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5 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic

Abstract. This paper presents a new variant of surrogate-model utiliza-
tion in expensive continuous evolutionary black-box optimization. This
algorithm is based on the surrogate version of the CMA-ES, the Sur-
rogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-ES).
Similarly to the original S-CMA-ES, expensive function evaluations are
saved through a surrogate model. However, the model is retrained after
the points in which its prediction was most uncertain have been evalu-
ated by the true fitness in each generation. We demonstrate that within
small budget of evaluations, the new variant of S-CMA-ES improves the
original algorithm and outperforms two state-of-the-art surrogate opti-
mizers, except a few evaluations at the beginning of the optimization
process.

Keywords: Black-box optimization · Surrogate model · Evolution
control · Gaussian process

1 Introduction

In many research and engineering tasks, optimization of real-world black-box
functions that are costly to evaluate is a challenging problem of great impor-
tance. A single evaluation of the expensive function may require a great amount
of resources in terms of time and performed experiments, measurements or sim-
ulations. In order to decrease the number of evaluations of the costly black-box
function and still produce reasonably good solutions, a surrogate model can be
employed [15]. Such models are built using the previous evaluations of the black-
box function, and then are used to predict the values of new points instead of
the original function.
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Nowadays, the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [5] is one of the most robust algorithms on real-world problems and is con-
sidered to be the state-of-the-art of continuous black-box optimization. In recent
years, several surrogate-model approaches have been developed to increase the
performance of the CMA-ES.

The s∗ACM-ES [12] employs ordinal regression models based on SVM to
estimate the ordering of the fitness function values. Furthermore, the parameters
of the ordinal model are themselves optimized utilizing the CMA-ES algorithm
during the optimization of the black-box function. In order to avoid premature
convergence to local optima, the strategies s∗ACM-ES-k [11] and BIPOP-s∗ACM-
ES-k [13] improving s∗ACM-ES by increasing the population size in generations
evaluated by the model have been developed.

Another surrogate-assisted approach using continuous regression models to
estimate the function values, called the Surrogate CMA-ES (S-CMA-ES), has
been proposed in [1]. This approach employs models capable to predict the whole
distribution of values of the objective function; however, the S-CMA-ES does
not make use of that capacity of the models, and exploits only the means of
the distribution of its values. On the other hand, several authors [10,14] have
demonstrated the effective utilization of various criteria using the variances of
predictions (e.g. expected improvement, probability of improvement) in opti-
mization.

Different usage of surrogate modelling presents Sequential Model-based Algo-
rithm Configuration method (SMAC) [8]. It fits surrogate models of algorithm
settings in a parameter space and utilizes those models to make decisions about
which settings to investigate. To make SMAC more useful in continuous opti-
mization, random forest were replaced by Gaussian processes as a surrogate
model in SMAC-BBOB [7].

The main contribution of this paper is to introduce Doubly Trained S-CMA-
ES, the extension of the S-CMA-ES, using not only the means of the distributions
predicted by the surrogate model, but also variances of those distributions. We
experimentally evaluate different settings of this approach on the BBOB/COCO
testing set [3,4] and compare it with the original version of the S-CMA-ES, the
surrogate-assisted s∗ACM-ES-k, and the SMAC method.

The remainder of the paper is structured as follows. Section 2 describes
the S-CMA-ES and its model-training method. Section 3 defines its proposed
extension, Doubly Trained S-CMA-ES. Section 4 contains the experimental part.
Section 5 summarizes the results and draws conclusions.

