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Abstract. We consider the deployment of island-based memetic algo-
rithms (MAs) endowed with self-x properties on unstable computational
environments composed of a collection of computing nodes whose avail-
ability fluctuates. In this context, these properties refer to the ability of
the MA to work autonomously in order to optimize its performance and
to react to the instability of computational resources. The main focus of
this work is analyzing the performance of such MAs when the underly-
ing computational substrate is not only volatile but also heterogeneous
in terms of the computational power of each of its constituent nodes.
We use for this purpose a simulated environment subject to different
volatility rates, whose topology is modeled as scale-free networks and
whose computing power is distributed among nodes following different
distributions. We observe that in general computational homogeneity is
preferable in scenarios with low instability; in case of high instability,
MAs without self-scaling and self-healing perform better when the com-
putational power follows a power law, but performance seems to be less
sensitive to the distribution when these self-x properties are used.

1 Introduction

Population-based optimization algorithms are very well suited to parallel envi-
ronments thanks to their flexibility and decentralized nature. This has been
known and exploited since the late 80s. In contrast to the dedicated networks
of computational resources that were typical in the past, recent years have wit-
nessed the emergence of other kind of environments of a much more dynamic and
unsteady nature though. This is the case of peer-to-peer (P2P) networks and vol-
unteer computing networks, composed of volatile nodes whose availability usually
responds to uncontrollable external factors. Such environments are particularly
interesting in light of the increasingly pervasive abundance of computational
devices which are permanently networked (think for example of smartphones,
wearables, and any other kind of handheld devices) and whose computing power
is often unused or at least under-exploited [6]. Capitalizing on such power can be
a practical solution for solving many complex computational tasks but tackling
the underlying dynamic computational landscape is not exempt of difficulties.
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Of course, intermediate layers can be constructed to hide the transient nature
of computational nodes but it is not easy to have such an abstract layer mak-
ing effective use of brief, ephemeral bursts of computing availability. While this
direction is in any case interesting and valid, we consider here a much more
direct approach in which the optimization algorithm is cognizant of the volatile
environment,.

Algorithms consciously running on computational environments with the fea-
tures mentioned above must be resilient in order to withstand sudden node fail-
ures. In the case of evolutionary algorithms this resilience is partly provided by
their inherent features [13,15], and can be further boosted by exploiting their
capacity for adaptiveness and self-control [8,11]. This latter feature is essential to
have the algorithm readjusting its behavior in response (or even in anticipation)
to the fluctuations of the environment. Indeed, much work has been done in the
area of self-adaptation in evolutionary algorithms, e.g., [5,24,25] in general, and
in connection with unstable environments in particular. In this work we build
on previous research [19-22] in order to tackle the potential heterogeneity of the
environment [1] in terms of the computational power of individual nodes (which
in a setting such as the one described before could range from tiny devices to
desktop computers for example) and ascertain to which extent this can exert
an influence in the performance of the algorithm. The underlying rationale for
examining this matter lies in the potentially different impact than the failure
of a node can have on the system as a whole depending on its computational
power, and determining whether or in which conditions the system is sensitive to
this environmental heterogeneity. To this end we consider island-based memetic
algorithms (MAs) endowed with self-x properties [2] and use a simulated com-
putational environment that allows experimenting with different scenarios both
in terms of the volatility of computing nodes and the distribution of comput-
ing power of constituent nodes. A broad experimentation is done to assess the
performance of the MA in these different scenarios.

2 Materials and Methods

2.1 Basic Algorithmic Setting

As stated in the introduction, the basic algorithm considered is an island-based
MA. Let there be n, panmictic islands, each of them running a simple MA (using
tournament selection, one-point crossover, bit-flip mutation, and replacement of
the worst parent) on a different computing node. Such nodes are interconnected
among them according to a certain topology N — see Sect.2.3. In addition to
standard selection, variation and local improvement, each island perform asyn-
chronous migration: at the beginning of each cycle the island checks if migrants
were received from any neighboring nodes and are stored in the input buffer.
Were this the case, they would be inserted in the population following a cer-
tain migrant replacement policy. Later, at the end of each cycle, each island
decides stochastically whether to send individuals to neighboring islands. If done,
migrants are selected using a given migrant selection policy and sent to the
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neighbors. Following previous analysis of migration strategies in island-based
MAs [18], we use random selection of migrants and deterministic replacement of
the worst individuals in the receiving island.

