
Feature Based Algorithm Configuration:
A Case Study with Differential Evolution

Nacim Belkhir1,2(B), Johann Dréo1, Pierre Savéant1, and Marc Schoenauer2

1 Thales Research & Technology, Palaiseau, France
{nacim.belkhir,johann.dreo,pierre.saveant}@thalesgroup.com

2 TAO, Inria Saclay Île-de-France, Orsay, France
marc.schoenauer@inria.fr

Abstract. Algorithm Configuration is still an intricate problem espe-
cially in the continuous black box optimization domain. This paper
empirically investigates the relationship between continuous problem fea-
tures (measuring different problem characteristics) and the best parame-
ter configuration of a given stochastic algorithm over a bench of test
functions — namely here, the original version of Differential Evolution
over the BBOB test bench. This is achieved by learning an empirical
performance model from the problem features and the algorithm para-
meters. This performance model can then be used to compute an empir-
ical optimal parameter configuration from features values. The results
show that reasonable performance models can indeed be learned, result-
ing in a better parameter configuration than a static parameter setting
optimized for robustness over the test bench.

Keywords: Empirical study · Black-box continuous optimization ·
Problem features · Algorithm configuration · Empirical Performance
Model · Differential Evolution

1 Introduction

Today, it is widely acknowledged that the quest of a universal black box opti-
mization algorithm is vain, even if the No Free Lunch Theorem [17] has been
questioned in the continuous framework [1]. However, many algorithms exist,
more or less specific to different classes of optimization problems, and the new
grail of optimizers has now turned toward Algorithm Selection, as formulated
by Rice [15], or Algorithm Configuration, that can be considered as yet another
(meta-)optimization problem [6]. In both cases, the choice (of an algorithm, or
of the parameters of a given algorithm) is made w.r.t. the user’s preference, aka
a performance criterion (e.g., quality of the solution obtained in a given CPU
cost, the smallest CPU cost to reach a given solution quality, the probability to
reach a given quality, with given thresholds, etc.).

A first approach to Algorithm Configuration is to optimize this performance
criterion once and for all using a specific algorithm, e.g., SMAC [8]. But this

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 156–166, 2016.
DOI: 10.1007/978-3-319-45823-6 15

Feature Based Algorithm Configuration 157

results in a single configuration, and even if several problems are used to compute
the performance criterion, the generalization of the results to other problems
might be problematic.

More recent approaches are based on a description of the objective function
in some feature space, and try to learn a mapping from this feature space onto the
space of parameter configurations of the algorithm at hand, based on examples
of the behavior of several configurations on a training set of objective functions.
And the most successful approach for learning such a mapping is to first learn
an empirical model of the algorithm performance (that predicts the performance
criterion for a given set of features and an algorithm configuration). When a new
problem arises (i.e. a new set of features), finding the algorithm configuration
that is predicted to have the best performance is then straightforward. This app-
roach, initially proposed in [10], has demonstrated successful results in different
combinatorial optimization domains [7,9,18].

In continuous domains, however, though several feature sets have been pro-
posed [12,13], and successfully demonstrated to accurately classify problem
instances [3,13], only Algorithm Selection problems have actually been tackled
[3,12–14].

The present work addresses the Algorithm Configuration problem for contin-
uous domains, building an Empirical Performance Model (EPM) based on the
problem features in continuous search spaces cited above. The approach is exper-
imentally validated with the original version of Differential Evolution [16], that
has few hyper-parameters, but is known to be highly sensitive to their setting.
The set of objective functions used for this validation is the well-known BBOB
test bench [5].

The paper is organized as follows. Section 2 presents the general idea of
feature-based Empirical Performance Model and subsequent algorithm config-
uration. Section 3 surveys the problem features in the case of continuous opti-
mization. Section 4 then details the DE case study and the BBOB testbench used
in this work. Section 5 describes the different experiments, and the corresponding
results are detailed and discussed in Sect. 6, before the concluding Sect. 7.

