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Abstract. This paper proposes an asynchronous and steady state update
strategy for the Particle Swarm Optimization (PSO) inspired by the
Bak-Sneppen model of co-evolution. The model consists of a set of fitness
values (representing species) arranged in a network. By replacing iteratively the
least fit species and its neighbors with random values (simulating extinction), the
average fitness of the population tends to grow while the system is driven to a
critical state. Based on these rules, we implement a PSO in which only the worst
particle and its neighbors are updated and evaluated in each time-step. The other
particles remain steady during one or more iterations, until they eventually meet
the update criterion. The steady state PSO (SS-PSO) was tested on a set of
benchmark functions, with three different population structures: lbest ring and
lattice with von Neumann and Moore neighborhood. The experiments demon-
strate that the strategy significantly improves the quality of results and con-
vergence speed with Moore neighborhood. Further tests show that the major
factor of enhancement is the selective pressure on the worst, since replacing the
best or a random particle (and neighbors) yields inferior results.

1 Introduction

The Particle Swarm Optimization (PSO) is a population-based metaheuristics inspired
by the social behavior of bird flocks and fish schools [8]. The search is carried out by a
swarm of candidate solutions (called particles) that move around the fitness landscape
of the target-problem, guided by mathematical rules that define their velocity at each
time step. The most common configurations of PSO are synchronous: the fitness values
of all particles are first computed and only then the particles update their velocity.
Carlisle and Dozier [5] proposed a variant in which the velocity vector is updated
immediately after computing the fitness of the corresponding particle. In this case, each
particle is updated knowing the current best position found by half of its neighbors and
the previous best found by the other half: the population of the asynchronous PSO
(A-PSO) interacts with imperfect information about the global search. Asynchronous
PSOs have been compared to the synchronous configuration (S-PSO) with contradic-
tory results. While Carlisle and Dozier [5] suggested that A-PSO yields better results

© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 167–177, 2016.
DOI: 10.1007/978-3-319-45823-6_16



than S-PSO, Rada-Vilela et al. [13] reported that S-PSO is better than A-PSO in terms
of the quality of the solutions and convergence speed.

One of the main motivations for investigating asynchronous update strategies for
PSO is the possibility of parallelization [14]. Standard PSOs are easily parallelized (by
assigning a particle or a set of particles to each processor, for instance) but due to load
imbalances, synchronous update does not make an efficient use of the computational
resource. For parallel PSO, asynchronicity is the logical approach. In addition, asyn-
chronicity can also be useful in diversity maintenance and prevention of premature
convergence [1], or to speed up convergence by skipping function evaluations [13]. In
this paper, we follow an alternative approach. The goal is to design an asynchronous
PSO that, unlike the standard A-PSO, significantly improves S-PSO in a wide range of
problems. With that objective in mind, we propose a steady state PSO (SS-PSO).
A system is said to be in steady state when some of its parts do not change for a period
of time. In the SS-PSO, only a fraction of the population is updated and evaluated in
each iteration.

The strategy is inspired by the Bak-Sneppen model of co-evolution between
interacting species [3]. In order to investigate the dynamics of species extinction and
coupled selection, Bak and Sneppen arrange a set of random fitness values (repre-
senting species) in a ring structure. Then, they replace the worst species and its
neighbors by random values (extinction event), repeating the procedure during several
iterations. After a long run, the system is driven to a critical state where most species
have reached a fitness above a certain threshold and avalanches of extinction events
produce non-equilibrium fluctuations in the configuration of the fitness values.

SS-PSO uses a similar scheme. However, here the worst particle and its neighbors
are updated, instead of being replaced by random solutions. Like in the Bak-Sneppen
model, the other particles remain steady until an update event hits them. For a proof of
concept, the algorithm was tested on ten benchmark functions and compared to S-
PSOs. The results show that SS-PSO significantly improves the performance of the
S-PSO structured in a 2-dimensional square lattice with Moore neighborhood.

The remaining of the paper is structured as follows. Section 2 gives a background
review on synchronous and asynchronous update strategies for the PSO. Section 3
describes the Bak-Sneppen model of co-evolution and introduces the proposed update
strategy. Section 4 describes the experiments and discusses the results. Finally, Sect. 5
concludes the paper and outlines futures lines of research.

