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Abstract. According to a theorem by Astete-Morales, Cauwet, and
Teytaud, “simple Evolution Strategies (ES)” that optimize quadratic
functions disturbed by additive Gaussian noise of constant variance can
only reach a simple regret log-log convergence slope ≥ −1/2 (lower
bound). In this paper a population size controlled ES is presented that
is able to perform better than the −1/2 limit. It is shown experimentally
that the pcCMSA-ES is able to reach a slope of −1 being the theoretical
lower bound of all comparison-based direct search algorithms.

1 Introduction

In many real-world applications the problem complexity is increased by noise.
Noise can stem from different sources such as randomized simulations or sensory
disturbances. Evolutionary Algorithms (EAs) proved to be successful for opti-
mization in the presence of noise [1,2]. However, the performance of the EAs
degrades under strong noise and can even prevent the EA from converging to
the optimizer.

Performance of EAs is usually measured by the amount of objective func-
tion evaluations n needed to reach a certain expected fitness compared to the
non-noisy objective function value at the optimizer. This quantity is sometimes
referred to as simple regret SR(n). It is defined in the case of minimization of
the noisy function f̃(y),y ∈ R

N as

SR(n) := E[f̃(yn)] − f(ŷ), (1)

where the noisy fitness f̃(y) is given by f̃(y) = f(y)+δ and yn is the object vec-
tor recommended by the EA after n f̃(y) evaluations. f(y) is the deterministic
objective function to be optimized which is disturbed by unbiased noise δ. The
minimizer of f(y) is denoted as ŷ. The random variate δ describes the noise,
which may or may not scale with the objective function value

(a): δ ∼ σεr
f(y)N (0, 1) and (b): δ ∼ σεN (0, 1), (2)
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and is assumed to be normally distributed with standard deviation σεr
|f(y)| and

σε, respectively. The quantity σε is referred to as noise strength.
There are different options to tackle the performance degradation of EAs

that can be basically subdivided into two classes:

(i) reducing the noise observed by the EA by use of resampling, i.e. averaging
over a number of κ objective function values (for a fixed y), and

(ii) handling the noise by successively increasing the population size.

However, both methods implicate an increase of the required number n of fitness
evaluations. In order to avoid a unnecessary excess of function evaluations, the
question arises at which point to take the countermeasures (ii) or (i), i.e. to
increase the population size or to use the f̃ -averaging. As far as option (a) is
concerned, there is a definite answer regarding the (μ/μI , λ)-Evolution Strategy
(ES) on quadratic functions [3,4]: It is better to increase the population size
than to perform resampling.

No matter whether one uses option (i) or (ii), in both cases techniques are
required to detect the presence of noise. This can be easily done by resampling
a candidate solution (κ = 2) because noise is reflected in changes of a candidate
solution’s measured fitness of two consecutive evaluations (for fixed y). However,
small noise strengths are usually well tolerated by the ES. That is, the ES can
still approach the optimizer. In such cases there is no need to handle this noise.
Another approach introduced in the UH-CMA-ES [5] considers the rank changes
within the offspring individuals after resampling the population with κ = 2. If
there are no or only a few rank changes, one can assume that the noise does not
severely disturb the selection process. This approach is interesting, but seems
still to be too pessimistic, i.e., even if there is a lot of rank changes, there may be
still progress towards the optimizer due to the genetic repair effect taking place
by the intermediate recombination operator. In [4] a population size control rule
was proposed which is based on the residual error. The dynamics of the (μ/μI , λ)-
ES in a noisy environment with constant noise strength σε will usually approach
a steady state in a certain distance to the optimizer. At that point, fluctuations
of the parental fitness values around their mean value can be observed. The
population size is then increased if the fitness dynamics on average does not
exhibit further progress.

This paper presents a new detection method which is based on a linear regres-
sion analysis of the noisy fitness dynamics. Estimating the slope of the linear
regression line, the direction of the trend can be determined. However, the esti-
mated slope is a random variate. Therefore, a hypothesis test must be used to
check the significance of the observed trend. If there is not a significant fitness
decrease tendency, the population size will be increased. In the opposite case the
population size can be decreased (up to a predefined limit). This approach is inte-
grated into the covariance matrix self-adaptation evolution strategy (CMSA-ES)
[6] yielding the population controlled (pc)CMSA-ES.