2 Algorithm Configuration with an Empirical
Performance Model

Context and Notations. The general context is the Black Box Optimization of
objective functions f : Ω �→ IR. An algorithm A is given together with its control
parameters θ ∈ Θ. We assume that the objective functions can be described by
some features ψ ∈ Ψ. The goal of Instance-based Algorithm Configuration is to
find automatically, for a given objective function f described by its features ψf ,
the best possible configuration of A, i.e., values θ∗

f ∈ Θ such that running A with
parameters θ∗

f on f leads to optimal performances w.r.t. a given performance
measure ϕ.

Empirical Performance Model. The first step is to build an Empirical Per-
formance Model (EPM) ϕ̂ that approximate ϕ on Ψ × Θ. A is run to optimize

158 N. Belkhir et al.

different functions fi (described by their features ψfi
) using different parameter

configurations θj . This allows to compute the exact values ϕ(ψfi
, θj) for different

pairs (i, j)1. The set of all ((ψfi
, θj), ϕ(ψfi

, θj)) is a training set that can be used
as input to any standard regression method to learn a model ϕ̂ for ϕ. Note that
building such a model is done once, and hence its computer cost is not a critical
issue.

Empirical Optimal Configuration. When a new objective function g is to
be optimized with A, its features ψg are computed, and the optimization of
ϕ̂(ψg, θg) on parameter space Θ leads to the empirical optimal parameters of A
for g. Here, the cost of computing the features ψg, in terms of number of calls to
g, is here of utter importance. In particular, it should be compared to the cost
of running a full ’ad hoc’ meta-optimization of A parameters for g (using e.g.,
SMAC [8]).

The remaining of the paper is concerned with objective functions defined
on some continuous domain D ⊂ IRd for a given dimension d ∈ IN. Different
features, taken from the literature, will first be discussed, before the case study
is detailed.

3 Features for Continuous Optimization

In this section, a single objective function f : IRd �→ IR is considered, and
the feature space Ψ is a vector space of p real-valued features. The black-box
context implies that features should be computed from samples of f2, i.e. n pairs
(xi, f(xi))), specifically gathered for that purpose. The set of values {f(xi)|i =
1, . . . , n} is denoted Y.

A first set of 55 features is taken from [12]. These features are grouped into
six classes: the 3 y−Distribution features are related to the distribution of the
values in Y, the 18 Levelset features to the relative position of Y w.r.t a given
threshold, the 9 Meta-Model features rely on meta-modeling of the sample set
w.r.t linear and quadratic regression models, the 14 Curvature features on some
numerical estimation of the Hessian and gradient of the problem, the 4 Convexity
features on the empirical probability of convexity, and the 7 Local Search features
on the ratio of local optima and global optima, estimated using some iterated
local search procedure.

The y−Distribution, the Levelset and the Meta-Model features can all be
evaluated on the same sample dataset, hence their cost altogether is n, the num-
ber of samples. However, some additional evaluations are required for the other
feature classes, that depend on the previous samples. The orders of magnitudes
are about 103 × d for the Convexity features, around 104 × d for the Curvature
and the Local Search features.

1 The same θj need not have been tried for all fi.
2 d, the dimension of the search space, can be considered as the only external feature

— or the Algorithm Configuration can be conducted anew for each dimension (more
in Sect. 5).

Feature Based Algorithm Configuration 159

A set of 16 Dispersion features was originally proposed in [11]. They are
based on comparisons of the distances between best samples from different per-
centiles of the overall sample (in terms of solution quality) to the mean or median
distance between all samples. Finally, 5 Information Content features were pro-
posed in [13], giving information about the global structure of the landscape.

Recent works [3,12,13] successfully demonstrated that these features could
be used in order to classify the optimization problems w.r.t their classes in
BBOB (that will be introduced in Sect. 5) for the Algorithm Selection Problem.
More recently, in [4] a subset of these features were used in order to improve the
process of a parameter tuning algorithm, relying on the SMBO method [8].

4 A Case Study in Continuous Domain: DE on BBOB

Differential Evolution and its Parameters. Differential Evolution [16] is a
popular continuous optimization algorithm that encountered many successes. It
is also known for its simplicity, at least in its original version, that comes at
the price of a large sensitivity to its parameter setting: this is the reason why
it has been chosen here, making it easier to see big differences of results for
different parameter settings. Several advanced versions of DE exist, that clearly
outperform the original version, but comparing our results with theirs is left for
further work.

