
An Extension of Algebraic Differential Evolution
for the Linear Ordering Problem

with Cumulative Costs

Marco Baioletti, Alfredo Milani, and Valentino Santucci(B)

Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

{marco.baioletti,alfredo.milani}@unipg.it,
valentino.santucci@dmi.unipg.it

Abstract. In this paper we propose an extension to the algebraic
differential evolution approach for permutation based problems (DEP).
Conversely from classical differential evolution, DEP is fully combina-
torial and it is extended in two directions: new generating sets based
on exchange and insertion moves are considered, and the case F > 1 is
now allowed for the differential mutation operator. Moreover, also the
crossover and selection operators of the original DEP have been modi-
fied in order to address the linear ordering problem with cumulative costs
(LOPCC). The new DEP schemes are compared with the state-of-the-art
LOPCC algorithms using a widely adopted benchmark suite. The exper-
imental results show that DEP reaches competitive performances and,
most remarkably, found 21 new best known solutions on the 50 largest
LOPCC instances.

Keywords: Algebraic differential evolution · Linear ordering problem
with cumulative costs · Permutations neighborhoods

1 Introduction and Related Work

Algebraic Differential Evolution (ADE) [13] is a recently proposed effective meta-
heuristic for combinatorial optimization. ADE works on discrete search spaces
by mimicking the behavior of the numerical Differential Evolution (DE) [16].

In the past, the numerical DE has been applied to combinatorial problems
by adopting transformation techniques to decode a numerical vector (genotype)
in the corresponding discrete solution (phenotype) in the evaluation step (see
for example [2]). However, a single discrete solution can be represented by a
potentially infinite number of continuous individuals, thus introducing a one-to-
many mapping from the phenotypic to the genotypic space. As a consequence,
large plateaus are very likely to be introduced in the search landscape and this
is probably the main reason of the poor performances of these combinatorial
applications of DE. Conversely, ADE allows to implement a discrete differential
mutation operator (the key component of DE) that directly handles the discrete
solutions of combinatorial problems.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 123–133, 2016.
DOI: 10.1007/978-3-319-45823-6 12

124 M. Baioletti et al.

The only requirement of ADE is that the combinatorial search space at hand
must be representable by means of a finitely generated group. This requirement
is met in most of the combinatorial search spaces, e.g.: binary strings with the
XOR and permutations with the usual composition operator. This algebraic
structure cleanly establishes connections with the common solutions neighbor-
hoods usually considered in combinatorial problems. In the case of permutations,
the abstract differential mutation has been implemented using a generating set
based on the adjacent swap moves [15]. The algebraic Differential Evolution for
Permutations (DEP) has been applied to flowshop scheduling problems [12,13]
and to the linear ordering problem [1,14] where, respectively, state-of-the-art
and competitive results have been obtained.

In this paper, we extend our previous works on DEP in four directions:
(i) we propose two new implementations of DEP by using generating sets based
on exchange and insertion moves [15]; (ii) we extend the definition of the discrete
differential mutation by allowing a scale factor parameter larger than 1; (iii) we
apply DEP to a popular problem in the field of wireless communications systems,
i.e., the Linear Ordering Problem with Cumulative Costs (LOPCC) [3]; (iv) we
select other secondary components of DEP in order to tackle LOPCC.

LOPCC has been introduced in [3] as a cumulative variant of the linear
ordering problem. Given a complete digraph of n nodes with node weights di ≥ 0
and arc weights cij ≥ 0, LOPCC aims to find a permutation of nodes π =
〈π1, . . . , πn〉 that minimizes

f(π) =
n∑

i=1

απi
(1)

where the α-costs are backward recursively calculated as

απi
= dπi

+
∑n

j=i+1
cπiπj

απj
for i = n, n − 1, . . . , 1. (2)

In [3], LOPCC has been proven to be NP-hard. Therefore, the exact algo-
rithms available in literature [3,11] are effective only when n ≤ 16. For larger
instances, meta-heuristic approaches have been proposed. A Tabu Search (TS)
scheme is described in [7]. EvPR is introduced in [8] and mainly consists in a
GRASP procedure hybridized with an evolutionary path relinking technique.
Finally, [17] proposes the so called Heterogeneous Cellular Processing Algorithm
(HetCPA), a pseudo-parallel hybridization of a GRASP procedure with a scatter
search scheme. As recently reported in [17], HetCPA and EvPR looks to be the
state-of-the-art algorithms so far for LOPCC.

