data sets and several widely-used classification
algorithms.
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1. INTRODUCTION

Mining data and extracting knowledge from high-dimen-
sional data is a challenging problem. Many traditional data
mining and machine learning methods struggle with the vol-
ume and dimension of data generated nowadays by infor-
mation and communication technology, industrial applica-
tions, and modern cyber-physical systems including sensor
and actuator networks, Internet of Things, and e.g. security
and surveillance applications. The challenges, faced by tra-
ditional data processing methods in very-high-dimensional
spaces, are many-faceted. They span from the curse of di-
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mensionality [25] and outlier detection [2] to e.g. noise iden-
tification and removal [28]. From a computational point of
view, the analysis of high-dimensional data represents for
many widely-used data processing methods a performance
bottleneck.

Together with dimensionality reduction, clustering, and
feature extraction, feature subset selection is a traditional
data pre-processing technique [19]. It aims at reducing the
dimensionality of an investigated problem, represented by
a complex data set, by selecting a subset of features (at-
tributes, columns) that represents the original data with
high fidelity.

There are several high-level feature subset selection ap-
proaches based on statistical [19], geometric, and e.g. in-
formation theoretic [4] properties of the underlying data.
Nature-inspired algorithms have shown good ability to find
feature subsets in the past [9]. They apply different high-
level population or trajectory-based metaheuristic strategies
to represent and iteratively improve a candidate feature sub-
set or subsets. The feature subsets, explored in course of
the metaheuristic search, are ranked using selected evalua-
tion criteria. Evolutionary methods have demonstrated the
ability to find good feature subsets with respect to used eval-
uation criteria [9]. Their accuracy and performance is, how-
ever, tightly linked to the feature subset representation and
to the fitness function they employ.

In this work, we propose a new feature subset evalua-
tion function and compare the ability of two recent evolu-
tionary methods for fixed-length subset selection to discover
high-quality feature subsets when they use a fitness function
based on this measure. The proposed evaluation criterion is
studied in detail and its usefulness in context of practical
data mining is assessed.

An experimental evaluation of the proposed approach is
performed on two well-know classification data sets from the
UCI machine learning repository [18]. Two different evolu-
tionary methods are employed to find small subsets of all
features in these data sets and several traditional machine
learning algorithms are applied to classify the data on the
basis of selected feature subsets only. The data sets, used in
the experimental part of this research, have rather small size.
However, their modest dimensions enable a thorough anal-
ysis of the solution space that needs to be explored by the
evolutionary methods. The fitness function is computed for
all possible feature subsets of given size and its relationship
to the accuracy of the classification algorithms is assessed.

The rest of this paper is structured in the following way:
first, the feature subset selection problem is introduced and



formally defined in section 2. Moreover, recent evolutionary
feature subset selection methods are reviewed in section 2.1.
The notion of entropy and its role in the area of feature sub-
set selection is summarized in section 3. Entropy-based fea-
ture subset selection algorithms are briefly discussed in sec-
tion 3.1. A new fitness function, genetic algorithm, and
differential evolution for entropy-based feature subset selec-
tion are detailed in section 4 and extensive computational
experiments are presented in section 5. Finally, the work is
summarized and major conclusions are drawn in section 6.

2. FEATURE SUBSET SELECTION

Feature subset selection is a high-level procedure that
seeks an optimum subset of data features selected according
to a particular criterion (set of criteria) [19]. In a general
data set, Y = {AUZ}, comprising of a set of input features,
A ={ai,...,an}, and a set of decision (target) features, Z,
it looks for a subset, B C A, that has the highest evaluation
score, feval(B) [9} This process can be defined as a general
search [19] or optimization [9] problem.

Feature subset evaluation criteria usually depend on the
specific purpose of feature selection. In data mining and
classification, it often aims at removing redundant and ir-
relevant features that can mislead some data processing al-
gorithms [19]. Two general classes of feature subset selec-
tion criteria are used most often [19, 9]. Wrapper-based
approaches look for subsets of features for which particu-
lar classification algorithm reaches the highest accuracy. In
contrast, filter-based approaches are classifier independent.
They utilize various indirect feature subset evaluation mea-
sures based on e.g. statistical, geometric, and information-
theoretic measures.