DE generates new individuals from the current population by adding to each
individual in turn a difference vector between two other individuals, and recom-
bining the result with another individual from the population. The original ver-
sion of DE has only four static parameters:

• the population size NP ∈ IN;
• the strategy S ∈ {best1bin, randtobest1bin,best2bin, rand2bin, rand1bin}

controls how to choose the endpoints of the difference vector;
• F ∈ [0, 2] controls the intensity of the difference vector;
• the crossover rate CR ∈ [0, 1].

In this work the population size NP is kept to the default value 15 × d
recommended by the authors3. Note that the recommendation for the other
parameters is S = best1bin, F = 0.8, and CR = 0.9, and will be used as one of
the baseline (Sect. 6).

Test Bench. The following experiments consider the noiseless test functions
from the Black Box Optimization Benchmark (BBOB4) [5]. The BBOB test
bench is made of 24 analytically defined functions defined on [−5, 5]d, with known
global optima and known difficulties (e.g., non-separability, multi-modality, etc.).
They have been manually classified in five classes of problems. In this work, only
three of the BBOB classes are considered: 5 separable functions, 4 uni-modal
functions with low or moderate conditioning, and 5 uni-modal functions with
3 http://www1.icsi.berkeley.edu/∼storn/code.html.
4 http://coco.gforge.inria.fr.

http://www1.icsi.berkeley.edu/~storn/code.html
http://coco.gforge.inria.fr

160 N. Belkhir et al.

high conditioning (functions F1 to F14). Dimensions 2, 3, 5, 10 are considered for
all functions. As advocated in the original framework, any independent run on a
function is actually done on a variant, in order to get over a possible algorithm
bias. Variants are obtained from the original function by a translation of the
position of the optimum and — for the non-separable functions — a rotation of
the coordinate system.

Performance Measure. Following the COCO/BBOB framework, the perfor-
mance measure used here is the Expected Run Time5 (ERT) needed to reach the
optimal objective value with a given precision. Let RTs be the average running
time of successful runs, and ps the empirical probability of success (out of the
15 independent runs). The ERT is defined as ERT = ERT (f, θ) = RTs/ps if
the results were obtained with DE configuration θ optimizing test function f .

Features. From the features briefly introduced in Sect. 3, different set of problem
features are considered. All features have been computed using the R package
kindly publicly provided by Pascal Kerschke6. Features are distinguished by their
costs:

– ψ� includes all features from Sect. 3, with an initial sample of size k = 2000×
d. However, as discussed in Sect. 3, the actual cost is much larger because of
features requiring additional evaluations.

– ψ•
k: k × d is the size of the initial sample, and only features not requiring

any additional function evaluation beyond those of the initial sample are
considered (i.e., Meta-Model, Information Content, Levelset, y−Distribution
and Dispersion). Results with k = 500 or k = 2000 are presented in the
following.

Regression Model. Preliminary experiments, not discussed here, lead to con-
sider a Random Forests regression model (in accordance with [9]). A grid search
with ten-fold cross-validation has been run on the meta-parameters of the Ran-
dom Forest. The implementation of the scikit-learn python library has been used
throughout this work7, using 10 trees of maximal depth 200.

5 Experiments

Dataset. A 40-steps discretization is used for F ∈ [0, 2[and CR ∈ [0, 1], result-
ing in 5 × 40 × 40 different configurations. For each of the 14 functions of the
test bench and for each dimension d ∈ {2, 3, 5, 10}, each one of its 15 variants
is optimized with these 8000 DE configurations, and the ERT is computed. The
initial dataset is hence made of 14 × 8000 entries per dimension, or 440 000
entries in total, considering all dimensions.

5 Measured as the number of function evaluations.
6 http://github.com/flacco.
7 http://scikit-learn.org/.

http://github.com/flacco
http://scikit-learn.org/

Feature Based Algorithm Configuration 161

Dimensions. As discussed, the dimension d can be considered as a particular
feature, available “for free” (without any function evaluation), or as part of the
problem definition — and there are as many problems as dimensions. These two
points of view will be compared here: the EPM will be learned either using only
the entries of the dataset of the same dimension, or all entries, and the dimension
will then be used as an additional feature in the feature vector.