The applicability of the proposed algorithm is demonstrated on the noisy
ellipsoid model. Investigating the SR(n) performance dynamics of the pcCMSA-
ES in the strong noise scenario σε = const. (i.e., the noise does not vanish at the
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optimizer), a remarkable observation can be made: SR(n) ≈ c/n. That is, the
slope of the log-log plot reaches −1 approximately for sufficiently large number
n of function evaluations. This is in contrast to a Theorem derived in [7]. There
it is stated that simple ES can only reach a slope ≥ −1/2, no matter whether
one uses resampling or population upgrading. Remarkably, the −1 slope actually
observed already represents the lower performance bound that cannot be beaten
by any direct search algorithm as has been proven in [8].

The rest of this paper is organized as follows. The proposed noise detection
technique by linear regression analysis is presented in Sect. 2. This technique is
used to extend the CMSA-ES with a population control rule in Sect. 3 yielding
the pcCMSA-ES. Empirical investigations are provided and discussed in Sect. 4.
The paper closes with a summary and a outlook at future research questions.

2 Stagnation Detection by Use of Linear Regression
Analysis

Stagnation or divergence behavior coincides with a non-negative trend within the
observed fitness value dynamics of the ES (minimization considered). For trend
analysis a regression model of the parental centroid fitness sequence of length L
is used. If the slope of this model is significantly negative, the ES converges. In
the opposite case, the population size must be increased. The decision will be
based on statistical hypothesis testing.

Considering a not too long series of observed parental centroid fitness values,
the observed time series can be approximated piecewise by a linear regression
model. That is, a straight line is fitted through a set of L data points {(xi, fi), i =
1, . . . , L} in such a manner that the sum of squared residuals of the model

fi = axi + b + εi (3)

is minimal. Here εi models the random fluctuations. Determining the optimal a
and b is a standard task yielding [9]

â =
∑L

i=1 (xi − x̄)(fi − f̄)
∑L

i=1 (xi − x̄)2
and b̂ = f̄ − âx̄, (4)

where x̄ and f̄ represent the sample means of the observations. Due to the εi

random fluctuations the estimate â itself is a random variate. Therefore, the real
(but unknown) a value can only be bracketed in a confidence interval. Assuming
L sufficiently large, the central limit theorem guarantees that the estimator â of
a is asymptotically normally distributed with mean a. Thus, the sum of squared
residuals

∑L
i=1(fi − b − axi)2 is distributed proportionally to χ2

L−2 with L − 2
degrees of freedom and is independent of â, cf. [9]. This allows to construct a
test statistic

TL−2 =
â − a

sâ
with sâ =

√
√
√
√

∑L
i=1(fi − b − axi)2

(L − 2)
∑L

i=1(xi − x̄)2
, (5)

where TL−2 is a t-distributed random variate with L − 2 degrees of freedom [9].
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Since â is a random variate, an observed â < 0 does not guarantee conver-
gence. Therefore, a hypothesis test will be used to put the decision on a statistical
basis. Let H0 : a ≥ 0 be the hypothesis that the ES increases the population size
(because of non-convergence). We will only reject H0 if there is significant evi-
dence for the alternative H1 : a < 0. (In the latter case, the population size will
not be increased.) That is, a left tailed test is to be performed with a significance
level α (probability of wrongly rejecting H0), i.e. Pr[â < c|H0] = α, where c is the
threshold (to be determined) below which the correct H0 is rejected with error
probability α. Resolving the left equation in (5) for â yields â = a + sâTL−2

and therefore Pr[a + sâTL−2 < c|H0] = α. This is equivalent to Pr[TL−2 <
(c−a)/sâ|H0] = α. Noting that Pr[TL−2 < (c−a)/sâ] = FTL−2((c−a)/sâ) is the
cdf of TL−2, one can apply the quantile function yielding (c − a)/sâ = tα;L−2,
where tα;L−2 is the α quantile of the t-distribution with L−2 degrees of freedom.
Solving for c one obtains c = a + sâtα;L−2. Thus, c ≥ sâtα;L−2 and as threshold
(a = 0) one gets c = sâtα;L−2. That is, if

â < sâtα;L−2 (6)

H0 is rejected indicating a significant negative trend (i.e., convergence towards
the optimizer, no population size increase needed).

