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Abstract. A novel method for regulation of gene expression for arti-
ficial cellular systems is introduced. It is based on an instructon-based
representation which allows self-modification of genotype programs, as
to be able to control the expression of different genes at different stages
of development, e.g., environmental adaptation. Coding and non-coding
genome analogies can be drawn in our cellular system, where coding
genes are in the form of developmental actions while non-coding genes
are represented as modifying instructions that can change other genes.
This technique was tested successfully on the morphogenesis of cellular
structures from a seed, self-replication of structures, growth and replica-
tion combined, as well as reuse of an evolved genotype for development
or replication of different structures than initially targeted by evolution.

1 Introduction

In biological systems, the process that produces phenotypes from genotypes,
i.e., genotype-to-phenotype mapping, is a complex and intricate combination of
interactions between the genotype and the environment. As a result, intermediate
phenotypic stages emerge, which themselves influence the decoding/regulation
of the genotype for the next phenotypic stage. It may be argued that geno-
types possess the ability to self-modify [8]. As such, the development process
is influenced not only by the instructions encoded in the genome, but also by
the mutual interaction between genotype and phenotype, and with the envi-
ronment. Biological genomes possess an intrinsic ability to evolve and adapt to
novel environments, i.e., evolvability [2]. Modularity [5] is a key factor that con-
tributes to evolvability. In fact, many biological networks are modular [1], e.g.,
brain networks, gene regulatory networks, metabolic networks. It turns out that
it is easier to rewire a modular network with independent substructures than
an unstructured network [9]. Kovitz [12] introduced the concept of “cascading
design”, a form of genotype coordination that allows to preserve the relationship
between separate traits. He describes such coordination as “a good house design,
where the plumbing and electrical wiring connect water and electricity to the
devices that need them. If you change the architectural plans for a house to move
the bathroom from the northwest corner to the middle of the east wall, moving
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Table 1. IBD instruction set. L, C, R, U, D represent Left, Center, Right, Up, and
Down neighbors. n represents the number of CA cell states

Instr. Operation Description Instr. Operation Description

AND N [i1] = N [i1] ∧ N [i2] Bitwise AND INC N [i1] = N [i1] + 1 Increment

OR N [i1] = N [i1] ∨ N [i2] Bitwise OR DEC N [i1] = N [i1] − 1 Decrement

XOR N [i1] = N [i1] ⊕ N [i2] Bitwise XOR SWAP N [i1] ⇔ N [i2] Swapping

NOT N [i1] = ¬N [i1] Bitwise NOT ROR LCR ⇒ RLC Rotate right

INV N [i1] = n − N [i1] Inverse ROL LCR ⇒ CRL Rotate left

MIN N [i1] = min(N [i1], N [i2]) Minimum ROU UCD ⇒ CDU Rotate up

MAX N [i1] = max(N [i1], N [i2]) Maximum ROD UCD ⇒ DUC Rotate down

SET N [i1] = N [i2] Replace NOOP No Operation

the walls and fixtures is not enough. You must also reroute all the pipes and
electrical connections”. If an evolutionary algorithm was to design such a house
plan, “then moving the bathroom across the house requires that many mutations
occur simultaneously: one mutation for each segment of pipe that needs to move,
one mutation for each doorway, etc. As coordination becomes more complex,
the probability of making all the needed mutations simultaneously gets lower and
lower”. Biological evolution seems to possess some kind on intrinsic coordina-
tion. Lee Altenberg describes genes that affect the probability of mutation of
other genes and subroutines in genetic programming [2].

In this paper, cellular automata (CA) are used as a test-bed model of devel-
opment. Traditional CA transition tables are replaced by an algorithmic rep-
resentation, i.e. program, which includes instructions that can modify the code
itself. Such representation may allow the emergence of genotype coordination
mechanisms that may encode different sub-processes. As such, different parts of
the genome may be active at different stages of phenotypic development. The
problems targeted include the morphogenesis of structures from a zygote, the
replication of given shapes, both development and replication achieved by the
same genotype, and the reuse of evolved genotypes for development and replica-
tion of different structures than those initially targeted by evolution.

