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Abstract. Differential Evolution (DE) is a simple and effective evolu-
tionary algorithm to solve optimization problems. The existing DE vari-
ants always maintain or increase the randomness of the differential vector
when considering the trade-off of randomness and certainty among three
components of the mutation operator. This paper considers the possi-
bility to achieve a better trade-off and more accurate result by reducing
the randomness of the differential vector, and designs a tight adaptive
DE variant called TADE. In TADE, the population is divided into a
major subpopulation adopting the general “current-to-pbest” strategy
and a minor subpopulation utilizing our proposed strategy of sharing
the same base vector but reducing the randomness in differential vector.
Based on success-history parameter adaptation, TADE designs a simple
information exchange scheme to avoid the homogeneity of parameters.
The extensive experiments on CEC2014 suite show that TADE achieves
better or equivalent performance on at least 76.7 % functions compar-
ing with five state-of-the-art DE variants. Additional experiments are
conducted to verify the rationality of this tight design.
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1 Introduction

Differential Evolution (DE), proposed in [1], is a simple and effective evolution-
ary algorithm to solve complex optimization problems. It has been shown to
outperform some nature-inspired metaheuristics, such as genetic algorithm and
particle swarm optimization over several benchmark functions [2], and has been
adopted to various applications according to [3,4]. However, due to its stochastic
nature, it suffers from long computing period and has the potential to improve
the accuracy further. Since the mutation operator is the main engine that drives
the population toward improvement, to achieve a more accurate and efficient DE
algorithm, plenty of researches have been done based on its three components,
the base vector, scaling factor and differential vector(s).
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The basic DE variants make the performance improvement mainly by reduc-
ing the randomness of base vector, such as DE/best/1, increasing the random-
ness of differential vector(s), such as DE/rand/2, or performing on both aspects,
such as DE/best/2. The control parameters remain unchanged throughout the
process. However, this certainty of the unchanged parameters makes it impracti-
cal due to high time cost of the required parameter tuning step, and this certainty
somehow does harm to the performance since different parameter settings are fit
for different stages. Therefore, many existing methods turned to introducing the
randomness into the parameters and making them alterable and adaptable to
different stages, such as jDE [6], NSDE [7], JADE [8] and SHADE [9] on a single
mutation strategy, and CoDE [11], SaDE [10] and EPSDE [12] further combin-
ing multiple strategies. These adaptive (or self-adaptive) variants achieved more
accurate result via increasing the randomness of search length, but still did not
reduce the randomness of the differential vector.

These existing variants maintained the wide randomness on differential vec-
tor, which seems sensible since the randomness can ensure the possibility of
reaching global optimum. However, it may waste time in the computation on
the unpromising area, which results in its slow convergence. Introducing the
certainty may result in a more accurate result in limited function evaluation
times. Recently, our previous work [5] took the first step to reduce the diver-
sity of the differential vector, and achieved a better result against DE/rand/1
and DE/best/1 on several benchmark functions. This shows the possibility of
reducing the randomness of differential vector to achieve a more accurate result.
However, although that work obtained a trade-off among the base vector and the
differential vector, it maintained the certain scaling factor. As far as we know,
there has not been any work considering the trade-off among all the three aspects
while reducing the randomness of differential vector to get a competitive result.

In this paper, we firstly propose a novel DE mutation strategy. It takes
current-to-pbest as the base vector, maintains the random choice of the starting
point of differential vector and adopts the current (target) vector as the ending
point. Due to the reduced randomness in the search direction, this greedy muta-
tion may lead to premature and is unfit to drive the whole population. Therefore,
it is then utilized as the engine of a minor subpopulation. The major subpopu-
lation is evolved via current-to-pbest [8] which has the same base vector and can
share the exploration information in time with the minor subpopulation. Both
subpopulations adopt the success history based parameter adaption [9], and the
exchange of the two subpopulations is designed to further enhance the diversity
of the scaling factor. Extensive experiments are conducted to compare this Tight
Adaptive DE (TADE) with five state-of-the-art DE variants (SHADE, JADE,
CoDE, EPSDE and SaDE) on the CEC2014 benchmark suite.