2 Synchronous and Asynchronous Particle Swarms

PSO is a population-based algorithm in which a group of solutions travels through a
fitness landscape according to a set of rules that drives it towards optimal regions of the
space. The algorithm is described by a simple set of equations that define the velocity
and position of each particle. The position vector of the i-th particle is given by
~Xi ¼ ðxi;1; xi;2; . . .x1;D), where D is the dimension of the search space. Velocity is given
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by ~Vi ¼ ðvi;1; vi;2; . . .v1;D). The particles are evaluated with a fitness function f ð~XiÞ in
each time step and then their positions and velocities are updated by:

vi;d tð Þ ¼ xvi;d t � 1ð Þþ c1r1 pi;d � xi;dðt � 1Þ� �þ c2r2 pg;d � xi;dðt � 1Þ� � ð1Þ

xi;d tð Þ ¼ xi;d t � 1ð Þþ vi;d tð Þ ð2Þ

where pi is the best solution found so far by particle i and pg is the best solution found
so far by the neighborhood. Parameters r1 and r2 are vectors of random numbers
uniformly distributed in the range ½0; 1� and c1 and c2 are acceleration coefficients that
tune the relative influence of each term of the formula. In order to prevent particles
from stepping out of the limits of the search space, positions xi;d tð Þ of the particles are
limited by constants that in general correspond to the domain of the problem: xi;d tð Þ 2
�Xmax;Xmax½ �: Velocity may also be limited within a range in order to prevent the
explosion of the velocity vector: vi;d tð Þ 2 �Vmax;Vmax½ �. Usually, Xmax ¼ Vmax.
Parameter x is the inertia weight, proposed by Shi and Eberhart [17] to help fine-tuning
the balance between local and global search, and it is widely used in PSO
implementations.

The neighborhood of the particle defines the value of pg and is a key factor in the
performance of PSO. Most of the PSOs use one of two simple sociometric principles
for defining the neighborhood network. One connects all the members of the swarm to
one another, and it is called gbest (or star), where g stands for global. The degree of
connectivity of gbest is k ¼ n, where n is the number of particles. The other typical
configuration, called lbest (where l stands for local), creates a neighborhood that
comprises the particle itself and its k nearest neighbors. The most common lbest
topology is the ring structure, in which the particles are arranged in a ring (resulting in
a degree of connectivity k ¼ 3, including the particle).

Between the k ¼ 3 connectivity of lbest ring and k ¼ n of gbest, there are several
possibilities. Two of the most used are the 2-dimensional square lattices with von
Neumann and Moore neighborhood. In [9], Kennedy and Mendes tested several social
structures and concluded that when they are ranked by the quality of solutions the
structures with k ¼ 5 (like the von Neumann lattice) perform better, but when ranked
according to the number of iterations needed to meet the criteria, configurations with
higher degree of connectivity (like Moore neighborhood, with k ¼ 9) perform better.
These results are consistent with the premise that low connectivity favors robustness,
while higher connectivity favors convergence speed (at the expense of reliability).

In the standard PSO, all particles are evaluated before updating their velocity.
Therefore, they move with complete information about the state of the search. In the
asynchronous variant, each particle is evaluated immediately after being updated.
Independently of the social structure (assuming it is regular), A-PSO particles use the
current best position found by half of its neighbors and the previous best found by the
other half: the particles are guided by partial or imperfect information.

A-PSO was first discussed by Carlisle and Dozier [5]. Several reports claim that
A-PSO outperforms S-PSO. Luo and Zhang [12], for instance, compared the algo-
rithms and concluded that A-PSO is more accurate and faster. However, they tested the
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algorithms in only two functions and no statistical test is given. Perez and Basterrechea
[15] tested the algorithm on six problems and concluded that A-PSO is faster and as
accurate as S-PSO. Rada-Vilela et al. [16] compared S-PSO and A-PSO with ten
functions, using a ring structure with number of neighbors k ranging from 2 to 30 and a
population of 30 particles. They measured the quality of the solutions and speed of
convergence and performed statistical tests on the results, concluding that S-PSO yields
better results than A-PSO in unimodal functions. As for the multimodal, S-PSO yields
similar or better results. These findings contradict the results of Carlisle and Dozier [5],
Luo and Zhang [12] and Perez and Basterrechea [15].

