
Speciated Evolutionary Algorithm
for Dynamic Constrained Optimisation

Xiaofen Lu1,2(B), Ke Tang2, and Xin Yao1,2

1 CERCIA, School of Computer Science, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

{xxl332,x.yao}@cs.bham.ac.uk
2 UBRI, School of Computer Science and Technology,

University of Science and Technology of China (USTC),
Hefei 230027, Anhui, China

ketang@ustc.edu.cn

Abstract. Dynamic constrained optimisation problems (DCOPs) have
specific characteristics that do not exist in dynamic optimisation prob-
lems with bounded constraints or without constraints. This poses diffi-
culties for some existing dynamic optimisation strategies. The maintain-
ing/introducing diversity approaches might become less effective due to
the presence of infeasible areas, and thus might not well handle with the
switch of global optima between disconnected feasible regions. In this
paper, a speciation-based approach was firstly proposed to overcome this,
which utilizes deterministic crowding to maintain diversity, assortative
mating and local search to promote exploitation, as well as feasibility
rules to deal with constraints. The experimental studies demonstrate
that the newly proposed method generally outperforms the state-of-the-
art algorithms on a benchmark set of DCOPs.

Keywords: Evolutionary algorithm · Speciation · Deterministic crowd-
ing · Local search · Dynamic constrained optimisation problem

1 Introduction

In the real world, many optimisation problems are changing over time due to the
dynamic environments [6,19]. These problems require an optimisation algorithm
to quickly find the new optimum once the problem changes [20]. As a class of
nature-inspired optimisation methods, evolutionary algorithms (EAs) can have
good adaptation to the changing environments, and thus have been widely stud-
ied in the field of dynamic optimisation (DO). Many evolutionary DO approaches
have been developed, which include maintaining/introducing diversity strategies,
memory approaches, prediction approaches, multi-population approaches and so
on [20]. As revealed in [20,23], most existing studies of DO focus on uncon-
strained or bounded constrained dynamic optimisation problems (DOPs), and
few consider dynamic constrained optimisation problems (DCOPs) despite their
high popularity in real-world applications. In a DCOP, a change may occur
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 203–213, 2016.
DOI: 10.1007/978-3-319-45823-6 19



204 X. Lu et al.

in either constraints or objective functions or both. Therefore, DCOPs have
some specific characteristics compared to unconstrained or bounded constrained
DOPs. For a DCOP, the distribution of infeasible/feasible solution might change,
and the global optima might move to another disconnected feasible region, or
appear in a new region without changing the current optima due to the dynamics
of environments [19,23].

Addressing DCOPs poses difficulties for some existing DO strategies and
constraint handling (CH) techniques due to their characteristics. As discussed in
[19,23], maintaining/introducing diversity methods such as random-immigrants
(RI) [12] and hyper-mutation (HyperM) [5] become less effective on DCOPs than
on DOPs, when combined with penalty function that prefers feasible solutions
to infeasible ones. This is because that they cannot maintain enough diversity
to adapt to the new problem as the introduced random solutions are likely to
be rejected by the penalty function if they are infeasible. Furthermore, without
enough diversity, they may not deal well with the switch of the global opti-
mum between disconnected feasible regions, as it needs to go through an infea-
sible path from the previous optimum to the current optimum. Moreover, some
adaptive/self-adaptive CH techniques also face challenges in solving DCOPs as
they need the knowledge of problem that is unavailable in a dynamic environment
or historical information that might be outdated once the problem changes [23].

Researchers have recently carried out some studies trying to solve the chal-
lenges of DCOPs. To allow diversified infeasible solutions distributed in the
whole search space, the authors in [19,25], and [2] applied the repair method
[27] to handle constraints along with RI/HyperM to deal with dynamics. How-
ever, these methods need a lot of feasibility checkings, and thus cannot be applied
to DCOPs in which the ratio of feasible solutions is very low and a feasibility
checking is computationally costly. The authors in [1] employed simple feasibil-
ity rules [17] as the CH strategy along with RI and combined DE variants to
introduce diversity after each change. However, this method may not maintain
diversity well during the run as infeasible solutions are still likely abandoned by
feasibility rules. Furthermore, it might be ineffective to make the partially con-
verged population to re-diversify to track the switched global optima. Similarly,
the proposed approach in [4] to deal with DCOPs might not quickly find the
switched optima as the population tends to converge during the run.