3 The pcCMSA-ES Algorithm

Combining the convergence hypothesis test of Sect. 2 with the basic (μ/μI , λ)-
CMSA-ES introduced in [6] an ES with adaptive population size control, the
population control (pc)CMSA-ES, is presented in Algorithm1. Until the algo-
rithm has generated a list F of L parental centroid function values an ordinary
CMSA-ES run with truncation ratio ϑ is performed over L generations: In each
generation the (μ/μI , λ)-CMSA-ES generates λ offspring with individual muta-
tion strengths σl, see lines 4 to 10. The mutation strength σl can be interpreted
as an individual scaling factor that is self-adaptively evolved using the learning
parameter τσ = 1√

2N
(N – search space dimension). The mutation vector zl

of each offspring depends on the covariance matrix C which corresponds to the
distribution of previously generated successful candidate solutions. The update
rule can be found in line 30 where τc = 1 + N(N+1)

2μ is used. After creation of
the offspring, the objective function (fitness) values are calculated. Having com-
pleted the offspring population, the algorithm selects those μ of the λ offspring
with the best (noisy) fitness values f̃m;λ, m = 1, . . . , λ. Notice, m;λ denotes
the mth best out of λ individuals. Accordingly, the notation 〈.〉 refers to the
construction of the centroid of the respective values corresponding to the μ
best offspring solutions. For example, the centroid of the mutation strengths is
〈σ〉 = 1

μ

∑μ
m=1 σm;λ. Subsequently, the pcCMSA-ES examines the list F using

the linear regression approach. The hypothesis test (6) is implemented within
the program detection(F int, α), line 19. Analyzing the fitness interval F int, it
returns the decision variable td = 1 if (6) is fulfilled, else td = 0. The parameter
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Algorithm 1. pcCMSA-ES
1: Initialization: g ← 0; wait ← 0; 〈σ〉 ← σ(init); 〈y〉 ← y(init);
2: μ ← μ(init); μmin ← μ(init); C ← I ; adjC ← 1
3: repeat
4: λ ← �μ/ϑ�
5: for l ← 1 to λ do
6: σl ← 〈σ〉eτσN (0,1)

7: sl ← √
CN (0, I)

8: zl ← σlsl

9: yl ← 〈y〉 + zl

10: f̃l ← f̃(yl)
11: end for
12: g ← g + 1
13: 〈z〉 ←∑μ

m=1 zm;λ

14: 〈σ〉 ←∑μ
m=1 σm;λ

15: 〈y〉 ← 〈y〉 + 〈z〉
16: add f̃(〈y〉) to F
17: if g > L ∧ wait = 0 then
18: F int ← F (g − L : g)
19: td ← detection(F int, α)
20: if td = 0 then
21: μ ← μcμ

22: adjC ← 0
23: else
24: μ ← max (μmin, �μ/bμ)�)
25: end if
26: wait ← L
27: else if wait > 0 then
28: wait ← wait − 1
29: end if

30: C ←
(
1 − 1

τc

)adjC

C + adjC
τc

〈ss�〉
31: until termination condition
32: return 〈y〉

α refers to the significance level of the hypothesis test. As long as a negative
trend is detected the algorithm acts like the original CMSA-ES. Indication of
a non-negative trend (td = 0) leads to an increase of the population size μ
by multiplication with the factor cμ > 1, line 21, keeping the truncation ratio
ϑ = μ/λ constant by line 4. In order to prevent the next hypothesis test from
being biased by old fitness values, the detection procedure is interrupted for L
generations (line 26). Additionally the covariance matrix adaptation in line 30
is turned off, once the algorithm has encountered significant noise impact. For
this purpose the parameter adjC is set to zero in line 22. Stalling the covariance
matrix update is necessary to avoid a random matrix process resulting in a rise
of the condition number of C without gaining any useful information from the
noisy environment.
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In the case the hypothesis test returned td = 1, i.e. (6) is fulfilled, there is
a significant convergence trend. In such a situation one can try to minimize the
efforts and reduce the population size in line 24. Such a reduction can make sense
in the distance dependent noise case (2a) where there is a minimal population
size above which the ES converges without further population size increase.
That is, the pcCMSA-ES increases first the population size aggressively and
after reaching convergence, the population size is slowly decreased to its nearly
optimal value. That is, the reduction factor bμ should be related to that of cμ,
e.g. bμ = k