The contributions of this paper can be summarized as follows:

– This paper designs a tight adaptive DE scheme, which includes a proposed
mutation reducing the randomness in differential vector, the information
exchange on mutation strategies to get out of the local optima, and the infor-
mation exchange on control parameters to enhance the randomness
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– TADE achieves better or equivalent performance on at least 76.7 % functions
comparing with five state-of-the-art DE variants

– Verification for the rationality of our tight design is conducted by the experi-
ments varying partition and parameter exchange rate

Organization of the rest paper is as follows. The brief introduction of Differ-
ential Evolution and an insight view are shown in Sect. 2. Section 3 discusses the
motivation and detail of the proposed method. Extensive experiments and analy-
sis are conducted on Sect. 4. Finally, Sect. 5 concludes the paper and discusses
the future work.

2 Differential Evolution

This section briefly describes the framework and an insight view of DE algorithm.
DE undergoes mutation, crossover and selection operators iteratively until satis-
fying the accuracy condition or reaching a predefined function evaluation times
FESmax. The random change happens in mutation so that every candidate has
the opportunity to enter the next generation and get itself inherited. Crossover
operator generates the trial vector ug

i that exchanges the information of the
mutant vector vgi with the target vector xg

i and further widen the diversity.
Then the selection operator is employed to preserve the most promising vector
entering the next generation, ensuring the non-degeneration evolution process.
Obviously, mutation is the main engine to pull the population to improvement.

All mutation operators are composed of three parts: the base vector, differ-
ential vector(s) and the search length (scaling factor). Taking “current-to-pbest”
in JADE [8] as an example:

vgi = xg
i + Fi(x

g
pbest − xg

i ) + Fi(xg
r1 − x̃g

r2) (1)

The mutation happens around the neighborhood of the base vector xg
i +

Fi(x
g
pbest − xg

i ), giving a rough guess on where the promising search area is.
Then the differential vector xg

r1 − x̃g
r2 determines the search direction, and the

scaling factor Fi controls how far it will search along the direction.
Throughout the DE developing history, many existing methods can be

regarded as looking for a more accurate result via achieving a better trade-
off between the randomness and the certainty. Randomness represents the huge
diversity of the offspring candidates that can ensure the possibility of reaching
the global minimum, while certainty carries the information which leads to a
strategy or belief on where the promising area is. Therefore, although random-
ness maintains the possibility, the huge area to search may cause inefficiency,
and although certainty provides relatively smaller area and processes faster, it
may cause premature due to its myopia or greediness.

Specifically, as for the base vector, differential vector(s) and the search length
(scaling factor) in mutation, the classical operators discuss the first two compo-
sitions but fix the scaling factor. DE/rand/1 maximizes the randomness of both
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Algorithm 1. General framework of TADE
– Initialization

1: g = 0, partition = 8/10, exR = 0.3, Archive A = ∅;
2: Index counter k1 = k2 = 1;, N1 = partition ∗ N , N2 = N − N1;
3: M1 = {(0.5, 0.5)i|i = 1, ..., N1}, M2 = {(0.5, 0.5)i|i = 1, ..., N2}
4: E1 = {N1 − N2 ∗ exR + 1, ..., N1}, E2 = {N1 + 1, ..., N1 + N1 ∗ exR)};
5: Initialize population P 0 = {x0

1, ..., x
0
N}, evaluating P 0, FES = N

6: where major subpop P 0
1 = {x0

1, ..., x
0
N1}; minor subpop P 0

2 = {x0
N1+1, ..., xN};

– Evolution

1: while FES < FESmax do
2: S1 = S2 = ∅;
3: for i = 1,2 do
4: for j in P g

i do
5: generate (F g

j , CRg
j ) from Mi;

6: generate pbest from P g;
7: generate mutator vgj by (eq.i);
8: generate trial vector ug

j

9: if f(xg
j ) > f(ug

j ) then

10: xg+1
j = ug

j ; x
g
i → A;

11: (F g
j , CRg

j ) → Si;
12: else
13: xg+1

j = xg
j ;

14: end if
15: end for
16: end for
17: for i = 1, 2 do
18: if Si �= ∅ then
19: AS = {(F g

j , CRg
j ) ∈ S3−i|j ∈

E3−i}
20: Update Mi based on Si ∪ AS
21: ki = (ki + 1)modNi

22: end if
23: end for
24: g = g + 1, FES = FES + N
25: end while

parts, making it a most robust one, and DE/best/1 believes that the promis-
ing offsprings may be more likely to surround the best vector, and utilizes this
certainty to design the best vector as the base vector and achieves a greedy but
more rapid process that helps to reach a more accurate result in a limited time.
Recently, our previous work further reduced the uncertainty of the differential
vector, and get a competitive performance over DE/rand/1 and DE/best/1 on
several functions. The basic operators hold the certainty that the control para-
meter is constant in the whole period. However, some randomness adding into
this certainty indeed improves the performance, like jDE, JADE, SHADE and
other adaptive methods.