In this paper, a speciation-based method, called speciated evolution with
local search (SELS), is suggested to address the challenges of DCOPs. Specia-
tion allows an EA to find multiple optima through making comparisons among
similar individuals [7]. Thus, newly generated and promising infeasible solutions
can be accepted in the new method. Furthermore, good solutions can be main-
tained in different feasible regions, and thus SELS should react quickly when
the global optimal solution switches to another feasible region. In the literature,
speciation has been utilized to solve dynamic unconstrained or bounded con-
strained optimisation problems [14,15], but no studies apply them to DCOPs.
In addition to speciation, a local search strategy is employed in SELS to pro-
mote exploitation of the promising regions to quickly find the changed optimum.



Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation 205

SELS also uses a change detection method, and adds some random immigrants
into the population to introduce diversity once a change is detected. Finally,
to deal with constraints, the simple and parameter-free feasibility rules [17] are
employed.

The remaining part of this paper is organized as follows. Section 2 summa-
rizes the existing related work, and Sect. 3 details the new method. In Sect. 4,
experimental results are presented, and conclusions and future work will be given
in Sect. 5.

2 Related Work

Solving DCOPs does not only need DO strategies to deal with dynamics but
also requires CH techniques to handle constraints. This section will introduce the
efforts that researchers have done in combining DO strategies and CH techniques
to solve DCOPs.

The RI and HyperM methods were combined in [23] with a penalty func-
tion proposed in [18]. When using RI, a fraction of the population is replaced
by random solutions at every generation to maintain diversity. In hybrid with
HyperM, the original mutation rate will change to a higher one to introduce
diversity once change is detected. However, as most of the added random solu-
tions are infeasible and they are likely rejected by the used penalty function,
these combination methods can not maintain enough diversity to adapt to the
new problem. Therefore, the authors suggested that a CH technique that can
maintain diversified infeasible solutions is needed, when combined with RI and
HyperM to solve DCOPs.

To maintain diversified infeasible solutions in solving DCOPs, the authors in
[22] combined the repair method with RI and HyperM, respectively. By using
the repair method, an infeasible solution was evaluated by the repaired feasible
solution. Thus, the infeasible solutions that can make good feasible solutions
are reserved. Other studies using the repair methods exist in [2,24]. The former
work used an improved repair method, and the latter applied the repair method
and RI together in a DE context. However, using the repair method has a big
disadvantage. That is, it requires a considerable number of feasibility checking
during the repair process, and thus not suitable for problems with very small
feasible area or expensive feasibility checking.

A simple ranking scheme in [13] was applied to handling constraints in [3]. To
maintain population diversity, the method monitored the population diversity
and switched between a global search and a local search operator according to
whether the diversity degree is larger than a threshold. As a result, this method
will highly depends on the setting of the threshold. To avoid the setting of the
threshold, the authors in [4] used the Shannon’s index of diversity as a factor to
balance the influence of the global-best and local-best search directions. However,
the population tends to converge in this method, and it might be ineffective to
make the partially converged population to re-diversify to track the switched
global optimum.



206 X. Lu et al.

The authors in [1] employed simple feasibility rules in [17] as the CH strat-
egy, and considered RI and combined DE variants to maintain and introduce
diversity, respectively. However, this method may not well maintain diversity as
infeasible solutions are likely abandoned according to feasibility rules, and thus
might not effectively solve the switching global optima between disconnected
feasible regions.

Except DO strategies to introduce/maintain diversity were considered, other
DO strategies such as memory and prediction methods were also combined with
CH techniques to deal with DCOPs. The study in [26] adapted abstract mem-
ory method, and the infeasibility driven evolutionary algorithm (IDEA) was
combined with prediction method (to predict the future optima) in [10] and
[11] to solve DCOPs. However, both memory and prediction methods are only
applicable to particular dynamic problems (i.e., cyclic and predictable dynamic
problems, respectively).