2.2 Self-x Properties

Self-x properties [2] are those that enable a computational system to exert
advanced control on its own functioning and/or structure. This goes beyond
parameter control (its practical importance notwithstanding) and encompasses
advanced capabilities such as, e.g., self-maintaining in proper state, self-healing
externally infringed damage, or self-optimizing its behavior, just to cite a few.
In the following we will describe the particular self-x properties with which the
MA considered is endowed.

Self-Generation. According to [4], a system is self-optimized if starting from an
arbitrary initial configuration it is capable of improving a certain objective func-
tion of its global state. In the case of bioinspired optimization algorithms, this
objective function does not directly refer to the fitness function to be optimized,
but to the capability of the algorithm to optimize the latter. Such capability
can be improved for example by tuning some parameters (self-parameterization)
or even by adjusting qualitatively the way the search is done (self-generation).
The latter approach amounts to have the algorithm adjusting the search strat-
egy during runtime [12], and is related to the notion of memetic computing [23]
whereby memes (understood as representations of problem solving strategies)
are explicitly represented and evolved [17].

In the MA considered we follow the model by Smith [24] in which memes are
attached to individuals and evolve alongside them. More precisely, these memes
take the form of pattern-based rewriting rules A — B, where A, B are variable-
length strings taken from the same alphabet used to encode solutions plus a
wildcard symbol. The action of the meme is finding an occurrence of pattern A
in the solution and changing it by pattern B if it leads to a fitness improvement
(otherwise the solution is left unchanged). Self-generation is attained due to the
fact that memes are subject to mutation and are transferred from parent to
offspring via local selection (offspring inherit the meme of the best parent).

Self-Scaling. This property involves the ability of the system to react efficiently
to changes in its scale parameters, that is, changing its size or its structure
in response to modifications in the size of the problem being solved, in the
amount of computational resources available, or in any other circumstance of the
computation, e.g., [9,28]. In this case, the main factor to be taken into account is
the volatility of the environment that results in certain islands getting lost when
the supporting node goes down. This implies that the overall size of the system
will fluctuate, affecting genetic diversity and resulting in the loss of information.
To cope with this, a self-balancing policy has been proposed [22]. This strategy
is aimed to resize dynamically islands so that some of them increase their sizes
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when they detect a neighboring island has gone down, and analogously decrease
their sizes when a new neighbor appears. This is done by communicating with
neighbors at the beginning of each evolutionary cycle exchanging information on
the size of their populations and the number of active neighbors, and performing
a local balancing procedure [27] by transferring individuals. New islands can
absorb this way a part of the existing population in neighboring nodes and,
likewise, nodes detecting that a previously active neighbor is no longer available
try to compensate this loss by increasing their own population sizes (using the
recorded information on the size and number of active neighbors the lost island
had in order to calculate the required increase). While simultaneous failures
of neighboring nodes can still produce fluctuations, this strategy promotes the
stabilization of the overall population size.

Self-Healing. This property focuses on the maintenance and restoration of sys-
tem attributes that may have been affected by internal or external actions. In the
context of evolutionary algorithms this property is not new since the use of ad-
hoc procedures for repairing infeasible solutions produced by variation operators
in constrained problems [16] can be regarded as a simple form of self-healing.
More particularly for the case of ephemeral computational environments, the
volatility of the system can be the source of at least two issues the algorithm
needs to deal with: (i) node failures disrupt the connectivity of the network, lim-
iting the flow of information and hindering the progress of the search, and (ii)
forcing an island to increase its size can perturb the convergence of the search if
the new information is simply random. To tackle the first issue, a self-rewiring
strategy [19] is used: whenever an island detects that its number of active neigh-
bors has fallen below a predefined threshold, it looks for additional neighbors to
reach this minimum level, hence aiming to maintain a rich connectivity at all
times. As to the second issue, it is dealt with by means of self-sampling [20], that
is, the island keeps a probabilistic model of the current population and samples
it (much like it is done in EDAs) when new individuals are required. This way,
the latter are representative of the current state of the population. We consider
here a tree-based bivariate probabilistic model.