As stated above, parallelization is one of the main motivations for investigating
asynchronous PSOs, mainly because synchronous parallel implementations do not
make an efficient use of computational resources when load imbalance exists. In this
line of work, Koh et al. [10] compared parallel asynchronous and synchronous PSOs in
homogeneous and heterogeneous environments. They concluded that the parallel
performance of the asynchronous version is significantly better than that of asyn-
chronous PSO for heterogeneous environments or heterogeneous computational tasks.
Venter and Sobieszczanski-Sobieski [18] also studied and compared parallel syn-
chronous and asynchronous PSOs. Their results indicate that the asynchronous PSO
significantly outperforms the synchronous in terms of parallel efficiency.

In this paper, we are not yet concerned with parallelization. We follow a different
approach from the works based on Carlisle and Dozier’s seminal proposal. Our main
objective is to evaluate the numerical results of the algorithm and validate it as an
alternative to the standard synchronous approach. The strategy is based on a model of
co-evolution that is described in the next section.

3 From a Model of Co-evolution to the Steady State PSO

Natural species in the same eco-system are related through several features (like food
chains or symbiosis, for instance) and the extinction of one species affects the species
that are related to them, in a chain reaction that can reach large proportions. Fossil
records suggest that the size of extinctions events is in power-law proportion to its
frequency. It is also known that the biological history of life on Earth is punctuated by
catastrophic extinction events. The Bak-Sneppen model [3] was conceived with the
objective of understanding the mechanisms underlying these mass extinctions. It
consists of a number of species, each one with a fitness value assigned and connected to
other species (neighbors). Every time step, the least fit species and its neighbors are
eliminated from the system and replaced by individuals with random fitness.

This description may be translated to a mathematical model. The system is defined
by nd fitness numbers fi arranged on a d-dimensional lattice (ecosystem) with n cells.
At each time step, the smallest f value and its 2� d neighbours are replaced by
uncorrelated random values drawn from a uniform distribution. With this simple rule
applied iteratively, the system is driven to a critical state where most species have a
fitness above a certain threshold. Complex behavior is observed even in the
1-dimensional case, where species are arranged in a ring and each one has two
neighbors.
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The Bak-Sneppen model is an example of a system with self-organized criticality
(SOC) [2], a critical state formed by self-organization in a long transient period at the
border of order and chaos. While order means that the system is working in a pre-
dictable regime where small disturbances have only local impact, chaos is an unpre-
dictable state very sensitive to initial conditions or small disturbances. In complex
adaptive systems, complexity and self-organization usually arise at that transition
region between order and chaos, or edge of chaos, as it is sometimes stated. SOC
systems are dynamical with a critical point at the region between order and chaos as an
attractor. However, and unlike many physical systems, which have a parameter that
needs to be tuned in order to obtain the critical state, SOC systems are able to self-tune
to the critical point.

SOC and the Bak-Sneppen model inspired, for instance, a metaheuristic called
extremal optimization (EO) [4]. In EO, a single solution to a problem is modified by
local search. The algorithm removes the worst components of the solution and replaces
them with randomly generated material. By plotting the fitness of the solution, distinct
stages of evolution are observed, where improvement is disturbed by brief periods of
dramatic decrease in the quality of the solution. Chen et al. [6] used EO to enhance the
search abilities of PSO and prevent premature convergence to local optima. They tested
the hybrid algorithm on a set of benchmark functions and compared it favorably with
other metaheuristics.

Løvbjerg and Krink [11] applied SOC to PSO in order to control the convergence
of the algorithm and maintain diversity. The authors introduce a critical value asso-
ciated with each particle and define a rule that increments it when two particles are
closer than a threshold distance. When the critical value of a particle exceeds a globally
set criticality limit, the algorithm responds by dispersing the criticality of the particle
within a certain surrounding neighborhood. In addition, the algorithm uses the critical
value to control the inertia weight. The authors claim that their method is faster and
attains better solutions than the standard PSO. However, the algorithm introduces five
parameters that must be tuned or set to constant ad hoc values.