2 Background

In nature, phenotypes are not determined only by their genotypes. Genes
“behave” in relation to each other and in relation to the environment. Genes
may even suppress other genes, i.e., methylation [18]. In fact, not all genes are
active at all times and methylation is one of the factors that control gene expres-
sion. In the context of artificial evolutionary and developmental (evo-devo) sys-
tems, different models of gene regulation mechanism exist. Some models aim
to be true to biology [15] whether other are more abstract models of develop-
ment [10,11,13]. In this paper, the used model can be placed within abstract
computational models of development based on CA [27]. Therefore, we do not
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aim at a truly biological model of development. The used two-dimensional CA
evo-devo model includes the interplay between genotype, developing phenotype,
and evolutionary developmental effects. Traditionally, CA rules are in the form
of transition tables. One of the implications of such representation is that rules
grow exponentially with the increase in cells neighborhood and number of cell
states. As such, transition tables do not scale well.

2.1 Instruction Based Development

The idea of evolving instruction-based representations is a rather old approach
[14]. Cartesian Genetic Programming (CGP) has been introduced by Miller and
Thompson [17] for the evolution of programs as a directed graph. Sipper [22] pro-
posed the evolution of non-uniform cellular automata with cellular programming.
Bidlo and Skarvada [3] introduced the Instruction-Based Development (IBD)
for the evolutionary design of digital circuits. Bidlo and Vasicek [4] exploited
IBD for the development and replication of cellular automata structures. Even
though their approach has been shown to improve the overall success rate, the
number of available instructions was experimentally chosen. IBD allows rep-
resenting CA transition functions by means of a sequence of instructions exe-
cuted on local neighborhoods in parallel and deterministically update the state
of each cell. Evolutionary growth of genomes has been used to evolve local tran-
sition functions starting from a single neighborhood configuration [19]. Using an
instruction-based approach removes the problem of specifying all combinations
in the transition table. The initial ruleset of IBD is presented in Table 1.

2.2 Scalability and Modularity

Biological organisms are the best example of scalability, ranging from simple
unicellular organisms to multicellular organisms, where trillions of cells develop
from a single cell holding the genome. The genomes of different species have
variable lengths, as result of biological complexification mechanisms [16] through
gene duplications [25] and continuous elaborations. In artificial evo-devo systems,
complexification mechanisms have been used to allow variable length genomes.
Stanley and Miikkulainen [23,24] introduced NeuroEvolution of Augmenting
Topologies (NEAT), a method for the incremental evolution of neural networks.
Nichele and Tufte [19] presented a framework for the evolutionary growth of
genomes using indirect encodings. Trefzer et al. [26] investigated the advantages
of variable length gene regulatory networks in artificial delelopmental systems.

One of the characteristics that allow variable length genomes to evolve and
adapt to new environments is their modularity. Clune et al. [5] showed that a
key driver for evolvability is the modularity of biological networks. Modular arti-
ficial evo-devo systems have been shown to have increased evolvability. Kovitz
[12] has investigated the evolution of coordination mechanisms using a modular
cascading design based on graph representation inspired by CGP [17]. Hard-
ing et al. introduced Self-modifying Cartesian Genetic Programming (SMCGP)
[7], a form of CGP where genotype programs are allowed to modify themselves.
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Taking inspiration from IBD and SMCGP, we propose a cellular automata devel-
opmental system based on self-modifying cellular programs.

2.3 Self-modifying Instrucion Based Developement

We propose Self-modifying Instruction Based Development (SMIBD) for cellular
automata, where the instruction set in Table 1 is extended with the instructions
in Table 2. As such, genomes have the ability to perform different functions
during different developmental stages. Each cell executes the same program in
parallel on local neighborhoods in order to update their state. Since the program
can change, genomes have the ability to duplicate or even to destroy themselves.

3 Experimental Setup

A genetic algorithm (GA) is designed to evolve solutions to 4 different problems:

� Development of given structure from a seed;
� Replication of given structures (minimum 3 replicas);
� Development of given structure from a seed followed by replication of developed

structure (minimum 3 replicas);
� Re-evolution of solutions found for a given structure for the development and

replication of a different structure.

The used morphologies are shown in Fig. 1, where different colors identify
different cellular states. Structures of different sizes, complexities and number

Table 2. Instructions added to IBA instruction-set in order to allow Self Modification
(SM).

Instruction Parameters Description

SKIP N [i1] = Nskips Skip next N [i1] instructions.