2 Surrogate CMA-ES and Generation Evolution Control

The S-CMA-ES, introduced in [1], is a surrogate-model-based modification of the
CMA-ES. After the initialization step, the following steps shown in Algorithm 1
are proceeded by the S-CMA-ES until the target fitness value is found: First, the
population of one generation is sampled using the CMA-ES. Then, the evolution
control is employed to evaluate sampled points. Finally, the CMA-ES strategy
parameters (σ, m, C, etc.) are calculated using the original CMA-ES algorithm.
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Algorithm 1. S-CMA-ES
Input: λ (population-size), ytarget (target value), f (original fitness function), r (max-

imal distance between training points and m), nMIN, nMAX (minimal and maximal
number of points for model training), norig (number of original-evaluated points),
C (uncertainty criterion), gm (number of model generations)

1: σ,m,C, g ← CMA-ES initialize
2: A ← ∅
3: while mink∈{1,...,λ} yk > ytarget do
4: xk ∼ N (m, σ2C

)
k ∈ {1, . . . , λ} {CMA-ES sampling}

5: ({yk}λ
k=1, A) ← evolutionControl(λ, f, A, {xk}λ

k=1, σ,m,C, . . .)
6: σ,m,C, g ← CMA-ES update
7: end while
8: xres ← xk where yk is minimal
Output: xres

Algorithm 2. Generation evolutionControl in S-CMA-ES
Input: λ, σ, m, C, f , A, {xk}λ

k=1 (CMA-ES sampled population), g (generation),
gm (number of model generations), r, nMIN, nMAX

1: if g is original-evaluated then
2: yk ← f(xk) k = 1, . . . , λ {fitness evaluation}
3: A = A ∪ {(xk, yk)}λ

k=1

4: fM ← trainModel(A, σ,m,C, r, nMIN, nMAX)
5: else
6: yk ← fM(xk) k = 1, . . . , λ {model evaluation}
7: if gm model generations passed then mark (g + 1) as original-evaluated
8: end if
Output: (yk)λ

k=1, A

The generation-based evolution control (following Jin’s terminology [9]) is
used in S-CMA-ES as the evolution control step (Step 5 in Algorithm 1). This
step is presented in more detail in Algorithm 2. At first, the population of one
generation sampled using CMA-ES is evaluated by the original fitness function.
Then, a surrogate model is constructed using the original-evaluated data. How-
ever, if the model has not enough training points, the original fitness function
is utilized to evaluate sampled points. In the few subsequent generations, the
function values of the samples are computed using the surrogate model; they
are, consequently, used to calculate new CMA-ES parameters.

The phase of training the surrogate model is shown in Algorithm 3. In order
to increase the accuracy of surrogate-model predictions (e.g. Gaussian process
predictions), the points that have the Mahalanobis distance from the current
CMA-ES mean m less than or equal to a specific bound r are selected for training.
If the size of the training set is sufficient, k-NN clustering chooses nMAX training
points which are transformed to the basis defined by eigenvectors of CMA-ES’
covariance matrix C through multiplication by ((σ2C)−1/2)�). Finally, the sur-
rogate model is build using these transformed points. Naturally, the points for
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prediction of the model are transformed in the same way to ensure prediction
with respect to the same base vectors.

3 Doubly Trained Evolution Control for the S-CMA-ES

In this section, an alternative to S-CMA-ES, called the Doubly Trained S-CMA-
ES (DTS-CMA-ES), will be described. It uses not only model-predicted values
of sampled points, but also their variances. Therefore, models capable to pro-
vide both values for each point have to be employed, in particular Gaussian
processes [17] or random forests [2].

The DTS-CMA-ES differs from the S-CMA-ES through using doubly trained
evolution control instead of the generation evolution control in Step 5 of Algo-
rithm 1. The doubly trained evolution control is described in Algorithm 4 as
follows: First, the values ŷ and variances s2 of CMA-ES sampled points are
predicted by the surrogate model which is previously trained using the points
evaluated by the original fitness function from previous generations. Second, the
points are sorted according to the values of some uncertainty criterion C based
on predicted ŷ and s2. Third, the norig most uncertain points are evaluated by
the original fitness function. Next, the model is retrained using the points (cho-
sen similarly to S-CMA-ES) evaluated by the original fitness function including
the norig points from the previous step. Eventually, denoting λ as the population
size, the λ − norig points function values are predicted by the retrained model,
and returned to the original S-CMA-ES to compute new parameters. Note that
training the new model in step 1 differs from using the model from the previous
generation since it uses updated CMA-ES state variables σ, m and C.