Cross-validation. All experiments are based on a leave-one-out procedure: one
of the 14 functions in the test bench is completely removed from the dataset (all
dimensions and, of course, all variants). An EPM is then learned, and the left-
out function considered a “unknown”. The only exception is the robust baseline
described below.

Baselines. Different DE configurations are computed for each function, and
used as a baseline for comparison with the results of the proposed approach. The
default configuration recommended by DE authors (Sect. 4) is the first obvious
baseline. However, it is likely to perform poorly across the whole test bench.

At the other extreme, the specific configuration found by some meta-
optimizers for a given problem is likely to give the best overall results: two
such meta-optimization were performed for each function: on the one hand, the
best configuration encountered while computing the full dataset using the grid
described above is saved; on the other hand, SMAC [8] is applied to each function,
using the ERT performance measure as fitness. The best of both configurations
is reported as adhoc configuration.

Finally, one single SMAC optimization is performed using the average ERT
over all 14 functions as performance: the idea behind this is to try to find some
robust configuration that would give good results on all functions simultaneously.
The resulting configuration is termed robust and considered as the reference
(Sect. 6).

Experiment Costs. All DE runs were allowed a maximum budget of 104 × d
function evaluations — though of course some runs did stop earlier, having
reached the target precision. And all results have been averaged over 15 inde-
pendent variants for each function and dimension.

Furthermore, both adhoc baseline configurations have the same cost, because
the budget given to SMAC was purposely chosen to match that of the grid search,
i.e., 8000 × 15 runs of at most ×104 × dim evaluations each.

On the other hand, the robust configuration did cost 14 times more, as each
of its iterations required to evaluate all the 14 functions — but has to be done
only once.

Compared to that, the cost of finding the best empirical configuration using
an EPM is the cost of the features: 500 or 2000 in the case of ψ•

500 and ψ•
2000

features, or around 2.104 × d for the full set of features ψ∗.

6 Results

The series of experiments described above are presented in this section from two
points of view: first, the different EPM are analyzed and compared to the ground

162 N. Belkhir et al.

truth — and the Empirical Optimal Configuration is compared to the true opti-
mal configuration in parameter space. Then, the actual results of DE optimiza-
tion using the Empirical Optimal Configuration are compared to those of the
different baselines, keeping in mind the actual costs of the different approaches
(see last paragraph above).

6.1 EPM Analyses

Due to space constraints, only few typical figures are displayed8 (Fig. 1) and
will be discussed here. There are indeed some strong similarities between top
and bottom colormaps for Figs. 1a, c, and d, even though they correspond to
different functions, dimensions, feature sets, and dimension handling modes. On
the other hand, the two plots for F4 (Fig. 1b) are very different, and here the
EPM fails to capture even an approximate shape of the true ERT landscape.

But beyond such comparisons, the optimal configurations of both plots are
shown (on both plots too, to ease the comparison), displaying very different
situations: in Fig. 1a and c, both optima are rather close (1c), or at least are
both in the same color area of the true ERT; on the opposite, in Fig. 1b and d,
both optima are far from one another, and the Empirical Optimal Configuration

(a) g = F1, d = 5 (b) g = F4, d = 5 (c) g = F11, d = 10 (d) g = F5, d = 10

Fig. 1. Examples of comparisons between the true ERT (top) and the EPM (bottom)
for 4 different functions and dimensions. Both EPMs of F1 (a) and F4 (b) have been
learned only on samples from dimension 5, with features ψ•

k=2000 while those of F11 (c)
and F5 (d) have been learned on samples of all dimensions, and with ψ•

k=500. Each sub-
plot shows performances colormaps (without interpolation) of log10(ERT/d), for one
DE strategy, with the 2 other DE parameters F and CR on the axes. The true optimal
configurations are plotted as white stars and the Empirical Optimal Configurations
as white small circles ◦.