2.1 Evolutionary feature subset selection

Nature-inspired metaheuristics have been extensively uti-
lized for feature subset selection. A recent review [9] shows
many examples of evolutionary and swarm-based feature se-
lection methods. Genetic and memetic algorithms, simu-
lated annealing, particle swarm optimization, ant colony op-
timization and e.g. artificial bee colonies are only the major
nature-inspired algorithms used for feature subset selection
in the past.

They all apply different metaheuristic operations and em-
ploy various types of feature subset models. Genetic algo-
rithms work with binary or other discrete feature subset rep-
resentations whereas real-parameter optimization methods
such as the particle swarm optimization algorithm translate
this combinatorial optimization problem into the continu-
ous domain. The fitness (objective) functions, utilized by
these methods, are plentiful and can include both, filter and
wrapper-based feature subset evaluation measures [9].

In this work, we compare the ability of a recent genetic
algorithm and differential evolution for fixed-length subset
selection to find good feature subsets. The investigated evo-
lutionary methods adopt a filter-based approach to feature
subset ranking that uses a compression-based entropy esti-
mation algorithm to evaluate the quality of selected feature
subsets. The concept of entropy and the rationale of the
proposed approach is discussed in the next section.

3. INFORMATION ENTROPY

Entropy is a general concept defined by Shannon [24] that

934

expresses the average amount of information contained in a
message. Entropy of a random variable, X, consisting of a
sequence of values, x1,Z2,...,Zn, is defined by

H(X) = —Zp(l’i)logz P(z;), (1)

where P(z) is the probability of the symbol, z, appearing
in the sequence, X. However, entropy of a single variable is
not enough for selection of useful features. Therefore, several
derived entropy-based measures were defined. Conditional
entropy H(X]Y), for example, defines the amount of ran-
domness in a variable, X, with respect to another random
variable, Y. Information gain [22] measures how the en-
tropy of X decreases with the knowledge Y. This measure
reflects the amount of added information and, therefore, is
very useful for an efficient comparison of data features. It
is a key part of the C4.5 classification and decision tree al-
gorithm [22]. Nevertheless, a wide variety of sophisticated
entropy-based feature selection methods has been devised in
the past.

3.1 Entropy-based feature selection

Various forms of entropy calculation and estimation are
frequently used in many application areas, especially in com-
putational linguistics, natural language processing, and in-
formation processing. Berger et al. [3] proposed an iterative
feature selection (IFS) algorithm that uses a maximum en-
tropy approach. Largeron et al. [16] compared four different
entropy-based measures for text classification. The authors
also proposed a new measure that combined the entropy of a
word with its distribution among documents in a collection.
Mutual information was used as a feature subset evaluation
measure in [30]. Under certain circumstances, it utilized
an algebraic combination of the pairwise mutual informa-
tion between data features to approximate their mutual in-
formation in a high-dimensional space. The feature subset
selection process required in that approach an exhaustive
search to find optimum feature subsets. Jaganathan and
Kuppuchamy [11] proposed a fuzzy entropy-based measure
for medical data classification. They computed entropy us-
ing fuzzy membership values obtained by the Fuzzy C-means
clustering algorithm applied to all features. The best fea-
ture subsets were then selected using one of three distinct
strategies.

A comparison of six feature selection algorithms based on
entropy is provided in [4]. After a thorough analysis, the
authors concluded that there is no single best feature se-
lection algorithm and each surveyed method had its pros
and cons. Zeng et al. [29] investigated in another work the
risk that some features can be removed even though they
have a high classification ability. Such ability can be hidden
and is revealed only in combination with other data fea-
tures. In order to address this problem, a method based on
so called neighborhood entropy was proposed and evaluated
using game theory. A non-parametric differential entropy
estimator based on the nearest neighbors of a sample data
set was proposed by Nilsson and Kleijn [20]. The estimator
works for data that lies on a differentiable d—dimensional
manifold and its underlying random process has a differen-
tiable probability density function. Jiang et al. [12] sug-
gested recently a novel, scalable algorithm for feature selec-
tion based on the rough set theory.