More recently, Fernandes et al. [7] used the Bak-Sneppen model to control the
inertia weight and acceleration coefficients of each particle. An experimental setup
demonstrates the validity of the algorithm and shows that the incorporation of each
control mechanism improves its performance or at least reduces the tuning effort.

Like the Bak-Sneppen model, the population of PSO is structured by a network.
With this likeness in mind, we devised an asynchronous and steady state update
strategy for PSO in which only the least fit particle and its neighbors are updated and
evaluated in each time step. The neighborhood is defined by the network: if the par-
ticles are connected by lbest with k ¼ 3, only the worst particle and its two nearest
neighbors are updated and evaluated; if a lattice with Moore neighborhood is used
(k ¼ 9), the least fit and its eight nearest neighbors are updated. Please note that local
synchronicity is used here: the fitness values of the worst and its neighbors are first
computed and only then their velocity is updated. For the remaining working mech-
anisms and parameters, the algorithm is exactly as standard PSO. Since part of the
population remains steady in each time step, we named the algorithm steady state PSO
(SS-PSO). SS-PSO is summarized in Algorithm 1.
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1.Initialize velocity and position of each particle.
2.For (each particle j):Compute fitness.
3. For (each particle j):Compute piand pg.
4. For (each particle j):if jis the least fit particle, update velocity and position of jand neighbors
5. Compute fitness of particles jand neighbors.
6. If (stop criteria not met) return to 3; else, end.

Algorithm 1: SS-PSO 

4 Experiments and Results

The experimental setup was constructed with ten benchmark problems (Table 1).
Functions f1, -f3 are unimodal; f4, -f8 are multimodal; f9 is the shifted f2 with noise and
f10 is the rotated f5 (f9 global optimum and f10 matrix were taken from the CEC2005
benchmark). The dimension of the search space is D ¼ 30 (except f6, with D ¼ 2). In
order to construct square lattices with von Neumann and Moore neighborhood, pop-
ulation size l is set to 49, a value that lies within the typical range [8]. Following [16],
c1 and c2 were set to 1.4962 and x to 0.7298. Xmax is defined as usual by the domain’s
upper limit and Vmax ¼ Xmax. A total of 50 runs for each test were performed.
Asymmetrical initialization is used (initialization ranges are in Table 1).

In order to assess the quality of solutions and convergence speed of the algorithms,
two sets of experiments were conducted. First, the algorithms were run for a limited
amount of iterations (3000 for f1, f3 and f6, 20000 for the remaining) and the fitness of
the best solutions found were recorded over the 50 runs. In the second set of experi-
ments the algorithms were all run for 20000 iterations or until reaching a
function-specific stop criterion (given in Table 1). The number of iterations required to
meet the criterion was recorded and statistical measures were taken over the 50 runs.
A success measure was defined as the number of runs in which an algorithm attains the
stop criterion. The experimental setup is similar to those in [9, 16].

SS-PSO and S-PSO were implemented with three topologies: lbest with k ¼ 3 and
2-dimensional square lattices with von Neumann (k ¼ 5) and Moore neighborhood
(k ¼ 9). Gbest was not tested for two reasons. Firstly, it is fast but converges often to
local optima. We have performed some tests with gbest and the success rates were very
poor. Furthermore, SS-PSO uses the neighborhood structure to decide which particles
to update, i.e., in the von Neumann (k ¼ 5), five particles are updated. Since gbest has
k ¼ n, the proposed strategy would update the entire population and be equivalent to
the S-PSO. Hence, we have restricted the tests to lbest, von Neumann and Moore.
Please note that at this point of the research we are not primarily concerned in com-
paring the update strategy with state of the art PSOs. First, it is necessary to investigate
in which situations the proposed algorithm is able to improve the convergence speed
and accuracy of standard PSO and understand its underlying mechanisms. Only after
the proof of concept we can compare it against other PSOs.