3 TADE

Special attentions are given to JADE and SHADE. JADE increased the random-
ness to overcome the premature caused by greedy base vector. Firstly, JADE
utilized a random vector from top p% best individuals to replace the greedy
best vector in “current-to-best”, which introduced the uncertainty of base vec-
tor. Moreover, JADE added an archive A to the population when generating the
differential vector, which increased the randomness of candidate search direc-
tions. Besides, JADE used the current succeed parameters to partly influence
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the new ones, and added more uncertainty like Gaussian or Cauchy distribution.
These strategies well alleviated the greediness of the base vector and enlarged
the diversity. SHADE, the work based on JADE, further increased the diversity
of the parameter. Instead of the current succeed parameters, SHADE maintained
a historical succeed parameters, which can bring a wider randomness.

Since our previous work [5] found the possibility of reducing the randomness
of the differential vector, this paper discussed whether it can be combined with
the trade-off of other two aspects to achieve a more accurate result. We firstly
propose a novel mutation strategy reducing the randomness of the differential
vector. Different from [5] that selected the target vector as the starting point of
the differential vector and maintained the randomness of the ending point, this
mutation maintains the uncertainty of the starting point and takes the target
vector as the ending. For the base vector, we adopt “current-to-pbest” vector
to increase the diversity and avoid the myopia of best vector. This mutation
strategy is noted as “current-to-pbest(half-rand)”, and can be written as

vgi = xg
i + Fi(x

g
pbest − xg

i ) + Fi(x
g
i − x̃g

r2) = xg
i + Fi(x

g
pbest − x̃g

r2) (2)

The proposed mutation strategy largely reduces the number of possible candi-
date directions from (N−1)(N+|A|−2) to N+|A|−1 for the current population.
It is unfit to drive all or even the majority of the population to evolve since too
much searching area has been cut. Therefore, this mutation strategy could act
on a small part of the population as a pioneer soldier to rapidly explore on a nar-
row area. The majority of the population is controlled by a relatively farsighted
“current-to-pbest(rand)” (that is the “current-to-pbest” in JADE and (rand)
represents both randomness in differential vector). The reason of this choice is
that “current-to-pbest(rand)” and “current-to-pbest(half-rand)” have the same
base vector, the explored information from the pioneer soldier can easily feed-
back to the farsighted commanding officer in the next generation, and the officer
can give a real-time and global-view new command with no extra cost to change
the local search area the pioneer will explore in the next generation.

As for the parameter adaption, both parts adopt the way in SHADE due
to its larger diversity. The basic thought of SHADE maintained the historical
succeed parameters of several generations. Simply, the major and minor sub-
population update the success history merely by their own success parameters.
However, with the iterative evolution, each element in the memory may become
homoplastic, which hurts the diversity of search length and becomes harder to
jump out. If the homoplasty can be postponed, larger area may be explored
and a more accurate result may be achieved. Therefore, an exchange on the
subpopulation to update the success memory is designed due to the inherently
different mechanism of two mutation strategies. Specifically, an exchange rate
exR is designed to determine the proportion of one subpopulation that will be
used for the other subpopulation when updating the success memory.

The framework of this tight adaptive DE, called TADE, is shown in
Algorithm 1. In Evolution phase, Lines 2–16 undergo the general process of
DE for major and minor subpopulations. In line 6, the mutation information
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exchange happens since pbest for each subpopultion is generated from the whole
population P g. Lines 17–23 update the success memory for both subpopulations.
The success parameter exchange happens in Lines 19–20. Taking updating M1

for major subpopulation as an example, the set AS is from minor success para-
meters and there are at most |E2| = N1 ∗ exR success parameters in the minor
subpopulation that will join in the success memory update for the major sub-
population.

The Tight in TADE reflects on two aspects: the real-time information
exchange on generating base vector, and the influence of success parameters in
one subpopulation to the other. Next section shows the performance and ratio-
nality of this tight trade-off among base vector, scaling factor and differential
vector.