This overview demonstrates that different types of entropy



can be used as valid classifier-independent feature selection
criteria. Practical entropy evaluation is an important part
of all methods that use entropy-based concepts for feature
selection. In many cases, computationally efficient entropy
estimators are used in place of exact information measures.

3.2 Compression-based entropy estimation

Entropy evaluation is a difficult task. The computation of
advanced measures such as conditional entropy is therefore
even more complicated. Compression-based entropy esti-
mates are often used for entropy approximation in practical
settings [17, 26]. Data compression involves, in fact, a direct
computation of the theoretical entropy contained in a block
of data. The link between data compression and entropy
is possible due to the dual relationship between Shannon
entropy, H, [24] and Kolmogorov complexity [13]. The Kol-
mogorov complexity, K (z), of a binary string, x = {0, 1}, is
the length of the shortest binary program with no input that
can generate = [13]. The Kolmogorov complexity of a string,
x, given another string, y, is denoted K (z|y). It is defined as
the length of the shortest binary program for universal pre-
fix Turing machine that, on input y, outputs z [13]. K(z|y)
corresponds to conditional Shannon entropy, H(X|Y'). Un-
fortunately, the Kolmogorov complexity is non-computable.
Li et al. [17] and Cilibrasi [7] transformed this concept into
a computable form by associating it with lossless data com-
pression [17, 26]. The value of K(z|y) is approximated by
C(z - y), where C(z - y) is the compressed size of a concate-
nation of z and y. Li and Vitanyi [17, 26] proved that any
compression algorithm that satisfies a set of constraints, in-
cluding the requirement that C(z) ~ C(z - ), can be used
to approximate Kolmogorov complexity.

The compression of data features is a non-trivial prob-
lem. Real-world data is usually represented by floating-point
values. Compressing sequences of floating-point numbers
is due to their specific representation a difficult problem.
However, several efficient floating-point data compression
algorithms exist. Omne of the best methods for the com-
pression of double-precision values is due to Burtscher and
Ratanaworabhan [5]. The algorithm combines the results
from two value predictors and stores the difference using a
prefixed code. According to our experiments, it satisfies the
requirements for a compression-based approximation of Kol-
mogorov complexity. In this work, it is used to evaluate the
quality of feature subsets.

4. ENTROPY-BASED FEATURE SUBSET SE-

LECTION BY GENETIC ALGORITHMS
AND DIFFERENTIAL EVOLUTION

Over the last decades, evolutionary methods [1] have been
successfully used to solve a number of hard optimization
problems. Two widely-used evolutionary metahuristics are
in this study used to find subsets of features in real-world
data sets. In order to do that, a novel features subset eval-
uation measure, based on a fast compression-based approx-
imation of data entropy, is proposed and tested in context
of the evolutionary methods.

4.1 Genetic Algorithms and Differential Evo-
lution

Genetic algorithms (GAs) and Differential Evolution (DE)
are two popular population-based evolutionary metaheuris-
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tics [1, 21]. They both solve complex optimization prob-
lems by a programmatic evolution of an encoded population
of candidate solutions that are evaluated using a domain-
specific fitness function. The artificial evolution is imple-
mented by an iterative application of various operators that
trigger different kinds of problem space exploration strate-
gies.

GAs operate on a discrete representation of candidate so-
lutions and problem encoding is an important part of their
problem solving strategy. The encoding translates candidate
solutions from a problem space (phenotype) to an encoded
search space (genotype) that is explored by the algorithm.
It is defined by chromosome data structure and by an en-
coding (decoding) function [8]. The data structure specifies
the actual search space, its size, and shape.

GAs employ two main operators, crossover and mutation.
Crossover is the principal operator of genetic algorithms
distinguishing them from other population-based stochastic
search methods [1]. It is the primary creative force behind
the GA process that is intended to re-combine parent chro-
mosomes in a stochastic manner and to propagate building
blocks (low-order, low-defining-length schemata with above
average fitness) from one generation to another. Crossover
creates new (higher-order) building blocks by combining low-
order ones and introduces to the population large changes
with only small disruption of existing building blocks [27].
In contrast, mutation is expected to discover new genetic
material by random perturbations of chromosome structure.
As a result, new building blocks can be created or old ones
destroyed [27].