√
cμ (k = 2, or 3), or can be chosen independently, but should fulfill

bμ < cμ.
Regarding fitness environments where the ES has to deal temporarily with

noisy regions, it might be beneficial to turn the covariance matrix adaptation
on again once the ES has left the noisy region. That is, if a significant negative
trend is present again the parameter adjC should be reset to one in order to gain
additional information about advantageous search directions. This can easily
be obtained by inserting adjC ← 1 after line 24. However, as for the noisy
fitness environments considered here, this adjustment is not able to provide
significant improvements in terms of the ES’s progress and therefore has not
been implemented. It remains to be investigated in further studies.

4 Experimental Investigations and Discussion

The behavior of the proposed pcCMSA-ES algorithm is investigated on the ellip-
soid model

f(y) =
∑N

i=1
qiy

2
i (7)

with noise types (2b) and (2a). Especially, the cases qi = 1 (sphere model) and
qi = i, i2 have been considered. In the simulations the pcCMSA-ES is initialized
with standard parameter settings and σ(init) = 1 at y(init) = 1 in search space
dimension N = 30. The initial population sizes are set to μ = 3 and λ = 9
resulting in a truncation ratio ϑ = μ

λ = 1
3 during the runs. The population size

factors are cμ = 2 and bμ = √
cμ. The significance level of the hypothesis test in

line 19 of Algorithm1 is α = 0.05. The length L of the f̃ -data collection phases
must be chosen long enough to ensure a sufficient f improvement. As shown
in [10], the effort to get an expected relative f improvement is proportional
to the quotient of the trace of the Hessian of f and its minimal eigenvalue.
Hence, for the sphere the effort is proportional to N and for the qi = i2 ellipsoid
proportional to Σq :=

∑N
i=1 qi. In the experiments L = 5N and L = Σq are

used.
Figure 1 shows the pcCMSA-ES dynamics for the (2b) case of constant σε = 1

noise. Considering the simple regret curves (blue), after a transient phase one
observes that the ES on average continuously approaches the optimizer at a linear
order in the log-log-plot. That means that SR(n) ∝ na with a < 0. The parallelly
descending dashed (magenta) lines h(n) ∝ n−1 indicate that the pcCMSA-ES
actually realizes an a ≈ −1. Fitting linear curves (solid magenta) to those SR(n)
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Fig. 1. The dynamical behavior of the pcCMSA-ES subject to additive fitness noise of
strength σε = 1. Considering the sphere model as well as the ellipsoid model qi = i2

and search space dimensionality N = 30, four dynamics are plotted against the number
of function evaluations n: the noise-free fitness of the parental centroid SR(n) = f(〈y〉)
(blue), the corresponding weighted residual distance Rq(n) = Rq(〈y〉) (red), and the
mutation strength 〈σ〉 (green). The solid black step function predicts the residual steady
state distance according to Eq. (8). In both cases, it is steadily reduced with each μ
elevation. (Color figure online)

graphs, using the technique described by Eqs. (3)–(5), one can calculate the
confidence intervals for a given confidence level, e.g. 95 %, which is displayed in
Fig. 1. The observed a ≈ −1 is remarkable since it apparently seems to violate a
theorem by Astete-Morales, Cauwet, and Teytaud [7] that states that “Simple
ES” can only reach an a > − 1

2 . The authors even supported their theorem with
experiments regarding a tailored (1 + 1)-ES with resampling that came close
to − 1

2 and the UH-CMA-ES [5] that produced only a-values in the range of
−0.1 to −0.3. Having a look at the assumptions made to prove the theorem,
one finds the reason in the definition of “Simple ES”. It contains a common
assumption regarding the operation of ES – the scale invariance of the mutations.
Roughly speaking, the expected value of the mutation strength should scale with
the distance to the optimizer. That is, if one gets closer to the optimizer, the
mutation strength should shrink. Looking at the (green) 〈σ〉 dynamics in Fig. 1
one sees that this assumption does not hold for the pcCMSA-ES. Remarkably,
〈σ〉 reaches a constant steady state value. Since theorems cannot be wrong, unlike
the (1 + 1)-ES and the UH-CMA-ES, the pcCMSA-ES is not a “Simple ES”.