2 Algebraic Differential Evolution for Permutations

As described in [13], the design of the Algebraic Differential Evolution (ADE)
mimics that of the classical DE. A population of N candidate solutions
{x1, . . . , xN} is iteratively evolved by means of the three operators of differential
mutation, crossover and selection. Differently from numerical DE, ADE addresses

An Extension of Algebraic DE for LOPCC 125

combinatorial optimization problems whose search space is representable by
finitely generated groups. Since crossover and selection schemes for combina-
torial spaces are widely available in literature, our proposal mainly focuses on
the Differential Mutation (DM) operator. DM is widely recognized as the key
component of DE [16] and, in its most common variant, generates a mutant v
according to

v ← xr0 ⊕ F � (xr1 	 xr2) (3)

where xr0 , xr1 , xr2 are three randomly selected population individuals, while F >
0 is the scale factor parameter. In numerical DE, the operators ⊕,	,� are the
usual vectorial operations of R

n, while, in ADE, their definitions are formally
derived using the algebraic structure of the search space.

The triplet (X, ◦, G) is a finitely generated group representing a combinatorial
search space if: (i) X is the discrete set of solutions; (ii) ◦ is a binary operation
on X with the group properties, i.e., closure, associativity, identity (e), and
invertibility (x−1); and (iii) G ⊆ X is a finite generating set of the group,
i.e., any x ∈ X has a (not necessarily unique) minimal-length decomposition
〈g1, . . . , gl〉, with gi ∈ G, and whose evaluation is x, i.e., x = g1 ◦ · · · ◦ gl. For the
sake of clarity, the length of a (minimal) decomposition of x is denoted with |x|.
Using (X, ◦, G) we can provide the formal definitions of the operators ⊕,	,�
for ADE. Let x, y ∈ X and 〈g1, . . . , gk, . . . , g|x|〉 be a decomposition of x, then

x ⊕ y := x ◦ y (4)

x 	 y := y−1 ◦ x (5)

F � x := g1 ◦ · · · ◦ gk with k = F · |x|� and F ∈ [0, 1]. (6)

The algebraic structure on the search space naturally defines neighborhood
relations among the solutions. Indeed, it induces a colored digraph whose nodes
represent the solutions in X and two generic solutions x, y ∈ X are linked by an
arc with color g ∈ G if and only if y = x ◦ g. Hence, a one-step search move is
directly encoded by a generator, while a composite move can be synthesized as
the evaluation of a sequence of generators (a path on the graph). Analogously
to what happens in R

n, the elements of X can be dichotomously interpreted
both as solutions (nodes on the graph) and as displacements between solutions
(path colors on the graph). As detailed in [13], this allows to provide a rational
interpretation to the discrete DM of definition (3). The key idea is that the
difference x 	 y is the evaluation of the colors/generators on a shortest path
from y to x. This geometric interpretation brings also to some connections with
the Geometric DE proposed in [10].

Clearly, the definitions (4) and (5) do not depend on the generating set, thus
they are uniquely defined. Conversely, the definition (6) requires a decomposition
of x that is not unique in general, therefore a fair stochastic decomposition
scheme has been suggested in [13].

The algebraic Differential Evolution for Permutations (DEP) [13] is an imple-
mentation of ADE for the search space of permutations. Indeed, permutations of
the set {1, . . . , n}, together with the usual composition operator, form the widely

126 M. Baioletti et al.

known symmetric group S(n), whose neutral element is the identity permutation
e. In the previous series of works [1,12–14], the generating set ASW based on
adjacent swap moves has been adopted. Formally, ASW = {σi : 1 ≤ i < n}
where σi is the identity permutation with the items i and i + 1 exchanged.
The randomized decomposer for ASW , namely RandBS, has been devised by
generalizing the classical bubble sort algorithm.