2.3 Environmental Model

This island-based model runs on a simulated distributed system composed of
n, nodes. These nodes are interconnected following a scale-free topology. This
connectivity pattern is commonly observed in many real-world systems, particu-
larly in P2P systems. To generate this topology we consider the Barabasi-Albert
(BA) model [3]: starting with a clique of m + 1 nodes (m being a parameter
of the model), new nodes are added one at a time, selecting for each of them
m neighbors among previous nodes; neighbor selection is driven by preferential
attachment, whereby the probability of picking a certain node is proportional to
the number of neighbors it already has.

To model the volatility of the nodes, we consider that failures/recoveries are
Weibull distributed [14]. This distribution is described by a shape parameter 7
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and a scale parameter 3: the probability of a node being available up to time
t is p(t,n, 8) = exp(—(t/B)"). Thus, for shape parameters larger than 1 (as we
use in the experiments), failure/recovery probabilities increase with time.
Network heterogeneity is modeled by assuming each node ¢ has a certain
computing power w; € NT. These coefficients represent for simplicity a relative
performance index and hence each node’s power can be understood to be pro-
portional to its coefficient. From the point of view of the MA, this computational
power determines the number of evolutionary cycles (and hence the number of
fitness function evaluations) each node can perform per unit of time. We have
considered several scenarios regarding the distribution of values for these coeffi-
cients but in all cases, the overall computing power of the network W = 3", w;
is the same so as to not introduce any bias towards any particular configuration:

— uniform: the overall computing power W is evenly distributed among nodes,
meaning that |W/n,| < w; < [W/n,].

— random: each coefficient w; can have a uniformly random value in {1,..., W —
n, + 1}, subject to W = )" w; as mentioned before. This is accomplished by
having w; = 1 initially, attributing random values in (0,1) to each node and
then using D’Hondt’s method to distribute W — n, additional units among
nodes according to these values.

— binomial: coefficients can take valuesin {1,..., W —n,+1} and the probability
of a certain value w is p(w) = C(W — n,,w — 1)g¥ "1 (1 — q)W =%+ where
q = 1/n,. As in the previous case, the boundary conditions ensure that each
node has at least unit power.

— power law: coefficients are grouped in r levels, where r € {0,..., rnaxt with
Tmax = [logyn,| — 1, so that there is a single node with power |n,/2] in the
highest level, and in subsequent levels there are twice as many nodes, each
with half as much power as in the previous upper level (although depending
on the value of n, the lowest level can have additional nodes if these are not
enough to create a new level).

The value W implied for the last configuration (power law) is used for the remain-
ing distributions. Notice that depending on the configuration a node failure will
have a different impact on the overall capacity of the system. For example, under
the power law distribution around half of node failures will have a low impact in
this overall capacity but larger disruptions are possible (albeit with a increas-
ingly lower probability). On the opposite side of the spectrum, all failures have
a priori the same moderate impact under a uniform distribution. Next section
describes the experimentation conducted with these distributions to determine
more quantitatively the effect they exert on performance.

3 Experimental Analysis

We consider n, = 32 islands whose initial size is ¢ = 16 individuals and a
total number of evaluations mazevals = 50000. Meme lengths evolve within
Imin = 3 and lnax = 9, mutating their length with probability p,. = 1/9.
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Fig. 1. Average deviation from the optimal solution across all problems. (a) According
to algorithmic variant. (b) According to power distribution.

Table 1. Results of Holm test (a = 0.05) using LBQ_ it as control algorithm.

1 | strategy | z-statistic | p-value ali

1| LBQcomit | 2.934e+400 | 1.670e—03 | 5.000e—02
2 | noB 6.293e+4-00 | 1.554e—10 | 2.500e—02
3| noB” 9.298e+-00 | 7.125e—21 | 1.667e—02