4 Experiments

4.1 Settings

CEC2014 [13] benchmark suite is employed to demonstrate the performance
comparison. Functions in this suite are all single objective optimization prob-
lems, containing both unimodal (F1-F3) and multimodal functions (F4-F30).
More specifically, F4-F16 are simple multimodal functions, F17-F22 are hybrid
functions and F23-F30 are composition functions. For each problem, 51 indepen-
dent runs are conducted to obtain a reliable result. The dimension D is all set
to be 30. The evolution process ends when the function evaluation time reaches
FESmax = 10000 ∗ D, and the error value smaller than 10−8 is taken as 0 [13].

4.2 Comparison and Analysis

Five state-of-the-art DEs, SHADE [9], JADE [8], CoDE [11], EPSDE [12] and
SaDE [10], are utilized to compare with TADE. The settings of comparing meth-
ods are configured the same as the related papers. In TADE, the total population
size N=100, the population partition is set to 8:2 for the major and minor sub-
population, and the success memory updating exchange rate exR = 0.3.

Wilcoxon’s rank sum test at 5% significance level is conducted between
TADE and the comparing methods to measure whether TADE can obtain a sig-
nificantly superior result or not. When TADE performs significantly better, “−”
is marked, and “+” when TADE performs significantly poorer. “=” is marked
when there is no significant difference. Due to the limited space, the detailed
mean error value and the standard deviation of 51 independent runs are pro-
vided in http://thuhpgc.org/images/8/8e/Sup.jpg, but the number of cases on
different function categories that TADE achieves better “−”, equivalent “=” and
worse “+” results against the comparing method are summarized in Table 1.

(a) Comparison with SHADE and JADE. From Table 1, TADE shows a quite
competitive performance over SHADE, and it achieves better results on 12 func-
tions and loses 7 functions. The attention should be paid to the unimodal as well

http://thuhpgc.org/images/8/8e/Sup.jpg
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Table 1. Experimental results over 51 independent runs on unimodal functions of 30
variables with 300 000 FES

Function type SHADE JADE CoDE EPSDE SaDE

Unimodal (F1-3) 1−2=0+ 2−1=0+ 1−2=0+ 1−2=0+ 2−1=0+

Simple multimodal (F4-16) 3−6=4+ 9−3=1+ 5−5=3+ 11−2=0+ 11−1=1+

Hybrid (F17-22) 3−2=1+ 5−1=0+ 3−1=2+ 6−0=0+ 5−1=0+

Composition (F23-30) 5−1=2+ 3−4=1+ 5−2=1+ 3−0=5+ 6−1=1+

Total 12−11=7+ 19−9=2+ 14−10=6+ 21−4=5+ 24−4=2+

as the hybrid and composition functions. Indeed on the unimodal function F1,
the mean error of SHADE is around E+02 and that value is E−07 for TADE,
which demonstrates TADE’s superior performance. For the hybrid and compo-
sition functions, the better cases TADE achieves are quite more than the better
cases SHADE achieves. The difference between TADE and SHADE lies on the
proposed mutation strategy for subpopulation and the mechanism preventing
from homogeneity of the success memory. The real-time information exchange
of two different mutations can prevent the whole population from being stuck
in a local area, and the parameter information exchange prolongs the coming
time of homogeneity, ensuring more time for exploration. These are the essential
reasons why TADE performs better than SHADE. Also from Table 1, TADE
shows an overwhelming superiority over JADE on every category. This advan-
tage comes partly from the success history inherited from SHADE that widens
the diversity, and partly from the tight major-minor scheme that makes a clear
division of labour and improves the whole generation more effectively.

(b) Comparison with CoDE, EPSDE and SaDE. This comparison shows the
performance against some state-of-the-art variants that combined the strengths
of several mutation strategies. These methods employed a wide diversity of muta-
tion strategies but with no tight information exchange. From Table 1, we see an
overwhelming superiority of TADE over these methods, especially EPSDE and
SaDE. A major contribution comes from the real-time information exchange in
TADE, and the clear division and role of different methods help to achieve a
win-win situation that pulls the generation towards improvement.

(c) Overall Comparison. From Table 1, TADE performs better or equiva-
lently on at least 23(76.7%) functions when compared with these five methods,
and that number can reach 28(93.3%) when compared with JADE and SaDE.
The strength of the tight and cooperative scheme can be seen especially in the
unimodal and the hybrid functions. The unimodal functions are relatively simple
and the greedy “current-to-pbest(half-rand)” can rapidly explore the promising
simple area. For hybrid functions that are usually the sum of several functions,
two different mutations work for different components and search areas, and
are tightly cooperated as well, thus resulting in the fast searching ability and
enabling the possibility of reaching more promising area.
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Fig. 1. Convergence curves of six DE variants on (a) F1, (b) F4, (c) F17, (d) F24.