3 Exchange and Insertion Based Generating Sets

The generating sets based on exchange and insertion moves are respectively
defined as EXC = {εij : 1 ≤ i < j ≤ n} and INS = {ιij : 1 ≤ i, j ≤ n}. εij is the
identity permutation with the items i and j exchanged, while ιij is the identity
where the item i is shifted to position j. Their cardinalities are |EXC| =

(
n
2

)
and

|INS| = (n − 1)2 and both are proper supersets of ASW . The implementation
of DM based on EXC and INS requires a stochastic decomposition algorithm
for both the generating sets. Following the same idea used for ASW , we propose
the two randomized decomposer for EXC and INS, respectively RandSS and
RandIS.

3.1 RandSS

Any permutation π can be decomposed in a sequence of generators in EXC
by sorting π through successive exchange moves. Then, the decomposition is
obtained by reversing the sequence of exchanges.

In order to identify the minimal sequence of exchange moves that sorts
π ∈ S(n) we have to consider the cycle representation of π. Indeed, any
permutation can be uniquely represented as a product of disjoint cycles [9].
A k-cycle of π is a sequence of k items (πi0 , . . . , πik−1) such that, for any
0 ≤ j < k, the item πij

appears at position πi(j−1) mod k
in π. For example,

〈26745831〉 = (1268)(37)(4)(5). It is important to note that: (i) e is the only
permutation with exactly n cycles, and (ii) an exchange of items belonging to
the same cycle breaks the cycle into two new cycles, thus increasing the num-
ber of cycles by one. Therefore, a minimal decomposition can be obtained by
iteratively choosing an exchange move that breaks a cycle.

The randomized decomposer for EXC, namely RandSS, is formally defined
in Algorithm 1. The cycle weights wi have been introduced in order to uniformly
sample εij among all the suitable exchanges (lines 7–8). Indeed, any k-length
cycle can be broken with

(
k
2

)
= k(k−1)/2 different exchanges (line 5). The cycle

representation (line 2) can be computed in Θ(n). The loop at lines 6–11 performs
no more than n − 1 iterations. The operations inside the loop can be performed
in Θ(n). Therefore, the worst-case time complexity of RandSS is Θ(n2).

Finally, note that RandSS generalizes the classical selection sort algorithm.
Indeed, it can be shown that selection sort works similarly to RandSS but with
some limitations: it always breaks the cycle containing the smallest out-of-place
item, and it divides the chosen k-length cycle in two cycles of lengths 1 and k−1,
respectively.

An Extension of Algebraic DE for LOPCC 127

Algorithm 1. RandSS - Randomized Decomposer for EXC
1: function RandSS(π ∈ S(n))
2: s := 〈 〉 � decomposition sequence of π incrementally built
3: c := getCycles(π) � ci is the ith cycle of π; cij is the jth item of cycle ci

4: for i := 1, len(c) do
5: wi := len(ci)(len(ci) − 1)/2 � weight of cycle ci

6: while len(c) < n do
7: cr := randomly choose a cycle through a roulette wheel basing on the weights wi

8: i, j := uniformly choose a pair of indexes from the cycle cr

9: π := π ◦ εij

10: append εij to s
11: update the cycles in c and their weights in w
12: reverse the sequence s return s

3.2 RandIS

The INS decomposition of a permutation π ∈ S(n) can be obtained by sorting
π using only insertion moves. Indeed, the decomposition is the sorting sequence
of insertions reversed and inverted, i.e., every ιij is replaced with its inverse ιji.1

In order to compute the minimal sequence of insertions that sorts π we have
to consider the longest increasing subsequence (LIS) of π. A LIS of π is not
generally unique and it is defined as one of the longest monotonically increasing
subsequence of (not necessarily consecutive) items of π [4]. It is important to
note that: (i) e is the only permutation with exactly one LIS of maximal length
n, and (ii) an insertion of a new item into a LIS increases the LIS length by one.
Therefore, a minimal decomposition can be obtained by iteratively choosing an
insertion that moves a new item in a LIS.