With lbest, the steady state strategy could not improve the standard synchronous
update: SS-PSOlbest yields worse results than S-PSOlbest in most of the functions. As for
the von Neumann neighborhood, the results are dual: SS-PSOVN yields better results in
multimodal functions but it is outperformed in the unimodal by the S-PSOVN.
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Due to space restrictions, we omit the numerical results of the PSOs with lbest and von
Neumann network and proceed to the PSOs with Moore neighborhood.

S-PSOMoore attained the best results in most of the functions when compared to
lbest and it is faster (considering both mean and median values of the evaluations
required to meet the criteria) in every function. When compared to S-PSOVN,
S-PSOMoore is also faster in every function and attains better mean and median fitness
values in unimodal functions. These results are consistent with the ones in Kennedy
and Mendes [9]. Therefore, we believe that the Moore neighborhood structure is well
suited for assessing the validity and relevance of our proposal.

Table 2 shows mean, standard deviation and statistical measures of the empirical
distributions of best fitness values attained by S-PSOMoore and SS-PSOMoore. The later
yields better results in most of the functions: it attains lower mean and median fitness
values in every unimodal function and in the multimodal f4, f6 and f7. Mann-Whitney U
tests were performed to compare the distribution of fitness values of each algorithm in
each function. Results of the tests are significant at p� 0:05 for f1, f2, f3, f4, f6, f7, f9,
i.e., the null hypothesis that the two samples come from the same population is
rejected. For the remaining functions (f5, f8, f10), the null hypothesis is not rejected.

In terms of function evaluations (Table 3), SS-PSOMoore is faster in the entire set of
unimodal problems. In the multimodal problems, SS-PSOMoore needs less evaluations
in f5, f6, f6 and f8. Results of Mann-Whitney U tests are significant at p� 0:05 for
functions f1, f2, f3, f5, f7, f8, f10. Although S-PSOMoore requires less evaluations in f4, the
result of the statistical test is not significant. Finally, the success rates (Table 3) are
similar, except for f7, in which SS-PSO clearly outperforms the synchronous version,
and f9. In conclusion: the empirical results, together with the statistical tests, show that
SS-PSOMoore outperforms S-PSOMoore in most of the functions according to accuracy,
speed and reliability, while not being outperformed in any case.

The previous tests demonstrate that the steady state update strategy in a PSO
structured with Moore neighborhood significantly improves its performance. However,
at this point, a question arises: what is the major factor for the performance
enhancement, the steady state approach, or the set of particles that are updated? In order
to shed light on this issue, a final test was conducted. Two variants of SS-PSO were
implemented: one updates the best particle and its neighbors (replace-best); the second
updates a randomly selected particle and its neighbors (replace-random). The algo-
rithms were tested on the set of benchmark functions (see Table 4) and compared to
results of the proposed SS-PSOMoore (or replace-worst) given in Tables 2 and 3.

Replace-best update strategy is clearly inferior to replace-worst. With the exception
of f1 and f3, the quality of solutions is degraded when compared to the proposed
SS-PSO and even to S-PSO. Success rates are considerably lower in most functions.
As for replace-random, it improves S-PSO in some functions, but in general it is not
better than replace-worst: replace-random strategy is less accurate and slower in most
of the functions. The test shows that selective pressure on the least fit individuals is a
major factor in the performance SS-PSO.
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Table 1. Benchmark functions.

Mathematical representation Range of
search/initialization

Stop
criterion

Sphere f1
f1 ~xð Þ ¼PD

i¼1
x2i

ð�100; 100ÞD
ð50; 100ÞD

0.01

Quadric f2
f2 ~xð Þ ¼PD

i¼1

Pi
j¼1

xj

 !2 ð�100; 100ÞD
ð50; 100ÞD

0.01

Hyper
Ellipsoid

f3

f1 ~xð Þ ¼PD
i¼1

ix2i
ð�100; 100ÞD
ð50; 100ÞD

0.01

Rastrigin f4
f4 ~xð Þ ¼PD

i¼1
x2i � 10 cos 2pxið Þþ 10
� � ð�10; 10ÞD

ð2:56; 5:12ÞD
100

Griewank f5
f5 ~xð Þ ¼ 1þ 1

4000

PD
i¼1

x2i �
QD
i¼1

cos xiffi
i

p
� � ð�600; 600ÞD

ð300; 600ÞD
0.05

Schaffer f6
f6 ~xð Þ ¼ 0:5þ sin

ffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �2
�0:5

1:0þ 0:001 x2 þ y2ð Þð Þ2
ð�100; 100Þ2
ð15; 30Þ2

0.00001

Weierstrass
f7 f7 ~xð Þ ¼PD

i¼1

Pkmax
k¼0

akcos 2pbk xi þ 0:5ð Þ� �� �	 


�D
Xkmax
k¼0

akcos 2pbk � 0:5� �� �
;