We use crossover probability px = 1.0, mutation probability pys = 1/¢, where
¢ is the genotype length, and migration probability pm:; = 1/80. Regarding
network topology, we use m = 2 in the Barabdsi-Albert model. This model
is also used for self-rewiring when a node has less than m active neighbors.
Regarding node deactivation/reactivation, we use the shape parameter n = 1.5
to have an increasing hazard rate, and scale parameters § = —1/log(p) for
p=1-(kn,)" !, k € {1,2,5,10,20}. These parameters can be interpreted as
corresponding to an average of one island going down/up every k cycles if the
failure rate was constant (it is not since 1 > 1 but this serves as a first approx-
imation). This provides different scenarios ranging from low volatility (k = 20)
to very high volatility (k = 1). We perform 25 simulations for each algorithm
and volatility scenario. We consider four algorithmic variants (in parentheses
the self-x properties involved — all variants use self-generation): LBQ?, .. (self-
rewiring, self-sampling, self-scaling), LBQcomit (self-sampling, self-scaling), noB"
(self-rewiring) and noB. The experimental benchmark comprises three test func-
tions, namely Deb’s trap function [7] (concatenating 32 four-bit traps), Watson
et al.’s Hierarchical-if-and-only-if function [26] (using 128 bits) and Goldberg
et al.’s Massively Multimodal Deceptive Problem [10] (using 24 six-bit blocks).
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Fig. 2. Average deviation from the optimal solution across all problems and power
distributions for each algorithmic variant. (a) noB (b) noB” (¢) LBQcomit (d) LBQeomit -

Figure 1a shows the average deviation from the optimal for each of the four
algorithmic variants across all problems and power distributions. The variants
with self-scaling and self-sampling outperform variants without them, even in
the presence of self-rewiring. This confirms the robustness of the former across
different the scenarios considered. In fact, LBQ/,,;, is significantly better than
the remaining algorithms (Quade test p-value a~ 0, Holm test passed at o =
0.05 as shown in Table 1). Thus, from a global point of view endowing the MA
with self-x properties appears to be a advantageous option. If we now turn our
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attention to the overall results obtained under each different configuration by
all four variants, the differences are not always large (Fig.1b), although this
is understandable in light of the great performance diversity of the algorithms
involved that diminishes and conceals dissimilitudes among configurations. For
this reason, it is more convenient to factorize the analysis and observe the impact
that configurations have on each algorithm separately. This is shown in Fig. 2.

Comparing the behavior of the different algorithms, there is a common fea-
ture: in scenarios of low to moderate volatility (k > 5) the uniform distribution
(corresponding to near-homogeneous nodes) provides better results. The differ-
ences are not always significant considering individual algorithms, but the trend
is clear and yields a global significant difference (Quade test p-value ~ 7.022e—4,
Holm test passed for all distributions except random at o = 0.05 and for the lat-
ter as well at o = 0.1). We interpret this result as indicating that in scenarios in
which the environmental instability is not strong enough to pose a great handi-
cap to the search process, device homogeneity contributes to balance the search,
having all islands progressing at about the same rate. This is further vindi-
cated by the comparatively worse results of the power law distribution in this
range, suggesting that the decompensation of computational power (and thus
the unbalance of search progress among islands) is not a cost-effective solution.
It is also interesting to note the different behavior of noB and LBQ_ ;. on the
other part of the spectrum, that is, for moderate to high volatility (k < 5). In
this case, it seems that noB benefits from heterogeneity. This can be due to
the fact that having nodes with high computational power can push forward
the search significantly during their short availability stint in a much more cost-
effective way than less powerful nodes. The situation is different in the presence of
self-healing and/or self-scaling, particularly for LBQZ, ;- These self-x properties
help to absorb the impact of the environment instability and hence LBQY, . ;; is
not in a so-markedly different scenario as before. In fact, power law is significantly
worse than uniform for LBQ?, ., globally considering all values of k (although
the performance is in that case still superior to the remaining algorithms).

4 Conclusions

Deploying population-based optimization algorithms on unstable environments
require resilience to deal with the fluctuating computational landscape. Such
fluctuations respond to the volatility of computing nodes but can also encompass
the heterogeneity of the system and the corresponding variations in the computa-
tional power of nodes available at a certain moment. In this sense, endowing MAs
with self-x properties has been shown as an effective solution. The combined use
of self-scaling and self-healing seems robust under different configurations of the
system, even in scenarios with extreme heterogeneity in which its performance is
comparatively less favorable. Future work will be directed to confirm these find-
ings, extending the range of scenarios considered both in terms of heterogeneity
and of the volatility patterns of the system.
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