The randomized decomposer for INS, namely RandIS, is formally defined
in Algorithm 2. At line 3 a random LIS L is obtained by modifying the LIS
computation algorithm presented in [4]2. The set U contains the items not in L
(line 4). In order to uniformly sample ιij among all the suitable insertions (lines
9–11), any item in U is weighted by the number of suitable insertions in which it
is involved (lines 5–7). The loop at lines 8–14 stops when len(L) = n, U = ∅ and
π = e, therefore no more than n − 1 iterations are performed. The operations
inside the loop have been implemented in Θ(n), thus the loop complexity is
Θ(n2). Moreover, since it is possible to show that the loop complexity dominates
the rest, RandIS requires time Θ(n2) in the worst-case.

Finally, note that RandIS generalizes the classical insertion sort algorithm.
Indeed, classical insertion sort iteratively increases a sorted subsequence main-
tained at consecutive indexes on the left side of the permutation. Conversely,
RandIS allows to spread the sorted subsequence anywhere in the permutation.

4 Extended Differential Mutation

A limit of the discrete differential mutation previously introduced is that the
definition of the multiplication operator does not allow to use a scale factor
1 The inverting step is not considered in Sect. 3.1 because the exchange generators are

self-invertible.
2 For the sake of space, its description is not reported here.

128 M. Baioletti et al.

Algorithm 2. RandIS - Randomized Decomposer for INS
1: function RandIS(π ∈ S(n))

2: s := 〈 〉 � decomposition sequence of π incrementally built

3: L := get a random LIS of π

4: U := {1, . . . , n} \ L � set of unassigned items

5: for all k ∈ U do

6: P L
π,k := set of positions in π where it is possible to shift item k in order to increase len(L)

7: wk := |P L
π,k| � weight of item k

8: while len(L) < n do

9: r := randomly choose an item in U through a roulette wheel basing on the weights wk

10: i := position of r in π � formally, π−1(r)

11: j := uniformly choose a position from P L
π,r

12: π := π ◦ ιij

13: append ιij to s

14: update L, U and, for any k ∈ U , update P L
π,k and wk

15: reverse the sequence s

16: invert the generators in s return s

parameter F > 1. Here, the abstract definition (6) is generalized by defining the
properties that z := F � x with any F ≥ 0 has to respect, i.e.:

P1 |z| = F · |x|�,
P2 either a decomposition of x is a prefix of a decomposition of z (case F ∈ [0, 1])

or vice versa (case F > 1).

Clearly, when F ∈ [0, 1], definition (6) meets both P1 and P2. For F > 1,
P1 and P2 mean that, given the decomposition 〈g1, . . . , g|x|〉 of x, a possible
decomposition for F � x is 〈g1, . . . , g|x|, g|x|+1, . . . , g�F ·|x|�〉 for a suitable choice
of the generators g|x|+1, . . . , g�F ·|x|�. Note that F � x = x ◦ g|x|+1 ◦ · · · ◦ g�F ·|x|�.
When the search space is finite, its diameter D constrains the maximum value
allowed for F to Fmax

x = D/|x|. Anyway, it is possible to extend the definition
of � by setting F � x := Fmax

x � x for any F > Fmax
x . Geometrically, given two

generic solutions x, y and F > 1, a decomposition of F�(x	y) can be interpreted
in the search space graph as the sequence of arc colors in a shortest path starting
from y, passing for x and extending beyond x. Unfortunately, when F > 1 there
exist search spaces for which the multiplication operator is not always defined.
An example is provided later on.

It is important to observe that, since S(n) has a finite diameter, the extended
case of F � x can be implemented by moving x away from e, i.e., towards a
diametrically opposite permutation with respect to the identity.

For ASW , given π ∈ S(n), the extended multiplication operator F � π can
be implemented by sorting π in descending order, and composing π with the first
F · |π|� − |π| adjacent swap generators encountered during the sort. Denoting
with r the “reverse” permutation 〈n, . . . , 1〉, the sorting step can be performed
as RandBS(r ◦ π), thus reusing the randomized bubble sort proposed in [13].
Therefore, the worst-case complexity is Θ(n2) as for F ∈ [0, 1].