8 Additional plots are available at https://drive.google.com/open?id=0B9GuQcCjvwt
FdkotR1h1N3dlOG8.

https://drive.google.com/open?id=0B9GuQcCjvwtFdkotR1h1N3dlOG8
https://drive.google.com/open?id=0B9GuQcCjvwtFdkotR1h1N3dlOG8

Feature Based Algorithm Configuration 163

lies in a region of very poor true ERT: the performance of these configurations
used within DE for the corresponding function will be poor too (see forthcoming
Sect. 6.2).

6.2 Empirical Optimal Configurations at Work

For each computed EPM (described in Sect. 5), an Empirical Optimal Config-
uration is obtained by optimization on the parameter space, and the ERT of
this configuration is obtained by running DE on each of the 15 variants of the
target function. Table 1 shows, for each function, the ratios of the ERTs of these
different configurations against the robust configuration defined in Sect. 5 (the
smaller the better). The first two columns are the other baselines, θd are the
parameters values recommended by DE authors, and θL the adhoc configura-
tion with best results (see Sect. 5). The two series of 3 columns correspond to
the 3 different feature sets ψ•

500, ψ•
2000, and ψ� (as defined in Sect. 4) and the two

types of dimension handling (learning performed only on the same dimension as
testing, or on all dimensions at once — see Sect. 5).

As it could be expected, the adhoc configuration is a clear winner, and the
default values recommended by DE authors a clear loser. The results of dimen-
sion 5 (as well as those in dimensions 2 and 3, not shown due to space constraints)

Table 1. Percentages of the ERTs of different Empirical Optimal Configurations w.r.t.
that of the robust configuration defined in Sect. 5, for dimensions 5 and 10. See text
for details. Best results are printed in blue bold face when smaller than 100, in red
italic when larger than 100; Worst results are printed in light gray; the � symbol
indicates that the robust configuration never reached the target, and was artificially
attributed an ERT of 15 times the maximum budget of one run, and ∞ indicates that
the corresponding Empirical Optimal Configuration never reached the target.

164 N. Belkhir et al.

bring several good news: most proposed approaches perform better than the robust
configuration, and at least one does, for all functions but F3. For some functions
(F11, and also F8 and F10), some feature-based approaches even get close to the
best adhoc configurations, never being worse than twice that best performance,
except for F4 — as could be foreseen on Fig. 1b. When it comes to compare the
different EPM settings, learning only from the single target dimension gives bet-
ter results than learning for all dimensions together — and in the former case, using
all available features does improve over only using the cheap features.

The situation is not so clear in dimension 10: in several cases, the Empirical
Optimal Configuration cannot even reach the target in the allocated budget — a
situation for which an example was given in Fig. 1d. However, when an optimum
can be found, similar conclusions to the dimension 5 case can be drawn, though
not as contrasted.

6.3 Discussion

Our results suggest that the learned EPM can be similar to the actual perfor-
mance map, at least in a large part of the parameter space. Nonetheless, when a
particular feature is not included in the learning set, it can be very hard for the
EPM to achieve good accuracy and performance prediction, as witnessed with
function F4 (Fig. 1b): only F3 and F4 are multi-modal functions, and they have
very different structures (apart from being separable, and hence belong to the
first BBOB class).

This was clear, too, with the F5 function (Fig. 1d): F5 is the only linear func-
tion of the test bench, hence the EPM was learned without any linear function
in the training set. However, the global accuracy of the EPM for F5 is rather
good — not worse than F1 for instance (Fig. 1a). But unfortunately, the small
region of the parameter space where the EPM differs from the true ERT is the
region that contains the optimal configuration.

This clearly demonstrates that a good accuracy over the parameter space of
the EPM w.r.t. the true performances, such as the one being optimized by the
learning algorithm (Random Forests here), is not required to reach the ultimate
goal of the Algorithm Configuration process — find a quasi-optimal configuration
for unknown instances. The only important property of the EPM is to be able
to robustly identify good-performing regions of the parameter space. This opens
several new possible research paths. At the level of the learning algorithm, the
best regions of the parameter space could be weighted more than other parts
of the space; at the extreme, rank-based learning could be used rather than
regression of ERT values. At the level of the sampling, only good configurations
could be used — e.g., the configurations encountered while running SMAC to
find the true optimal configuration.