a ¼ 0:5; b ¼ 3; kmax ¼ 20

ð�0:5; 0:5ÞD
ð�0:5; 0:2ÞD

0.01

Ackley f8
f8 ~xð Þ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1

x2i

s !

�exp
1
D

XD
i¼1

cos 2pxið Þ
 !

þ 20þ e

ð�32:768; 32:768ÞD
ð2:56; 5:12ÞD

0.01

Shifted
Quadric
with noise
f9

f9 ~zð Þ ¼PD
i¼1

Pi
j¼1

xj

 !2

� 1þ 0:4 N 0:1ð Þj jð Þ;

~z ¼~x�~o,
~o ¼ o1; ::oD½ � : shifted global optimum

ð�100; 100ÞD
ð50; 100ÞD

0.01

Rotated
Griewank
f10

f10 ~zð Þ ¼ 1þ 1
4000

PD
i¼1 z

2
i �

QD
i¼1 cos

ziffi
i

p
� �

,

~z ¼ M~x, M:ortoghonal matrix

ð�600; 600ÞD
ð300; 600ÞD

0.05
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Table 2. Best fitness: mean, standard deviation, median, minimum and maximum.

S-PSOMoore SS-PSOMoore

Mean St.dev Median Min Max Mean St.dev. Median Min Max

f1 1.31e−11 1.12e−11 1.04e−11 1.39e−12 4.93e−11 1.14e−14 1.16e−14 7.83e−15 2.06e−16 6.33e−14

f2 1.38e−29 6.36e−29 5.88e−31 4.71e−34 4.42e−28 1.40e−46 9.90e−46 0.00e00 0.00e00 7.00e−45

f3 3.61e−11 3.50e−11 2.76e−11 2.64e−12 1.65e−10 3.57e−14 5.32e−14 1.58e−14 9.43e−16 2.56e−13

f4 6.36e+01 1.73e+01 6.17e+01 3.78e+01 1.13e+02 5.25e+01 1.45e+01 5.12e+01 2.19e+01 1.04e+02

f5 5.86e−03 7.22e−03 1.08e−19 0.00e00 2.95e−02 1.28e−02 2.06e−02 9.86e−03 0.00e00 1.20e−01

f6 1.94e−04 1.37e−03 0.00e00 0.00e00 9.72e−03 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00

f7 1.94e−01 5.27e−01 2.27e−02 2.86e−05 3.16e00 1.73e−02 8.17e−02 2.86e−05 2.86e−05 5.19e−01

f8 1.01e−15 2.01e−16 8.88e−16 8.88e−16 1.33e−15 1.07e−15 2.20e−16 8.88e−16 8.88e−16 1.33e−15

f9 3.60e+01 2.32e+02 9.8e−05 6.44e−07 1.64e+03 7.20e−05 1.54e−04 1.01e−05 1.73e−08 7.11e−04

f10 6.70e−03 9.20e−03 1.08e−19 0.00e00 3.68e−02 8.37e−03 1.01e−02 1.08e−19 0.00e00 3.70e−02

Table 3. Evaluations: mean, standard deviation, median, minimum and maximum.