3 The Proposed Method

The proposed SELS method considers simple feasibility rules to handle con-
straints, which do not need to repair infeasible solutions. However, as feasibil-
ity rules prefer feasible solutions to infeasible ones, the diversity will decrease
quickly. To avoid this, the speciation is employed, which makes comparison
among similar individuals. Thus, SELS should maintain good diversity and
respond quickly once the change happens. As speciation focuses on exploration,
the new optima might not be found quickly as promising regions are not exploited
sufficiently. Therefore, SELS uses a local search strategy to promote exploitation
of the promising regions. In the following part of this section, the elements of
SELS will be first described, and then the pseudo-code is given.

Speciation Method. This work uses deterministic crowding (DC) as the spe-
ciation method. Algorithm 1 gives the pseudo-code of DC. The DC method pairs
all population elements randomly and generates two offspring for each pair based
on EA operators. Selection is then operated on these four individuals, and a sim-
ilarity measure is used to decide which offspring competes against which parent.
The offspring will replace the compared parent and enter next generation if it is
fitter.

In addition to DC, SELS employs an assortative mating (AM) [8] to induce
speciation in the population. As DC can maintain good solutions on different
peaks or in different feasible regions, intuitively, we would not like to operate
crossover between solutions on different peaks or in different feasible regions
as doing this will likely generate solutions in the valley or infeasible regions.
To avoid this, assortative mating is used, which mates individuals with the
most similar non-identical partner in the population. Through doing crossover
between individuals in proximity, species will be automatically generated, and
the exploitation of the corresponding search area will also be enhanced. In this
work, Euclidean distance is used as the similarity measure.



Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation 207

Algorithm 1. Deterministic Crowding [16]
1: Randomly pair all individuals in the population
2: for each pair of individuals, p1 and p2, do
3: Generate two offspring, o1 and o2, based on EA operators
4: if dist(p1, o1) + dist(p2, o2) ≤ dist(p1, o2) + dist(p2, o1) then
5: p1 = fitter(p1, o1)
6: p2 = fitter(p2, o2)
7: else
8: p1 = fitter(p1, o2)
9: p2 = fitter(p2, o1)

10: end if
11: end for

Feasibility Rules. Feasibility rules have been commonly used to solve con-
strained optimisation problems due to its simple and parameter-free character-
istics, which make comparison between individuals through the following three
selection criteria:

1. If both are feasible solutions, the one with the highest fitness value is selected.
2. Between a feasible solution and an infeasible solution, the feasible one is

preferred.
3. If both are infeasible, the one with the lowest sum of constraint violation

wins.

In the proposed SELS, feasibility rules are employed to determine the fitter one
in each pair of parent and offspring in the deterministic crowding.

Local Search (LS). In this work, the local evolutionary search enhancement
by random memorizing (LESRM) [28] is applied to the best solution (xbest) at
each generation. The LESRM uses an EA that has a step size control and adjusts
the search direction based on individuals encountered before, and thus can do
efficient exploitation in the area that the best solution is located in. In this paper,
the EA used in LESRM is given in Algorithm2, and the random memorizing
part of LESRM is the same as in [28]. Here, lsnum denotes the maximum number
function evaluations (FEs) permitted for LS at every generation, and D denotes
dimension of the problem. The success ratio of δ denotes the ratio that xnew

(generated by δ) is better than xbest.

Change Detection and Diversity Introduction. To detect the change,
assume k is the number of individuals for detection and NP is the size of popula-
tion, the (NP/k)-th, (2∗NP/k)-th, ((k−1)∗NP/k)-th, ..., (NP )-th (denoted as
detection index) individual in the population are reevaluated at every generation
to detect changes in time. Once a change is detected, the whole population will be
re-evaluated, and NI random individuals will be generated to randomly replace
the individuals of the population except the best individual. In our work, we



208 X. Lu et al.

Algorithm 2. Evolutionary Search in LESRM in SELS (xbest)
1: Find the closest non-identical solution xnear to xbest

2: Set δ = dist (xnear, xbest), and LS generation counter lsg = 0
3: repeat
4: repeat
5: Set lsg = lsg + 1, and xnew = xbest + δ*randn(1,D);
6: if mod(lsg,2)==0 then
7: Calculate the success ratio of δ
8: Set δ = δ/2 if the success ratio of δ is less than 0.5
9: Set δ = δ ∗ 2 if the success ratio of δ is larger than 0.5

10: end if
11: until xnew is fitter than xbest

12: Set xbest = xnew

13: Do random memorizing as in [28]
14: until lsnum function evaluations are used up

first give each individual in the population a rank based on the feasibility rules,
and estimate the degree of change severity as the ratio of the number of reverse
order after re-evaluation. We then set NI to max((�reverse ratio ∗ NP�, 2).