The DE, on the other hand, is an evolutionary algorithm
for real-parameter optimization [21]. It evolves a popula-
tion of real-encoded candidate vectors by differential muta-
tion and crossover [21]. During the optimization, the DE
generates new vectors that are scaled perturbations of ex-
isting population vectors. The algorithm perturbs selected
base vectors with the scaled difference of two (or more) other
population vectors in order to produce the trial vectors. The
trial vectors compete with members of the current popula-
tion with the same index called the target vectors. If a trial
vector represents a better solution than the corresponding
target vector, it takes its place in the population [21].

GAs and DE are successful optimization methods with
many applications. They both are highly parallel popula-
tion based stochastic search metaheuristics. The traditional
GAs use a discrete representation (encoding) of candidate
solutions while the DE operates on real-encoded candidate
vectors. Each algorithm uses different high-level operations
to evolve the population. It results in different search strate-
gies and different directions found by the algorithms when
solving a particular problem. Both methods have been re-
cently used to solve problems involving fixed-length subset
selection [14, 15]. In the next sections, we define a novel
fitness function for feature subset evaluation and summarize
the basic principles of a GA and a DE for feature subset
selection.

4.2 Compression-based feature subset evalu-
ation

Fitness function is the only domain-specific element of the
GA and DE for feature subset selection. It uses a fast lossless
compression algorithm, FPC, [5] to estimate the entropy
of selected feature subsets. The evaluation of a candidate



solution, e, representing a subset of k features, (ci,...
is defined by

ck),

fcval(c) = FPC(01 cCQ (2)
where FPC is the compressed length of the sequence of con-
catenated features selected by e¢. The compressed size of a
fixed-length feature subset is assumed to be proportional to
its entropy and information content. Feature subsets with
large entropy and rich information content are expected to
have larger compressed sizes than subsets of highly corre-
lated features. Compressed feature subset size is in the in-
vestigated evolutionary metaheuristics used as fitness func-
tion. However, because the traditional DE is defined as a
minimization algorithm, the fitness function is transformed
into

ck),

- emld)
FPC(fi -+ [n)’

where f1,..., fv is the concatenation of all input features
of a data set. The fitness function is minimized by both
investigated algorithms.

4.3 GA for feature subset selection

The GA for feature subset selection, employed in this
work, uses a compact chromosome encoding and special ge-
netic operators that enable the use of a full-flavoured GA
with crossover and mutation [15]. The encoding is based
on the ordering of genes in chromosomes and prevents the
creation of invalid individuals in course of the evolution. A
subset of k features from N is in this approach represented
by a chromosome, c, defined by

fat(e) ®3)

.Ck),
V(i,7) €{0,...N}:ci £¢cj, i<j = ¢ <cj,

C = (Cl,. .
(4)

where ¢; and c¢; are indices of selected features. An index-
based subset encoding is invariant to the ordering of genes.
However, the ordering must be maintained during the ge-
netic search process to avoid the inception of invalid in-
dividuals. Because of that, order-preserving crossover and
mutation operators are used. Special genetic operators are
required because this encoding differs from that used for
permutation-based combinatorial optimization problems and
the traditional order-type crossover operators (e.g. order

crossover, partially matched crossover, uniform partially matched

crossover, etc. [6]) cannot be used.

The order-preserving mutation operator replaces the ith
gene, ¢;, in a chromosome, ¢, by a random value taken from
the interval defined by its left and right neighbour, as defined
in eq. (5)

urand® (0, ci+1), if i=0
mut(c;) = S urand(ci—1,ci41), if i€ (0,N—1), (5)
urand(ci—1, N), if i=N-1
where ¢ € {0, ..., N} and urand(a, b) selects a uniform pseudo-

random integer from the interval (a, b) (whereas urand®(a, b)
selects a uniform pseudo-random integer from the interval
[a,b)). This mutation operator guarantees that the ordering
of indices within the chromosome remains valid after the
mutation. However, the order-preserving mutation of the
ith gene has no effect on chromosomes for which it holds
that (C2‘71 + 1) =c; (Ci+1 — 1).
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The order-preserving crossover operator is based on the
traditional one-point crossover [1]. It selects a random po-
sition, 7, in parent chromosomes, ¢; and ¢z, and checks if
it can be used for crossover. A position, i, is suitable for
crossover iff eq. (6) is true.