S-PSOMoore SS-PSOMoore

Mean St.dev. Median Min Max SR Mean St.dev. Median Min Max SR

f1 20434.0 840.8 20433. 0 18326 22099 50 17241.3 716.2 17320.5 14526 18594 50

f2 168599.0 12721.1 168119.0 140630 193501 50 133140.6 16854.2 135828.0 105399 171702 50

f3 22987.9 1075.4 22956.5 20972 26019 50 19519.6 788.0 19561.5 18045 21600 50

f4 15635.0 7771.5 13524.0 7448 49392 49 15902.8 8047.7 14256.0 7659 58248 49

f5 18671.0 986.8 18595.5 16366 21952 50 16419.2 1300.7 16060.5 14607 19683 50

f6 11443.0 9439.1 7105.0 3822 39788 49 8049.0 4852.6 6381.0 2727 21744 50

f7 37272.7 1590.1 36970.5 34790 41846 24 33192.0 1184.8 33340.5 30645 35685 46

f8 21029.8 1164.7 20923.0 19012 24794 50 17723.6 957.0 17752.5 15750 19809 50

f9 704144.6 96262.6 706972 453201 922327 47 653808.8 95860.3 671175 425655 852786 50

f10 18876.8 901.7 18963 16954 20727 50 16140.8 1122.9 15975 13995 18612 50

Table 4. Results of SS-PSO variants: median, min, max and success rates (SR)

SS-PSOMoore (replace-best) SS-PSOMoore (replace-random)

Fitness Evaluations Fitness Evaluations

Median Min Max Median Min Max SR Median Min Max Median Min Max SR

f1 4.09e−29 2.50e−33 2.00e
+04

9468 6714 24669 45 6.04e−14 7.86e−14 6.59e−12 18972 16425 20781 50

f2 1.50e+04 0.00e00 4.50e

+04

66717 65844 79443 3 8.33e−32 4.59e−34 5.00e+03 170091 136062 195498 47

f3 3.01e−27 9.54e−34 1.00e

+05

11718 8208 36000 35 1.66e−12 1.30e−13 2.25e−11 21118 19548 23283 50

f4 1.30e+02 7.46e+01 2.00e

+02

15192 8964 108495 9 5.62e+01 2.39e+01 8.76e+01 11052 5679 23571 50

f5 4.17e−02 1.08e−19 9.05e
+01

8014.5 6570 21186 28 7.40e−03 0.00e00 4.18e−02 17190 15570 19989 50

f6 3.59e−04 0.00e00 9.72e
−03

39811.5 1242 140247 38 0.00e00 0.00e00 9.72e−03 8460 3276 62091 50

f7 7.35e00 2.51e00 1.38e
+01

- - - 0 7.57e−04 2.86e−05 2.02e00 34168,5 31041 42507 32

f8 2.28e00 8.86e−16 3.84e00 20898 13158 28764 6 1.11e−15 8,86e−16 1.33e−15 19822.5 18252 25416 50

f9 1.06e−01 1.98e−03 1.53e
+04

902407 812736 949590 12 1.64e−04 1.44e−06 6.01e+01 736713 546858 891432 49

f10 4.17e−02 1.08e−19 9.05e

+01

8014.5 6570 21186 27 7.40e−03 0.00e00 4.18e−02 17190

(50)

15570 19989 50
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5 Conclusions and Future Work

This paper proposes an asynchronous and steady state update strategy for the PSO
based on a model of co-evolution. Instead of the whole population, like in standard
particle swarms (either synchronous or asynchronous), only the worst solution and its
neighbors are updated and evaluated in each time step. The remaining particles are kept
in a steady state. Accordingly, we have named it steady state PSO (SS-PSO).

The strategy was implemented with three social network structures (lbest and
square lattices with von Neumann and Moore neighborhood) and tested on a set of ten
unimodal, multimodal, shifted, noisy and rotated benchmark problems. Quality of
solutions, convergence speed and success rates were compared. SS-PSO significantly
improved the performance of S-PSO on a lattice with Moore neighborhood in every
function. Since S-PSOMoore has been found to be the more accurate and faster POS in
the set of benchmark functions, we believe that these results validate the proposal.

The strategy was tested with standard PSOs. In the future, and in order to assess the
contribution of our proposal to the state of the art, we intend to test it with (efficient
variants of the standard PSO and even compare it to other metaheuristics. Scalability of
the steady state PSO regarding population size and problem dimension will also be
studied. Finally, the emergent patterns of the algorithm (extension of events, stasis,
critical values) will be compared to those of the Bak-Sneppen model.
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