For EXC, an algorithm similar to RandSS is employed to compute F � π
with F > 1. We call it MergeCycles and it works by iteratively merging two
cycles into one. Indeed, MergeCycles iteratively exchanges two items belonging

An Extension of Algebraic DE for LOPCC 129

to different cycles in order to merge the two cycles. The iteration stops when
F · |π|�−|π| exchanges have been performed. Then, the corresponding exchange
generators are composed to the right of π to obtain F �π. Again, the worst-case
complexity is Θ(n2).

Finally, S(n) with the INS generating set is an example of a search space
where the extended multiplication is not well defined. In order to satisfy the
properties P1–P2 above, a necessary condition is that, for all π ∈ S(n) there
must exist at least an insertion ι ∈ INS such that LIS length(π ◦ ι) =
LIS length(π) − 1. However, an example can be used to show that this con-
dition is not verified. Indeed, none of the 9 insertions of S(4) reduces the LIS
length of 〈2413〉. Hence, in this paper, we do not consider the case F > 1 for the
permutations search space generated by insertion moves.

5 Other Algorithmic Components

Though differential mutation is the core operator of DEP, its main scheme
requires also a crossover and a selection operator.

In this work we have experimented two popular crossovers for permutation
representations, namely, the two point crossover TPII adopted in [13] and the
order based crossover OBX used in [1]. Given the parents ρ′, ρ′′ ∈ S(n), both
TPII and OBX select a random subset of positions P ⊆ {1, . . . , n} and build
the offspring υ ∈ S(n) by setting υi ← ρ′

i for any i ∈ P , and inserting the
remaining items starting from the leftmost free place of υ and following the
order of appearance in ρ′′. The difference between TPII and OBX is that TPII
uses an interval of positions, while, in OBX, P can be any subset. Furthermore,
TPII and OBX have been modified in order to consider the parameter CR ∈
[0, 1]. The modified variants, TPIICR and OBXCR, constrain the size of P to
|P | = CR · n�. Therefore, for each pair of population and mutant individuals
xi, vi, DEP generates an offspring ui by applying TPIICR/OBXCR to vi and xi

respectively.
Regarding selection, the crowding scheme proposed in [18] is adopted. Each

offspring uj has a closest population individual closest(uj). Therefore, every pop-
ulation individual xi is associated to the set of offsprings Ui = {uj : closest(uj) =
xi}. Then, for 1 ≤ i ≤ N , the new population individual x′

i is selected to be the
fittest among the solutions in Ui ∪ {xi}. Finally, the computation of the closest
population individual has been implemented using the “position based distance”
[15] because it is computed in Θ(n).

6 Experiments

Experiments have been held using the benchmark suites adopted in [7,8,17] (and
available at http://www.optsicom.es/lopcc): UMTS (100 instances with n = 16),
LOLIB (42 selected instances with 44 ≤ n ≤ 60), RND (three sets of 25 instances
of size, respectively, 35, 100 and 150).

http://www.optsicom.es/lopcc

130 M. Baioletti et al.

DEP population size has been preliminarily set to N = 80, while F and
CR are self-adapted using the popular jDE scheme [5] modified by introducing
F̂ , i.e., a cap value for F . In order to test also the extended differential muta-
tion, two choices have been considered for F̂ , i.e., F̂ ∈ {1, 1.2}. Hence, every
possible combination of F̂ , generating set and crossover have been tested. Each
DEP setting has been run ten times per instance and a run terminates if the
best solution so far has not been updated during the last m evaluations3. m is
set to 5 000, 100 000, 10 000 000 for, respectively, UMTS, LOLIB/RND35 and
RND100/RND150 instances.

As in [7,8,17], the best result of every DEP setting on every instance has been
used to analyze the performances and to compare DEP with the state-of-the-art
algorithms HetCPA [17], EvPR [8] and TS [7]. The results of the competitors
have been obtained from their respective papers. However, since the full results
of EvPR are not available, we have considered optimistic lower bounds for EvPR
as done in [17].

Table 1 provides a comparative analysis among the various DEP settings. The
average ranks reported for every set of instances show that DEP/INS/1/TPIICR

is the best setting for DEP. Therefore, it has been selected for a further com-
parison with the state-of-the-art algorithms.