The Framework of the Proposed Method. Algorithm 3 gives the whole
process of SELS, which begins with a randomly generated population of candi-
date solutions and utilizes genetic algorithm (GA) to evolve this population.

Algorithm 3. The Framework of SELS
1: Evaluate a randomly generated population P = {xi|i = 1, 2, ...,NP}
2: while computational resources are not used up do
3: repeat
4: Randomly select an unpaired individual x from the population
5: Calculate Euclidean distance between x and each other unpaired individual
6: Pair x with the individual that has smallest positive Euclidean distance to x
7: until all individuals in the population are paired
8: for i ← 1,NP do
9: Re-evaluate xi or xi+1 if i or i + 1 is one detection index

10: if the change is detected then
11: Re-evaluate solutions in P and introduce diversity, go to Step 17
12: else
13: Generate two offspring o1, o2 from xi and xi+1 with GA crossover and

mutation
14: Do deterministic crowding(xi, xi+1, o1, o2), and set i = i + 1
15: end if
16: end for
17: Do local search to the best solution in P
18: end while



Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation 209

4 Experimental Studies

4.1 Experimental Setup

To assess the efficacy of SELS, we conducted experiments on 11 DCOP
benchmark test functions proposed in [21]. They are: G24-l(dF,fC), G24-
2(dF,fC), G24-3(dF,dC), G24-4(dF,dC), G24-5(dF,dC), G24-6a(2DR,hard),
G24-6c(2DR,easy), G24-7(fF,dC), G24-6d(2DR,hard), G24-8b(fC,OICB). We
recorded the performance of SELS on each test function using the modified
offline error [22] as the performance metric, then compared its performance to
that of 6 state-of-the-art algorithms. They are, dGArepairRIGA [22], dGAre-
pairHyperM [22], GSA + Repair [24], DDECV + Repair [2], DDECV [1] and
EBBPSO-T [4]. In the experiments, the number of changes is set to 12, the
change frequency is 1000 objective function evaluations, and the change severity
is medium (i.e., k = 0.5, and s = 20). We use this setting as all of the 6 compared
algorithms have presented complete experimental results only on this setting in
their original papers.

Note that the first 4 of the compared algorithms use a repair scheme, so they
need a lot of feasibility checking but they ignore the cost. To make a fair compar-
ison, we run SELS only evaluating the feasibility for an infeasible solution and
do not count in the number of used fitness evaluations. The resulted algorithm
is denoted as eSELS and compared to the 4 repair algorithms. When compared
to DDECV and EBBPSO, SELS evaluates both the feasibility and objective
function value for every individual, no matter feasible or infeasible, which is the
same to what DDECV and EBBPSO do.

In the experiments, for both SELS and eSELS, intermediate crossover with
pc = 1.0, and Guassian mutation with pm = 1/D and scale = 0.1 are used,
respectively. In the mutation, at least one variable is mutated every time. The
number of LS objective function evaluations (lsnum) is set to 16, and 4 individ-
uals are used for change detection every generation. Each algorithm is run 50
times on each test function.

4.2 Comparison Results with Existing Algorithms

Table 1 summarizes the mean and standard deviation of the modified offline
error over 50 runs obtained by DDECV, EBBPSO-T and SELS as well as the
performance rank of each algorithm on each test function (in case of ties, average
ranks are assigned) based on Z-test with a level of 0.05. We applied the Friedman
test and further a Holm’s post-hoc procedure [9], which was used for multiple
comparison of algorithms, to investigate whether SELS performed best on the
set of test functions. The analysis shows that SELS has significant improvement
than DDECV and EBBPSO-T at a level of 0.05.

Table 2 gives the performance rank of eSELS and the other 4 repair algo-
rithms on each test function. We also applied the Friedman test and further a
Holm’s post-hoc procedure [9] to do a multiple-problem comparison among the
5 algorithms. The statistical test results show that eSELS performed significantly
better than each other algorithm on the test function set at a level of 0.05.