While the pcCMSA-ES approaches a fixed mutation strength, on average
it approaches the optimizer continuously as can be seen in Fig. 1 where the
dynamics of the weighted residual distance Rq to the optimizer is displayed (red

curves). This distance measure is defined as Rq(y) :=
√∑N

i=1 q2i y2
i . According

to formula (22) in [3] the steady state expected value of Rq(y) can be estimated
for fixed population sizes

Rss
q =

√
σεΣq

4μcμ/μ,λ
, (8)
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where cμ/μ,λ is the well-known progress coefficient [11]. This distance is reached
by the CMSA-ES after a sufficiently long generation period (keeping μ and λ
constant). Since the pcCMSA-ES changes the population size successively, the
theoretical estimate (8) can be used to check whether the population size dynam-
ics of the pcCMSA-ES works satisfactorily. The Rq dynamics follows closely the
prediction of (8), which are displayed as (black) staircase curves.

As a second example, the case of distance dependent noise is considered in
Fig. 2. The noise variance vanishes when approaching the optimizer. According
to the progress rate theory for the noisy ellipsoid [12], one can derive an evolution
condition

4μ2c2μ/μ,λ > σ∗2 + σ∗
ε
2 (9)

that states that given upper values of normalized normalized noise and muta-
tion strengths there is a parental population size μ (μ/λ = const.) above which
the ES converges to the optimizer. Here the normalized quantities are defined
as σ∗ := σΣq/Rq and σ∗

ε := σεΣq/(2R2
q). Figure 2 shows the dynamics of the

pcCMSA-ES on sphere and ellipsoid (qi = i2) model with normalized noise
strengths σ∗

ε = 10 and σ∗
ε = 4, respectively. Taking a look at the solid blue lines

representing the simple regret (being the noise-free fitness dynamics f(〈y〉)), one
observes initially an increase of the parental simple regret. That is, the pcCMSA-
ES departs from the optimizer. This is due to the choice of the initial population
size of μ = 3, λ = 9 being too small. However, after the first L generations, the
first hypothesis test indicates divergence and the population size μ is increased
by a factor cμ = 2. This increase repeats two or three times, as can be seen
considering the (black) staircase curves displaying λ in Fig. 2, until a population
size has been reached where the hypothesis test in line 19 of Algorithm 1 returns
1 indicating convergence, the SR-curves start to descend. This behavior is also
reflected by the dynamics of the residual distance to the optimizer Rq(〈y〉) (red).
This attests that the pcCMSA-ES is able to adapt an appropriate population
size needed to comply with Eq. (9) rather than simply increasing it arbitrarily. In
contrast to the previous case of additive noise the mutation strength dynamics
in Fig. 2 indicate a successive reduction of the noise strength σ. This is due to
the decreasing influence of the distance dependent noise as the ES approaches
the optimizer. In such cases the behavior of a “Simple ES” is desirable. The
pcCMSA-ES behaves as such and demonstrates its ability to exhibit a linear
convergence order similar to the non-noisy case. However, it has to be pointed
out that the current population size reduction rule can result in interrupted
convergence behavior in cases of very strong distance dependent noise. This can
be inferred from the peaks in the right graph of Fig. 2. An attempt to address
this disruption would be shortening both the test interval length L as well as
the waiting time wait of the algorithm after each population size reduction and
enlarging them again after a population size escalation, respectively. Also switch-
ing off the population size reduction might be a reasonable approach. Eventually,
the population size control configuration under severe fitness proportional noise
should be examined more closely in future investigations.
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Fig. 2. The dynamical behavior of the pcCMSA-ES subject to distance dependent
noise of normalized noise strength σ∗

ε . Considering the sphere model as well as the
ellipsoid model qi = i2 with search space dimensionality N = 30, four dynamics are
plotted against the number of function evaluations n: the simple regret of the parental
centroid 〈y〉 (blue), the corresponding residual distance Rq(〈y〉) (red), and the mutation
strength 〈σ〉 (green). The solid black staircase presents the offspring population size
λ = �μ/ϑ�. According to Eq. (9), it will be increased up to a value where the strategy is
able to establish continuous progress towards the optimizer. Afterwards the population
size fluctuates around that specific value. (Color figure online)