Table 1. Average Ranks among the DEP settings

Bench ASW

F̂ = 1

OBXCR

ASW

F̂ = 1

TPIICR

ASW

F̂ = 1.2

OBXCR

ASW

F̂ = 1.2

TPIICR

EXC

F̂ = 1

OBXCR

EXC

F̂ = 1

TPIICR

EXC

F̂ = 1.2

OBXCR

EXC

F̂ = 1.2

TPIICR

INS

F̂ = 1

OBXCR

INS

F̂ = 1

TPIICR

UMTS 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

LOLIB 5.33 5.55 5.45 6.23 5.33 5.44 5.56 5.44 5.33 5.33

RND35 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

RND100 5.92 7.04 5.86 5.72 6.62 5.92 4.52 4.80 5.72 2.88

RND150 8.32 5.44 9.24 5.76 5.40 2.80 5.04 3.72 7.16 2.12

AVG 8.32 5.44 9.24 5.76 5.40 2.80 5.04 3.72 7.16 2.12

For each instance set and every algorithm, Table 2, provides both the average
rank (Ravg) and the average relative percentage deviation (ARPD) from the best
solution. By noting that Ravg values are more trustful than the ARPDs because
they do not depend on the particular fitness distribution of the instance at hand,
Table 2 clearly shows that DEP outperforms the state-of-the-art algorithms on
most cases. Moreover, a Friedman+Finner statistical test [6] (with α = 0.05) has
been conducted. The Ravg values of the algorithms significantly outperformed
by DEP are marked with a minus in Table 2. Interestingly, DEP significantly
outperforms TS on every instance set except on the small UMTS instances,
while the only competitor with similar performances is the hypothetic EvPR.
However, since its results are an optimistic assumption, there are good chances
that DEP significantly outperforms also EvPR.
3 Additionally, a run terminates also if its CPU time exceeds one hour. However, this

criterion has been sporadically met only on the RND150 instances.

An Extension of Algebraic DE for LOPCC 131

Table 2. Average ranks and ARPDs among DEP and the state-of-the-art algorithms

Benchmark HetCPA Hyp EvPR TS DEP

Ravg ARPD Ravg ARPD Ravg ARPD Ravg ARPD

UMTS 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00

LOLIB 2.29 9.00 2.24 14.20 3.24– 12.59 2.24 14.20

RND35 2.44 0.37 2.22 0.00 3.12– 0.49 2.22 0.00

RND100 1.98 2.27 2.10 2.42 4.00– 15.00 1.92 2.12

RND150 2.64– 10.28 1.90 4.28 3.66– 27.13 1.80 5.56

OVERALL 2.41 4.38 2.30 4.18 3.02– 11.04 2.27 4.38

Most importantly, DEP found 21 new best known solutions (according to
[7,8,17]) on the 50 largest instances with n ∈ {100, 150}. These new upper
bounds are provided in Table 3 together with the DEP setting that has obtained
the corresponding result. Note that, though DEP/INS/1/TPIICR obtained 10
new best known solutions, also many other DEP settings are present in Table 3.
Therefore, another Friedman+Finner test has been conducted by considering a
hypothetical DEPH algorithm that produces, for every instance, the best result
among all the settings. This test has shown that DEPH would significantly out-
perform all the competitor algorithms.

Table 3. New best known solutions found by DEP

Instance DEP setting Obj.V al. Instance DEP setting Obj.V al.