(6)

If eq. (6) does not hold for ¢, the remaining positions in the
chromosomes are sequentially scanned in the search for a
suitable crossover location (i.e. a position for which eq. (6)
holds). It should be noted that an order-preserving crossover
between 2 chromosomes might not be always possible.

c1,i < €241 N\ C2i < C1it1

4.4 DE for feature subset selection

The investigated DE for feature subset selection is based
on the /DE/rand/1 version of the algorithm [21] and uses
the traditional DE crossover and mutation operators. It
translates the combinatorial optimization problem into the
continuous domain using an intuitive candidate representa-
tion that was previously employed to solve the p—Median
problem [14].

A candidate solution is in this approach represented by
a real-valued vector, ¢, of the size k. Each vector, ¢, is
decoded into a set of k feature indices, B. Every floating-
point coordinate of ¢, ¢;, is in this process truncated and
added to B. If trunc(c;) already belongs to B, the next
available feature that is not in B yet is added to the subset.

5. EXPERIMENTS

A series of computational experiments was conducted in
order to evaluate the ability of the GA and the DE to find
good feature subsets. Two well-known data sets, Hepati-
tis and Spambase, were downloaded from the UCI machine-
learning repository [18] and used to find subsets of 2, 3, 4,
5, 10, and 15 features, respectively. In order to validate
the proposed fitness function and its usefulness in the con-
text of practical data mining and classification, the data
sets were processed by several traditional classification algo-
rithms. The battery of classification methods, used in this
research, consisted of the classification and regression tree
algorithm (CART), Naive Bayes classifier (NB), and two
variants of the k-Nearest Neighbour algorithm with £ = 1
(kNN(1)) and k& = 3 (kNN(3)), respectively [10]. These clas-
sification algorithms were selected due to their wide use in
the field of data mining and because similar types of clas-
sifiers (C4.5 and Naive Bayes classifier) were employed to
evaluate various nature-inspired feature selection methods
in a recent survey [9].

Properties of the test data sets and the number of classi-
fication errors, obtained by each classifier for each data set,
are summarized in table 1. Apparently, CART and kNN(1)
were able to classify both full data sets with the least error.

Table 1: Data set properties and the number of classification
errors for full data sets.

Classification errors

Dataset Attrs.  Records CART NB kNN(1) kNN(3)
Hepatitis 20 80 0 11 8 13
Spambase 58 4601 3 513 3 216




5.1 FPC as a feature subset evaluation crite-
rion

All possible subsets of 2, 3, and 4 features, respectively,
were analyzed for the test data sets. The value of the fit-
ness function, FPC, and the classification error of all utilized
classifiers were computed for each feature subset in order to
discover the relationship between FPC and classification er-
ror. This relationship was also validated by Spearman’s rank
correlation [23], as summarized in table 2.

Table 2: Rank correlation (Spearman’s p and p—value) be-
tween FPC and the number of classification errors on the
test data sets. The p—value is shown in parentheses.

Classifier
Dataset CART NB kNN(1) kNN(3)
Hepatitis ~ -0.786 -0.039 -0.781 -0.688
(3.9E"7)  (0.6) (2.2E736)  (2.5E72%)
Spambase  -0.840 -0.300 -0.534 -0.530
(0.0) (1.2E73%)  (1.7E7''8)  (4.6E'19)

The table illustrates that the correspondence between FPC
and the classification error depends on particular classifier
and data set. There is a high negative correlation between
FPC and CART errors on both test data sets. The num-
ber of NB classification errors exhibits the lowest correlation
with FPC. Still, there is a low negative correlation between
FPC and NB classification errors on the Spambase data set.
The number of classification errors of both k-Nearest Neigh-
bour classifiers exhibit moderate negative correlation with
FPC. The results of this analysis are graphically illustrated
in fig. 1 and fig. 2, respectively. The figures clearly show that
high FPC values correspond to feature subsets with lower
classification error. However, as shown especially in fig. 1,
good feature subsets can be associated also with low FPC
values. This trend is less pronounced on the larger Spambase
data set (fig. 2). The figures also document that the Naive
Bayes classifier performs poorly on both test data sets (sec-
ond columns of fig. 1 and fig. 2, respectively). These results
show that the FPC is a reasonable feature subset evaluation
measure. Evolutionary search for feature subsets with high
FPC value will lead to feature subsets (i.e. reduced data
sets) that model the original data with low error and high
accuracy.