5 Summary and Outlook

This paper presented an EA for the treatment of noisy optimization problems
that is based on the CMSA-ES. Within its concept a mechanism for identification
of noise-related stagnations or divergence behavior is integrated. Consequently,
having identified noise related behavior the algorithm increases the size of the
parental as well as the offspring population. This way it improves the likelihood
to approach closer residual distances to the optimizer. Significant noise distur-
bances become noticeable by the absence of a clearly negative trend (minimiza-
tion considered) within the noisy fitness dynamics. The slope of the respective
trend can be deduced from the corresponding linear regression line. The esti-
mated trend is used in a hypothesis test to decide whether there is convergence
to the optimizer. If no further significant noise influences are discovered in sub-
sequent tests the population size is again gradually reduced to avoid unnecessary
function evaluations. This way the algorithm is capable to adapt the appropri-
ate populations size. Accordingly, the adjusted CMSA-ES is denoted population
control covariance matrix self-adaptation evolution strategy – pcCMSA-ES.

As a proof of concept, the pcCMSA-ES was tested on the noisy ellipsoid
model considering two noise models, which obey different characteristics. The
additive fitness noise case with constant noise strength σε requires a permanent
increase of the population size. On the other hand, the distance dependent noise
case (which is equivalent to fitness proportionate noise in the case of the sphere
model) requires only a limited population size increase. A well-crafted EA should
be able to handle both cases (and of course, non-noisy optimization problems as
well).
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The empirical investigation of the strong noise case σε = const. revealed
a remarkable behavior of the pcCMSA-ES. The dynamics by which this ES
approaches the optimizer seems to be already the fastest one can expect from a
direct search algorithm on quadratic functions. The simple regret obeys an na

dynamics with a ≈ −1. This is remarkable since “Simple ES” should only allow
for an a ≥ −1/2 no matter how the noise is handled. The reason for this behavior
is that unlike “Simple ES” the pcCMSA-ES does not scale the mutation strength
σ in proportion to the distance to the optimizer in case of strong noise. This is
different to other ESs such as (1+1) or UH-CMA. However, if there is no strong
noise, pcCMSA-ES behaves like a “Simple ES”.

The pcCMSA-ES requires the fixing of additional exogenous strategy para-
meters. Particularly, the length L of the interval of observed fitness values that
are considered in a single test decision has to be examined more closely. L should
be large enough to ensure a sufficient evolution (convergence) of the fitness val-
ues. From the progress rate theory it is known that the number of generations
needed for a certain fitness improvement scale with the quotient of the trace
of the Hessian of f and its smallest eigenvalue. Therefore, L should be chosen
proportional to N (search space dimensionality) in the sphere model case and
to N

6 (N + 1)(2N + 1) in the case of the ellipsoid model qi = i2. However, in the
black-box scenario the Hessian is not known. However, as long as the initial noise
influence is small, the pcCMSA-ES transforms the optimization problem grad-
ually into a local sphere model. In such cases, the L ∝ N choice should suffice.
If, however, the noise is already strong in the initial phase, there is no defini-
tive choice and the user has to make a guess regarding the trace vs. minimum
eigenvalue ratio. Choosing L too large has a negative influence on the efficiency
of the ES. It effects the lead time of the algorithm needed to establish an initial
interval of fitness observations Fint as well as the waiting time wait. The para-
meter wait governs the length of the waiting period after a single population
adjustment. After a transient phase of wait generations the algorithm starts
again with the analysis of the fitness dynamics. It is not evident whether the
parameter wait should depend on the length L of the fitness interval. The wait-
ing time is essential to prevent wrong test decisions based on fitness dynamics
resulting from different population specifications. A beneficial parameter setting
has to be determined in future empirical investigations. There are also open
questions regarding a profound choice of the population size change parameters
cμ and bμ and the significance level α = 0.05 used. These question should be also
tackled by extended empirical investigations considering different test functions
and noise scenarios.

Regarding theory, the analysis of certain aspects of the pcCMSA-ES seems
to be possible using and extending the results presented in [12]. For example, the
observed steady state σ in the strong noise case should be deducible from the
self-adaptation response theory. Deriving the remarkable empirically observed
SR(n) ∝ n−1 law is clearly another task for future research.
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