More visually, Fig. 1 plots the convergence curves of these six methods on four
functions selected from four categories. We can see the overwhelming superiority
of TADE on Fig. 1(a), where TADE reaches several-magnitude better result with
much rapid convergence speed than other methods. From Fig. 1(b), TADE and
SHADE outperform the others, but TADE has a rapid speed and achieves the
minimum ahead of SHADE. In Fig. 1(c), all six methods have almost the same
speed at the early phase of the process, but TADE can reach a further accurate
result due to the tight cooperative scheme that prevents the whole population
from being all trapped into the local minima. TADE reaches competitive results
in Fig. 1(d) against SHADE and CoDE. In a word, the strength of TADE is
further shown from these curves.

4.3 Rationality of Our Tight Design

The experiments on different subpopulation partitions as well as different
exchange rates are conducted to demonstrate the rationality of the tight designed
scheme. Table 2 shows the results of 51 independent runs on different partitions
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Table 2. Different partitions

Part 1:9 3:7 5:5 7:3 8:2 9:1

21 18 13 4 − 7
6 6 12 25 = 21
3 6 5 1 + 2

Table 3. Different exchange rates

exR 0.0 0.1 0.2 0.3 0.4

8 3 0 − 0
20 27 30 = 30
2 0 0 + 0

from 1:9 to 9:1 with fixed exR = 0.3, and Table 3 shows the comparison results
on different exchange rates from 0.0 to 0.4 with 8:2 population partition.

From Table 2, when the proportion of the proposed “current-to-pbest (half
rand)” becomes larger (Part from 5:5 to 1:9), the performance becomes worse,
showing the greediness of this mutation. Therefore, the design is reasonable that
this greedy mutation is assigned with a smaller subpopulation. The effect of
this greedy but fast pioneer is to get a fast feedback of its exploring area to
the dominant role, “current-to-pbest (rand)”. This design can prevent the whole
population from being trapped in the local place, and can improve the efficiency
as well. The comparison result against 10:0 partition, that is the comparison
with SHADE in Table 1, 12−11= and 7+, shows the actual effect of the pioneer
discussed before and shows a win-win performance of both mutation strategies.

From Table 3, when exR = 0.0, which means no exchange between two sub-
populations, this setting achieves 8 worse cases and only 2 better cases, which
verifies TADE’s parameter exchange can delay the homogeneity to some degree
and results in the exploration of larger promising area. When the rate is from
0.2 to 0.4, there is no significant difference because almost every success set-
ting of the minor subpopulation will join in the success history updating of the
major one since there are only 20 individuals of minor subpopulation in this 8:2
partition.

5 Conclusion and Future Work

Generally, DEs maintain both randomness of the vectors that generate the dif-
ferential vector to ensure the wide range of the candidate search directions. The
competitive performance of our previous work on reducing the randomness of dif-
ferential vector leads to a new thought on existing variants. The engine muta-
tion operator of DE has three aspects, base vector, scaling factor and differen-
tial vector(s). The competitive performance and the behavior of existing vari-
ants can be explained by the trade-off of the randomness and certainty among
these three components. However, existing methods only considered the trade-off
without reducing the randomness of differential vector. This paper designed tight
adaptive DE (TADE) that took the randomness-reduced differential vector into
account. This proposed half-rand mutation was used to guide a minor subpopu-
lation while the majority was leaded by the general “current-to-pbest”. The same
base vector in both mutation helped to share the exploration information timely,
and difference prevented from all being trapped in the local area. Moreover, based
on success-memory parameter adaption, this paper designed a parameter informa-
tion exchange scheme to delay the homogeneity and premature.
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The extensive experiments in this paper were conducted on 30 CEC2014
benchmark functions. Firstly, TADE was compared with five state-of-the-art DE
variants, SHADE, JADE, CoDE, EPSDE and SaDE. TADE showed a competi-
tive performance against SHADE, and a superior performance against other four
methods. Secondly, for the two tightness in this design, the different partitions
and exchange rates were conducted. The results demonstrated the rationality of
this design and reflected the characteristics of the proposed mutation strategy.

In the future, other basic designs and adaptive schemes on the randomness-
reduced differential vector are encouraged to achieve a better performance.
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