5.2 Evolutionary feature subset selection

Both investigated evolutionary methods for feature sub-
set selection were implemented in C+4 and used to find
subsets of features in the Hepatitis and Spambase data sets.
The GA used a steady-state replacement scheme [1] with
generation gap 2 (offspring chromosomes immediately en-
tered the population), population size 100, probability of
mutation m = 0.3, probability of crossover c 0.8, and
maximum number of generations 5,000. The DE was a tra-
ditional /DE/rand/1 variant of the algorithm with scaling
factor F' = 0.5, mutation probability C' = 0.9, population
size 50 and the maximum number of generations 200. Both
method used fst, defined in eq. (3), as the fitness function.
The parameters of both methods were selected on the basis
of best practices and initial trial-and-error runs. The maxi-
mum number of generations was set so that the total num-
ber of fitness function evaluations was in both algorithms
the same (10,000).
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The algorithms were used to find subsets of 2, 3, 4, 5, 10,
and 15 features, respectively. To cope with their stochastic
nature, all performed experiments were repeated 50 times.
The results of the evolutionary search for feature subsets by
both methods are shown in table 3.

The table illustrates that both methods were able to find
feature subsets with good FPC values in the long run. The
best found and average feature subsets, discovered by the
GA and the DE, always reached high FPC values. However,
the worst feature subsets, found during the 50 independent
trials by the GA, reached only low FPC for all feature subset
sizes on the Hepatitis data set and for the subsets of 2 and
3 features also on the Spambase data set. The DE, on the
other hand, was in most cases able to find feature subsets
with high FPC values also in the worst case. Lower values
of the standard deviation, o, indicate stability and good
convergence of this algorithm. The experiments with the
Spambase data set produced different results, though. The
DE was in this case better than the GA only for small feature
subsets. On the contrary, it was outperformed by the GA
for larger feature subsets with k € {4,5,10,15}.

The results of this comparison were validated by the t-
test [23] at confidence level a = 0.05. The test showed that
the DE was on the Hepatitis data set significantly better
than the GA for all k € {2,3,4,15}. The differences be-
tween the results obtained on this data set by the GA and
the DE for the subsets of 5 and 10 features, respectively,
were found insignificant. The differences between the re-
sults obtained by the GA and the DE on the Spambase data
set were statistically significant at confidence level a = 0.05
only for the subsets of 10 and 15 features, respectively. In all
other cases, the differences between the final results found
by the GA and the DE were insignificant. It means that the
low quality solutions, found by the GA in the worst runs
of the Spambase experiment, can be treated as exceptional,
outlying cases. The evolved subsets of 2, 3, and 4 features

Table 4: The percent of feature subsets with FPC lower than
best, average, and worst subsets found by the investigated
methods.

GA percentile DE percentile

Datasetk | best average  worst | best average  worst
Hepati 2 99.42 57.89 2.34 99.42 99.42 99.42
tis 3 | 100.00 94.22 24.10 | 100.00 100.00 100.00

4 99.96 97.81 33.13 99.96 99.96 99.96
Spam 2 | 100.00 99.81 47.99 | 100.00 100.00 100.00
base 3 | 100.00 99.99 4.97 100.00  100.00 100.00

4 | 100.00 100.00 100.00 | 100.00 99.99 99.99

were checked against all feature subsets of the same size and
the percent of all subsets with worse FPC (i.e. the percentile
score of the evolved feature subsets) was computed. The re-
sults of this analysis are summarized in table 4. We note
that the best found feature subsets reached in all cases the
best possible FPC value. In case their percentile score is
lower than 100, it is because multiple subsets with the same
FPC value existed in the data set.

The quality of the evolved feature subsets in terms of clas-
sification error, obtained by the employed classification al-
gorithms, is illustrated in fig. 3. The figure shows for both
test data sets the number of errors obtained by CART and
kNN(1) applied to all evolved 2-feature subsets. The fea-
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Figure 1: The relationship between the proposed fitness function, FPC, and the classification error for all subsets of 2 (1st
row), 3 (2nd row), and 4 (3rd row) features on the Hepatitis data set. The classifiers are CART (1st column), Naive Bayes
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Feature subsets are ordered by FPC.