Not a SM instruction

MOVE N [i3] = Start Move instruction at line

N [i4] = Insert N [i3] just before N [i4]

DUPE N [i3] = Start Copy instruction at line

N [i4] = Insert N [i3] just before N [i4]

DEL N [i3] = Start Delete instruction at line

N [i3]

CHF N [i3] = Start Change instruction at

N [i4] = Instr N [i3] to instruction at N [i4]

CHP N [i1] = Param Change N [i1] parameter at

N [i3] = Start N [i3] with value in N [i2] or

N [i2|4] = V alue N [i4] depending on N [i1]
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0a, 0b: 1a, 1b: 2a, 2b: 3a, 3b: 4a, 4b: 5a, 5b: 6a, 6b:

Fig. 1. Left to right; 0: simple square (2 states), 1: four squares (2 states),
2: three stripes flag (3 states), 3: generic four colors flag (4 states), 4: small
Norwegian flag (3 states), 5: big Norwegian flag (4 states), 6: creeper (3 states).
Note that two versions of each structure are used: (a) structure with the
necessary number states, (b) structure with an additional support state
that is not required in the final structure, but evolution is free to explore it.
The different structures are referred in the text as structure 1a, structure
1b, etc. (Color figure online)

of states are used. The four problems are tested with two different CA geno-
type representations: traditional CA transition tables and CA using SMIBD.
All the experiments are performed on 2-dimensional CA with von Neumann
neighborhood (5 neighbors) with cyclic boundary conditions. The GA used a
population of size 50, single point mutation with 2 % probability per genotype
symbol, multi-point crossover with 10 % probability per genotype symbol, and
fitness proportionate selection. Genotypes in the form of transition tables have a
size of NK , where N is the number of cell states and K is the neighborhood size
(5 with von Neumann neighborhood). In case of SMIBD, the genotypes are com-
posed by 10 instructions in the form rule, op1, op2, op3, op4, where rule identifies
the rule number, op1 and op2 represent two neighbors, op3 and op4 are in the
range [0, number of instructions in program]. CA development is executed for 40
steps. The fitness function for the development problem and for the replication
problem is searching for matching structures, one in the case of development and
three in the case of replication. For more information on similar fitness functions
see [4,21]. For the developement and replication problem, the individual fitness
functions are used, the one for development in the first 20 development steps and
the one for replication in the 20 steps following the best developmental stage.
Note that whether for the development problem the lattice size is the same as
the wanted structure size, for the development and replication the lattice size is
bigger as to guarantee enough space for the wanted replicas to emerge. As such,
the initial development is considered to be a much harder problem because struc-
tures cannot rely on border conditions. For the re-evolution problem, the fitness
function is modified by the different target structure. The same population is
used as for the evolution of the first wanted structure.

4 Results and Analysis

4.1 Development

Results obtained for the morphogenesis of structures are summarized in Table 3.
In particular, it is possible to notice that for structures 2a and 3a, the genomes
that allow self-modification produce higher success rate in fewer generations on
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Table 3. General results on the development problem using TT and SMIBD. Avg.
over 100 runs.

Transition table Self modifying IBD

Problem 2a 3a 4a 4b 2a 3a 4a 4b

Success rate % 86 34 0 0 100 96 5 5

Average (numGen) 13139 30676 x x 1912 13309 57224 47042

StDev. (numGen) 18835 27660 x x 9416 22687 42635 12950

average. For structures 4a and 4b, working solutions are found which were not
achievable by transition table genomes. A general observation that emerged while
inspecting the evolved solutions is that transition table representation tends to
develop structures that quickly degenerate after few development steps and never
recover. Self-modifying genomes often produce more stable solutions that retain
the final structure, i.e., point attractors, or cycle a few steps before reaching the
wanted structure again, i.e., short cyclic attractors. Another observation (see [6]
for detailed results, not included here due to space limitations) is that a genotype
representation that allows the program to modify itself, may allow a degree of
control in developmental speed. As such, it may be able to evolve solutions that
grow in different developmental times. This is of particular interest if one aims
at developing given structures at specific points of the developmental time.

4.2 Replication

Table 4 presents the results for the replication problem on the tested structures.
It is clearly visible that the proposed method outperforms the traditional CA
transition table, both in terms of success rate and average number of generations
needed to evolve a solution.