t1d100.1 DEP/ASW/1/OBXCR 252.885 t1d100.25 DEP/INS/1/TPIICR 632.586

t1d100.2 DEP/EXC/1.2/TPIICR 286.888 t1d150.2 DEP/EXC/1/TPIICR 163 274.856

t1d100.3 DEP/EXC/1.2/TPIICR 1 288.298 t1d150.6 DEP/INS/1/TPIICR 44 961.697

t1d100.8 DEP/EXC/1.2/OBXCR 2 755.536 t1d150.7 DEP/EXC/1/TPIICR 156 480.244

t1d100.9 DEP/INS/1/TPIICR 61.772 t1d150.10 DEP/INS/1/TPIICR 108 000.853

t1d100.10 DEP/ASW/1.2/TPIICR 155.892 t1d150.12 DEP/INS/1/TPIICR 65 708.550

t1d100.12 DEP/ASW/1.2/OBXCR 231.347 t1d150.13 DEP/INS/1/TPIICR 91 988.932

t1d100.17 DEP/ASW/1.2/TPIICR 715.613 t1d150.16 DEP/INS/1/TPIICR 16 231 674.691

t1d100.20 DEP/ASW/1.2/OBXCR 236.088 t1d150.21 DEP/INS/1/TPIICR 39 663.393

t1d100.22 DEP/ASW/1/OBXCR 144.344 t1d150.22 DEP/INS/1/TPIICR 683 618.275

t1d100.24 DEP/INS/1/TPIICR 464.961

7 Conclusion and Future Work

The algebraic differential evolution for permutations (DEP) has been extended
by introducing the algorithmic implementations for two new generating sets
based on exchange and insertion moves, and also by allowing a scale factor
parameter larger than one. Moreover, two crossover operators and a crowding

132 M. Baioletti et al.

selection scheme have been adopted in order to tackle the linear ordering problem
with cumulative costs (LOPCC). The proposed approach has been tested on
a standard benchmark suite for LOPCC. The experimental results show that
DEP reaches state-of-the-art performances by also producing 21 new best known
solutions on the 50 largest instances. The notable results obtained by different
DEP settings suggest that there is room for further improvement. Therefore, a
future line of research will be the design of a meta-DEP scheme that considers
all the different settings altogether, for example by using a self-adaptive scheme.

References

1. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combi-
natorial differential evolution. In: 2015 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 2135–2140 (2015)

2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

3. Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumu-
lative costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008)

4. Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and
patience sorting. Inf. Process. Lett. 76(1–2), 7–11 (2000)

5. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

6. Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

7. Duarte, A., Laguna, M., Mart́ı, R.: Tabu search for the linear ordering problem
with cumulative costs. Comput. Optim. Appl. 48(3), 697–715 (2009)

8. Duarte, A., Mart́ı, R., Álvarez, A., Ángel-Bello, F.: Metaheuristics for the linear
ordering problem with cumulative costs. Eur. J. Optim. Res. 216(2), 270–277
(2012)

9. Herstein, I.N.: Abstract Algebra, 3rd edn. Wiley, New York (1996)
10. Moraglio, A., Togelius, J., Silva, S.: Geometric differential evolution for combina-

torial and programs spaces. Evol. Comput. 21(4), 591–624 (2013)
11. Righini, G.: A branch-and-bound algorithm for the linear ordering problem with

cumulative costs. Eur. J. Oper. Res. 186(3), 965–971 (2008)
12. Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling

problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–
286 (2016)

13. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm
for the permutation flowshop scheduling problem with total flowtime criterion.
IEEE Trans. Evol. Comput. (to be published– preprint online)

14. Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the
linear ordering problem. In: Proceedings of GECCO 2015, pp. 1479–1480 (2015)

15. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

An Extension of Algebraic DE for LOPCC 133

16. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

17. Terán-Villanueva, J.D., Fraire Huacuja, H.J., Carpio Valadez, J.M., Pazos Rangel,
R., Puga Soberanes, H.J., Mart́ınez Flores, J.A.: A heterogeneous cellular process-
ing algorithm for minimizing the power consumption in wireless communications
systems. Comput. Optim. Appl. 62(3), 787–814 (2015)

18. Thomsen, R.: Multimodal optimization using crowding-based differential evolution.
In: Proceedings of CEC 2004, vol. 2, pp. 1382–1389 (2004)

	An Extension of Algebraic Differential Evolution for the Linear Ordering Problem with Cumulative Costs
	1 Introduction and Related Work
	2 Algebraic Differential Evolution for Permutations
	3 Exchange and Insertion Based Generating Sets
	3.1 RandSS
	3.2 RandIS

	4 Extended Differential Mutation
	5 Other Algorithmic Components
	6 Experiments
	7 Conclusion and Future Work
	References