3.1 Uncertainty Criteria

The following criteria C, which determine the points for evaluation by the original
fitness function, can be used in the DTS-CMA-ES (Algorithm 4).

Algorithm 3. S-CMA-ES trainModel
Input: σ, m, C, A, r (maximal distance between training points and m),

nMIN, nMAX (min. and max. number of points for training)
1: (Xtr,ytr) ← {(x, y)∈A | (m−x)�(σ2C)−1/2(m−x) ≤ r}
2: if |Xtr| ≥ nMIN then
3: (Xtr,ytr) ← choose nMAX points by k-NN if |Xtr| > nMAX

4: Xtr ← {((σ2C)−1/2)�xtr|xtr ∈ Xtr}
5: fM ← buildModel(Xtr,ytr)
6: else
7: fM ← ∅
8: end if
Output: fM
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Algorithm 4. Doubly Trained evolutionControl in DTS-CMA-ES
Input: λ, σ, m, C, f , A, {xk}λ

k=1 (CMA-ES sampled population), C (uncertainty
criterion), norig (number of original-evaluated points), r, nMIN, nMAX

1: fM ← trainModel(A)
2: (ŷk, s2k) ← fM(xk) k ∈ I := {1, . . . , λ} {model evaluation}
3: ck ← C(ŷk, s2k) k ∈ I {criterion evaluation}
4: {cki}λ

i=1 ← sort{ck}λ
k=1

5: Iorig = {ki ∈ I | {cki}norig
i=1 }

6: yk ← f(xk) k ∈ Iorig {fitness evaluation}
7: A = A ∪ {(xk, yk)}k∈Iorig

8: fM ← trainModel(A, σ,m,C, r, nMIN, nMAX)
9: yk ← fM(xk) k ∈ I \ Iorig {model evaluation}
Output: (yk)k∈I , A

Variance. The variance s2 of model-predicted function values ŷ:

Cs2 = s2. (1)

The larger the variance, the higher the uncertainty of the predicted fitness.

Lower Confidence Bound (LCB). The lower confidence bound has been
proposed in [14]:

CLCB = ŷ − 2s2. (2)

The points with lower values of the LCB criterion are considered more interesting
for evaluation by the original fitness function than the points with higher values.

Probability of Improvement (PoI). The probability of improvement with
respect to a given target T ≤ ymin can be expressed as follows:

CPoI = P (f(x) ≤ T |y1, . . . , yn) = φ

(
T − ŷ

s

)
, (3)

where φ denotes the distribution function of N (0, 1) and ymin is the minimum
value found so far.

Expected Improvement (EI). The expected improvement is described
by [10]:

CEI = E((ymin − f(x))I(f(x) < ymin)|y1, . . . , yn), (4)

where

I(f(x) < ymin) =
{

1 f(x) < ymin

0 f(x) ≥ ymin.
(5)

Similarly, CEI can be expressed as [10]:

CEI = (ymin − ŷ) φ

(
ymin − ŷ

s

)
+ sϕ

(
ymin − ŷ

s

)
, (6)

where ϕ denotes the density of N (0, 1).
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4 Experimental Evaluation

We compared the performance of the DTS-CMA-ES to the original CMA-ES [5],
two surrogate-model-based CMA-ES algorithms, the S-CMA-ES [1] and the
BIPOP-s∗ACM-ES-k [13], and the SMAC algorithm [8] on the set of all 24 noise-
less functions from the COCO/BBOB framework [3,4].