No clear differences can be seen between EPM learned using ψ•
500 or ψ•

2000,
except for some functions, in dimension 10, where EPMs learned with ψ•

2000

solve the function while those learned from ψ•
500 don’t. On the other hand, using

Feature Based Algorithm Configuration 165

the full set of features ψ∗ does help, both in dimension 5 for the dimension-
specific models, and in dimension 10 where it succeeds in reaching the target
precision where the other models fail (e.g., F3 and F4, the only multi-modal
functions of the test bench). While not surprising, this demonstrates that both
the training set and the set of features should cover all the foreseeable difficulties
of the unknown forthcoming instances. Any limited test bench (including BBOB)
might hence be insufficient to learn a general-purpose configurator.

Finally, the fact that learning the EPM for a specific dimension leads to better
results was to be expected. While this makes difficult to build an universal EPM,
it does not prevent from any practical use of this approach, as the dimension is
usually known (and constant) in most real world applications.

7 Conclusion

This paper has investigated the computation and use of an Empirical Perfor-
mance Model (EPM) in the context of continuous black box optimization and
has demonstrated that it is possible to learn a reasonable approximation of the
real performance. More importantly, it was demonstrated that an efficient para-
meter configuration can be extracted from the learned EPM by optimizing the
predicted performance, given a set of features on a new unknown function. In
particular, it was possible to obtain empirical configurations that outperform a
static parameter setting optimized for an average performance, over the whole
test bench at the same overall cost. However, some open issues remain related
to the robustness of the results, and deeper analyses are necessary to better
understand (and avoid) some rare cases where the approach fails.

Several paths for further research are suggested by this work, both at the
level of the learning algorithm and of the sampling of the parameter search
space, as discussed in Sect. 6.3. A promising direction is to embed the EPM as
a parameter control mechanism within the optimization process itself, assuming
that the features can be efficiently approximated using a rather small number of
samples, (e.g., w.r.t. an approximation of the objective function, as proposed in
[2]). This would open a new perspective on the on-line parameter tuning grail.

References

1. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica (2009). https://hal.inria.fr/inria-00369788

2. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Surrogate assisted feature com-
putation for continuous problems. In: Proceedings of LION 10 (2016, to appear).
https://hal.archives-ouvertes.fr/hal-01303320

3. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based on
exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the
14th Annual Conference on Genetic and Evolutionary Computation, pp. 313–320.
ACM (2012)

https://hal.inria.fr/inria-00369788
https://hal.archives-ouvertes.fr/hal-01303320

166 N. Belkhir et al.

4. Bossek, J., Bischl, B., Wagner, T., Rudolph, G.: Learning feature-parameter map-
pings for parameter tuning via the profile expected improvement. In: Proceedings
of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1319–1326.
ACM (2015)

5. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: experimental setup. Technical report, RR-7215, INRIA (2010)

6. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
7. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction

and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5, 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

9. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
methods & evaluation. Artif. Intell. 206, 79–111 (2014)

10. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: the case of combinatorial auctions. In: Hentenryck, P. (ed.)
CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

11. Lunacek, M., Whitley, D.: The dispersion metric and the cma evolution strategy.
In: Proceedings of the 8th GECCO, pp. 477–484. ACM (2006)

12. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th GECCO, pp. 829–836.
ACM (2011)

13. Munoz, M., Kirley, M., Halgamuge, S.K., et al.: Exploratory landscape analysis of
continuous space optimization problems using information content. IEEE Trans.
Evol. Comput. 19(1), 74–87 (2015)

14. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of
algorithm performance for continuous optimization problems. In: Coello, C.A.C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part
I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)

15. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
16. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global

optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
17. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans.

Evol. Comput. 1(1), 67–82 (1997)
18. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-

rithm selection for sat. J. Artif. Intell. Res. 565–606 (2008)

	Feature Based Algorithm Configuration: A Case Study with Differential Evolution
	1 Introduction
	2 Algorithm Configuration with an Empirical Performance Model
	3 Features for Continuous Optimization
	4 A Case Study in Continuous Domain: DE on BBOB
	5 Experiments
	6 Results
	6.1 EPM Analyses
	6.2 Empirical Optimal Configurations at Work
	6.3 Discussion

	7 Conclusion
	References