Table 4. Results on the replication problem using TT and SMIBD. Avg. over 100
runs.

Transition table Self modifying IBD

Pattern 1a 2a 3a 4b 5a 6a 6b 1a 2a 3a 4b 5a 6a 6b

Success % 62 5 0 0 0 0 0 100 100 100 100 100 22 100

Avg. Gen 2116 4909 x x x x x 38 279 54 37 94 4737 54

StDev. Gen 2533 2009 x x x x x 24 344 53 25 72 2745 42

Continued Replication. It was observed that self-modifying genomes allowed
solution to continue replication after the wanted number of replicas was achieved,
whether transition tables often degenerated their behavior into a randomized
pattern. As side experiment, solutions obtained with self-modification were re-
developed in a bigger lattice of size 75× 75 cells for a longer developmental
time of 120 steps. In some cases, not only the replication process continued, but
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it produced a “massive” replication effect. Two examples are shown in Fig. 2,
for structures 3a and 1a, respectively. Note: the original GA fitness required a
perfect solution to produce at least 3 replicas (no additional award beyond 3).

Fig. 2. Two examples of mass replications.

General Replicators. One of the
aspects that we investigated was the
“universality” of the evolved replica-
tors, or in other words, whether the
obtained solutions were able to gener-
alize to other structures. As such, the
evolved solutions obtained with self-
modifying genomes were reused, i.e.,
once the solution was found for the
replication of a structure, the struc-

ture in the lattice was replaced and the CA executed again. Quite surprisingly, in
many cases the evolved programs could replicate any of the structures. Examples
are shown in Figs. 3(a), (b), (c), and (d). In Fig. 3(a), a solution for structure 3a
(4 states) is used on structure 2a (3 states). In this case, the supposedly unused
state (yellow) is actually used as a support state. The two available support
states are not used in Fig. 3(b), where structure 1a (2 states) is replicated with a
solution for structure 3a (4 states). Figure 3(c) replicates structure 4a (4 states)
using a solution for 3a (4 states), where the number of necessary states is the
same. In Fig. 3(d), the spatial topology is preserved, whether the actual states
(colors) are incorrect. Finally, Fig. 3(e) shows the replication of the Norwegian
flag (4 states) using a solution for the French flag (4 states). Note that both
solutions use a support state as in the final structures only 3 states are actually
required. A transition table representation, on the other hand, would require
an exponential scaling in the table size to encode for the neighborhood configu-
rations resulting from the additional state. Also, solution evolved for a specific
number of states are not practically usable with a different number of states,
i.e., scale up or down. Self-modifying programs scale well in this regard.

4.3 Development and Replication

In this section, the described experiments target the development of a given
structure first, followed by the replication of the grown structures. As such, the
same genotype must encode both processes. This is a very interesting property
that might be present in systems that target the development of self-replicating
machines. In Table 5 numerical results are given for the tested problems, with
a comparison of genotypes using transition tables and self-modification. For a
simple structure as 0a (3 × 3 cells and 2 states), the results are fairly similar.
More complex structures, as 2a and 3a did not produce any valid solution using
transition tables. Self-modification allowed to produce some working solutions,
able to both develop and replicate further. Solutions found by the two methods
are inspected in Figs. 4 and 5. It is possible to notice that even if both examples
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Example of solution to the replication problem for (a) 3a used on 2a, (b) 3a
used on 1a, (c) 3a used on 4a (4 state), (d) 3a used on 4a (3 state, it can no longer
replicate the image, but the structure is perfectly replicated), (e) 3a used on the larger
structure 5a (note that the lattice size had to be increased to accomodate the larger
structure). (Color figure online)

Table 5. Results on development and replication problem using TT and SMIBD. Avg.
over 100 runs.