4.1 Experimental Setup

The considered algorithms were compared in dimensions D = 2, 3, 5, 10, and
20 using the standard BBOB settings, i.e. on 15 different function instances.
The BBOB stopping criteria were reaching the distance from the function opti-
mum ΔfT = 10−8 and expending maximal number of evaluations per dimension
(FE/D) which we have set to 100 due to our interest in expensive optimization
where very few evaluations are available [6]. The parameters of the compared
algorithms are summarized in the following paragraphs.

We have employed the original CMA-ES in its IPOP-CMA-ES version (Mat-
lab code v. 3.61) with the following parameters: number of restarts = 4, IncPop-
Size = 2, σstart = 8

3 , λ = 4 + �3 log D�. The remaining parameters were left
default.

Loshchilov’s s∗ACM-ES-k was used in its bi-population version published
in [13]. The BIPOP-s∗ACM-ES-k results have been downloaded from the BBOB
results data archive1 in its GECCO 2013 settings.

Gaussian processes (GP) have been employed in the S-CMA-ES as surro-
gate models for gm = 5 model-evaluated generations. The distance r (see Algo-
rithm 1) has been set to 10. The covariance function K

ν=5/2
Matérn with starting values

(σ2
n, l, σ2

f ) = log(0.01, 2, 0.5) were used for the GP model (see [1] for the details).
As opposed to [16], all the function values were normalized to zero mean

and unit variance before training surrogate models in order to increase numer-
ical accuracy. The CMA-ES parameter values have been set the same as in the
original CMA-ES. All other settings were left default [1].

GP have been also employed in SMAC-BBOB [7], the continuous optimiza-
tion version of the SMAC. The SMAC results were downloaded from the BBOB
results data archive2.

The DTS-CMA-ES was tested with multiple settings of parameters. First,
all the uncertainty criteria from Sect. 3.1 (s2, LCB, EI, PoI) were compared
using λ = 4 + �3 log D� and norig = �0.1λ� (see Algorithm 4) to find the most
suitable one. For the remaining investigations, two different population sizes
λ1pop = 4 + �3 log D� and λ2pop = 8 + �6 log D� and four norig values �0.05λ�,
�0.1λ�, �0.2λ�, �0.4λ� were used for comparison. The CMA-ES parameters, the
distance r, and the GP model have been taken over from the S-CMA-ES.

1 http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k loshchilov noisele
ss.tgz.

2 http://coco.gforge.inria.fr/data-archive/2013/SMAC-BBOB hutter noiseless.tgz.

http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k_loshchilov_noiseless.tgz
http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k_loshchilov_noiseless.tgz
http://coco.gforge.inria.fr/data-archive/2013/SMAC-BBOB_hutter_noiseless.tgz
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4.2 Results

We have compared the performances of DTS-CMA-ES for four different uncer-
tainty criteria described in Sect. 3.1. The results aggregated through the full set
of benchmark functions show that the different criteria exhibit very similar con-
vergence rate. However, the usage of Cs2 leads to a slightly better performances
on most of BBOB functions, especially in 20D, and CEI performs the best on
f16, f22, and f23 (if aggregated through dimensions).

Figure 1 presents comparison of DTS-CMA-ES employing criteria Cs2 , CLCB,
CEI, CPoI with norig = �0.1λ� in 5D and 20D. Let Δf be the minimal distance
found from the function optimum for the considered number of fitness function
evaluations. The graphs depict a scaled logarithm of Δf depending on FE/D.
Since all the algorithms ran for each function and dimension on 15 independent
instances, only the empirical medians Δmed

f over those 15 runs of Δf were taken
for further processing. The scaled logarithms of Δmed

f are calculated as

Δlog
f =

log Δmed
f − ΔMIN

f

ΔMAX
f − ΔMIN

f

log10
(
1/10−8

)
+ log10 10−8

where ΔMIN
f (ΔMAX

f ) is the minimum (maximum) log Δmed
f found among all the

compared algorithms for the particular function f and dimension D between 0
and 100 FE/D. Afterwards, graphs of Δlog

f can be aggregated across arbitrary
number of functions and dimensions. Values in presented graphs are averages
of Δlog

f across all 24 functions. More detailed results can be found on authors’
webpage3.