Table 3: The final FPC of feature subsets evolved by the GA and the DE.

FPC of GA-evolved feature subsets |

FPC of DE-evolved feature subsets

Dataset k | best average (o) worst | best average (o) worst
Hepatitis 2 | 1195 939.52 (331.43) 230 1195 1195 (0) 1195
3| 1796 1694.94 (255.15) 646 1796 1796 (0) 1796
4 | 2380 2274.38 (294.86) 1238 2380 2380 (0) 2380
5 | 2972 2887.30 (303.79) 1317 2972 2972 (0) 2972
10 | 4728 4677.40 (277.75) 2743 4728 4727.90 (0.30) 4727
15 | 5544 5261.40 (457.61) 3989 5544 5518.04 (32.31) 5452
Spambase 2 66064  63203.02 (11328.08) 16671 66064 66064 (0) 66064
3 97466  95822.56 (11504.08) 15294 97466 97466 (0) 97466
4 | 122431 122431 (0) 122431 | 122431 122318.92 (549.08) 119629
5 | 142234 142234 (0) 142234 | 142234  142110.56 (604.73) 139148
10 | 228155 221059.80 (5283.04) 210622 | 217278  206335.58 (4840.57) 198413
15 | 287258 276567.86 (7387.49) 258259 | 274438  260328.52 (5225.25) 251003

ture subsets, found during the 50 independent runs by both
methods, are in the figure represented by red crosses. In case
less than 50 crosses are shown, multiple runs have found the
same solution.

6. CONCLUSIONS

Two new evolutionary algorithms for feature subset selec-
tion are designed and evaluated in this work. They both
utilize a novel feature subset evaluation criterion based on a
fast approximation of feature subset entropy. The entropy
is in this approach linked to the size of the feature subset
compressed by the FPC algorithm [5]. It assumes that the
compressed size of a feature subset with high entropy and
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high information content is higher than the compressed size
of feature subsets with highly correlated, redundant content.
The FPC was selected as an entropy approximation method
due to its ability to process arbitrary double-precision data
including e.g. time series. Extensive computational experi-
ments, performed on two well-known data sets, showed that
the proposed fitness function negatively correlates with the
number of classification errors of several traditional data
mining algorithms (CART, kNN with k£ equal to 1 and 3).
On the other hand, it did not correspond to the number of
classification errors of the Naive Bayes classifier. However,
the NB classifier did not perform well even on full variants of
the test data sets. Although these observations were made
for a particular combination of data sets, classification algo-
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Figure 3: CART and kNN(1) classification errors of 2-feature subsets evolved by GA and DE on the Hepatitis (1st row) and

Spambase data sets (2nd row).

rithms, and feature subset sizes, they strongly suggest that
the proposed fitness function is a good feature subset selec-
tion criterion that can be optimized by evolutionary meth-
ods well.

The GA and the DE were used to search for feature sub-
sets of different sizes. Conducted computational experi-
ments showed that both algorithms were able to discover
feature subsets with high FPC values. A direct comparison
of the results, obtained by the GA and the DE, showed that
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their accuracy and stability depends on both, the data set
and the target feature subset size. A statistical analysis of
experimental results showed that the DE performed on par
with or significantly better than the GA on the smaller data
set, Hepatitis. However, it was outperformed by the GA in
case of the larger and more complex data set. The subsets of
10 and 15 features, found by the GA in the Spambase data
set, had significantly higher FPC than the results discovered
by the DE. The differences between the results, found by the



GA and the DE in the Spambase data set in all other cases,
were found insignificant.

The results, obtained in this research, suggest that the DE
is more appropriate for feature subset selection from smaller
data sets or when the target feature subset sizes are very
small. The GA, on the other hand, seems to be more suitable
for feature subset selection from more complex data sets
and when the target feature subset sizes are larger. These
findings are encouraging. The proposed fitness function is a
promising feature subset selection criterion and investigated
evolutionary methods have confirmed good ability to find
excellent feature subsets.
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