Transition table Self modifying IBD

Pattern 0a 2a 3a 0a 2a 3a

Success rate % 96 0 0 94 2 8

Avg. (NumGen) 877 x x 1913 7652 5818

StDev. (NumGen) 1228 x x 1944 2047 2973

produce valid solutions, there are clear differences. Using transition tables, the
structure is replicated at step 3 and at step 7 four replicas of the given shape
emerge. After, the genotype is not able to keep up the replication process and
patterns soon disappear. The self-modifying genome example shows a different
scenario (note that in Fig. 5, a bigger lattice is used to demonstrate the replica-
tion abilities, whether the original solution was evolved on a smaller lattice). At
step 3 the wanted structure emerges and at step 7 five replicas have appeared.
This process of replication never stops. In fact, at step 11, the 5 replicas are still
present but with some additional space to allow new replicas to emerge, which
finally appear at step 15. This process of making space and replicating continues
indefinitely (at least for the observed developmental time).
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4.4 Re-evolution

Taking inspiration from [12], we want to investigate the ability of the self-
modifying representation to evolve solutions to a problem and then re-evolve to
a different problem, i.e., adaptation to new fitness requirements/environmental
change. We first evolve solutions for the morphogenesis of a given structure
and then we use the same evolved population targeting a different morphol-
ogy. This task is particularly difficult if transition tables are used, as evolution
would require a totally different strategy, i.e., moving in a totally different area
of the fitness landscape. On the other hand, we expect that a certain struc-
ture and modularity will be retained in the self-modifying program solutions.
In addition, since both targeted structures are initialized from the same initial
seed, i.e. zygote, developmental trajectories [20] may be visualized and shared
developmental paths may be identified. Note that re-evolution of solutions for
the replication task is considered a much easier task, as shown in the previous
section where the evolved replicators presented a certain degree of generalization.

In Fig. 6 (Left) the structure 3a is evolved first, then structure 2b (2a with
one additional available state) is used as a new target structure. A new solution
is found in only 9 generations. Note that 2b is used as it has the same number
of states but different arrangement of colors in the stripes pattern. The first five
states in the trajectory are shared, then the paths split but retain the same “algo-
rithmic” structure to reach the different solutions. In general, 100 evolutionary
runs were performed. The GA using transition tables evolved the first solution
27 times. Out of those 27 times, 24 were re-evolved successfully to the second
solution. On the other hand, with the usage of self-modification, 89 solutions
were found to the first structure, which ended up in 84 successful re-evolution of
the second structure. Note that with self-modifying genomes, loops (attractors)
can be escaped as the regulation mechanism allows different parts of genomes to
change or be active at different phenotypic stages.

In Fig. 6 (Right) the structure 4b (Norwegian flag with 4 states) was evolved
first and then the structure 2b (French flag with 4 states) is targeted. The
selected morphologies have different properties, e.g. horizontal symmetry vs.
shifted symmetry. Using transition tables did not produce any result for the
re-evolved structure. Self-modifying genomes allowed the 5 solutions found for
the first structure to be successfully re-evolved to the second structure. In the
shown example, some degree of trajectory modularity is present, indicating that
the underlying “algorithmic” structure is retained.

Fig. 4. TT solution to development and replication 0a. States 1 to 7 and 30.
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Fig. 5. SMIBD solution to the development and replication problem 0a, using a 75× 75
lattice. At step nr. 31 a total of 61 replicas are present.

Fig. 6. Left: Developmental trajectories of a solution to problem 3a (black) and a re-
evolved solution to 2b (blue), successfully found after 9 generations. The first 5 states
are identical, then trajectories split but maintain similar topology. Right: Develop-
mental trajectories of a solution to problem 4b (black) and a re-evolved solution to 2b
(blue), with intertwined developmental trajectory. (Color figure online)

5 Conclusions and Future Work

In this paper we presented a novel method for regulation of gene expression for arti-
ficial evo-devo systems, namely Self-modifying Instruction Based Development.
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Cellular automata have been used as experimental platform. Traditional CA tran-
sition tables have been compared to CA genotypes in the format of programs with
self-modifying instructions, which allowed the emergence of a genome coordination
mechanism. In fact, genomes have the ability to self-modify and activate different
genes at different stages of the developmental process. Several problems have been
solved successfully, as the development of structures, replication, development and
replication combined, and reuse of an evolved genotype for development or repli-
cation of different structures than those initially targeted by evolution. SMIBD
outperformed traditional transition tables, providing the possibility of evolving
regulation mechanisms that are more modular. In the future we would like to ana-
lyze the scalability aspects of the proposed technique and, in particular, measure
the evolvability of solutions with self-modifying genomes. In addition, we want to
investigate reuse and re-evolution of solutions towards adaptivity to changing envi-
ronments of lower and higher complexity.
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