The graphs in Fig. 2 summarize the performance of four different norig values
and two population sizes λ1pop and λ2pop. This and all the following experiments
use the criterion Cs2 which performed best in the first set of experiments. We
found that the lower the norig, the better the performance is observed. Moreover,
testing showed overall best performance of norig = �0.05λ2pop�, which is in 2D,
3D, 5D equal to 1, and in 10D and 20D is equal to 2.

Table 1 illustrates the counts of the 1st ranks of the compared algorithms
according to the lowest achieved Δmed

f for 20, 40, and 80 FE/D respectively.
These counts are for different dimensions summed across all 24 functions.

As can be seen in Fig. 3, DTS-CMA-ES provides the best average results
among the tested algorithms during the middle part of the optimization process,
i.e. between 30 and 80 FE/D. The SMAC excels at the very beginning of opti-
mization progress (up to ca. 15 FE/D), and starting from ca. 80–130 FE/D
(depending on dimension), the fastest converging algorithm is the s∗ACM-ES-k.

The new algorithm demonstrates speed-up compared to the S-CMA-ES with
the exception of f1; however, it still has problem with few multimodal functions
(f17–f20). It can be interpreted as premature convergence in local optima.

3 http://bajeluk.matfyz.cz/scmaes/ppsn2016/.

http://bajeluk.matfyz.cz/scmaes/ppsn2016/
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Table 1. Counts of the 1st ranks from 24 benchmark functions according to the lowest
achieved Δmed

f for different FE/D = {20, 40, 80} and dimensions D = {2, 3, 5, 10, 20}.
Ties of the 1st ranks are counted for all respective algorithms. The ties often occure
when ΔfT = 10−8 is reached (mostly on f1 and f5).

FE/D 2D 3D 5D 10D 20D
∑

20 40 80 20 40 80 20 40 80 20 40 80 20 40 80 20 40 80

DTS 0.1 1pop 6 3 2 13 6 3 10 4 3 10 7 3 2 4 5 41 24 16

DTS 0.05 2pop 8 17 13 7 11 11 9 14 13 6 13 11 11 10 8 41 65 56

S-CMA-ES 5 4 3 1 4 5 5 4 2 7 3 2 9 6 3 27 21 15

BIPOP-s∗ACM-ES-k 2 1 7 3 3 6 1 2 4 1 2 8 2 4 9 9 12 34

SMAC 5 4 4 4 4 5 3 4 5 4 2 2 3 4 3 19 18 19

CMA-ES 1 2 3 1 3 2 0 3 5 0 1 6 0 0 4 2 9 20

5 Conclusion and Future Work

This article presents a new version of the surrogate-based optimization algorithm
S-CMA-ES. It further investigates the possibility to use surrogate models based
on Gaussian processes in connection with the state-of-the-art black-box opti-
mization algorithm CMA-ES. This improved algorithm introduces an additional
model training within one generation, which shows a faster convergence to the
global optima on many benchmark functions, independently of dimensions.

The choice of uncertainty criteria was not found as crucial in the speed of
DTS-CMA-ES convergence. Furthermore, the comparison shows that the lower
numbers of reevaluated points in each generation can lead to higher performance
of the algorithm. We found that new approach usually reduces the number
of necessary evaluations in expensive optimization more than other compared
surrogate-model-based versions of the CMA-ES, namely BIPOP-s∗ACM-ES-k
and S-CMA-ES, and except very early stages of the exploitation even more than
SMAC-BBOB algorithm.

The main perspective of improving DTS-CMA-ES is to make the number of
reevaluated points online adjustable, which should lead to more precise control of
exploitation and facilitate escaping from the local optima. Another perspective
is to additionally investigate different properties of surrogate models for better
utilization of uncertainty criteria.
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