210 X. Lu et al.

Table 1. Comparison results between DDECV, EBBPSO-T and SELS based on exper-
imental results of DDECV and EBBPSO-T in their original papers [1,4], respectively.
The best result obtained on each function is marked in bold.

Func DDECV[rank] EBBPSO-T[rank] SELS[rank]

G24-l 0.109 ± 0.033[3] 0.084 ± 0.041[2] 0.025± 0.008[1]

G24-2 0.126 ± 0.030[2] 0.136 ± 0.013[3] 0.050± 0.015[1]

G24-3 0.057 ± 0.018[3] 0.032± 0.005[1] 0.044 ± 0.022[2]

G24-3b 0.134 ± 0.033[3] 0.104 ± 0.015[2] 0.052± 0.018[1]

G24-4 0.131 ± 0.032[2.5] 0.138 ± 0.022[2.5] 0.082± 0.021[1]

G24-5 0.126 ± 0.030[2.5] 0.126 ± 0.019[2.5] 0.054± 0.014[1]

G24-6a 0.215 ± 0.067[3] 0.116 ± 0.099[2] 0.055± 0.009[1]

G24-6c 0.128 ± 0.025[2] 0.251 ± 0.061[3] 0.052± 0.008[1]

G24-6d 0.288 ± 0.055[2.5] 0.312 ± 0.203[2.5] 0.041± 0.007[1]

G24-7 0.106 ± 0.022[3] 0.045± 0.009[1] 0.087 ± 0.016[2]

G24-8b 0.151 ± 0.058[2] 0.312 ± 0.086[3] 0.055± 0.022[1]

Table 2. Comparison results among eSELS and the other 4 repair algorithms based
on the experimental results in their original papers.

Func dRepairRIGA

[rank]

dRepairHyperM

[rank]

GSA+Repair

[rank]

DDECV+Repair

[rank]

eSELS[rank]

G24-l 0.082± 0.015[3] 0.093± 0.023[4] 0.132± 0.015[5] 0.061± 0.010[2] 0.013± 0.007[1]

G24-2 0.162± 0.021[3.5] 0.171± 0.026[3.5] 0.182± 0.019[5] 0.062± 0.006[2] 0.030± 0.008[1]

G24-3 0.029± 0.004[4] 0.027± 0.005[2.5] 0.028± 0.004[2.5] 0.046± 0.006[5] 0.018± 0.004[1]

G24-3b 0.058± 0.007[2] 0.071± 0.014[3] 0.076± 0.009[4] 0.084± 0.006[5] 0.021± 0.004[1]

G24-4 0.140± 0.028[5] 0.059± 0.010[2] 0.073± 0.012[3] 0.088± 0.011[4] 0.036± 0.009[1]

G24-5 0.152± 0.017[4.5] 0.131± 0.019[3] 0.153± 0.013[4.5] 0.078± 0.008[2] 0.027± 0.024[1]

G24-6a 0.366± 0.033[4.5] 0.358± 0.049[4.5] 0.033± 0.003[1] 0.036± 0.005[2.5] 0.038± 0.006[2.5]

G24-6c 0.323± 0.037[4.5] 0.326± 0.047[4.5] 0.045± 0.004[3] 0.041± 0.010[1.5] 0.040± 0.007[1.5]

G24-6d 0.315± 0.029[5] 0.286± 0.035[4] 0.037± 0.007[2] 0.079 ± 0.006[3] 0.029± 0.004[1]

G24-7 0.154± 0.031[5] 0.067± 0.014[3] 0.018± 0.002[1] 0.107± 0.011[4] 0.035± 0.045[2]

G24-8b 0.341± 0.053[5] 0.257± 0.042[4] 0.192± 0.034[3] 0.074± 0.025[2] 0.025± 0.006[1]

4.3 The Performance Effect of AM, LS and Different Dynamics

We further conducted experiments to check whether the AM and LS can help in
SELS, and comparisons were made among (1) SELS without AM or LS (SELS-
am-ls in short), (2) SELS without LS (SELS-ls in brief), and (3) SELS. Table 3
summarizes the mean and standard deviation of the modified offline error for
each of them along with the comparison results. It is shown that SELS-ls over-
all outperformed SELS-am-ls, and the used LS further improves SELS-ls. This
demonstrates the benefits of using AM and LS.

To evaluate the performance of SELS on different dynamics, we also con-
ducted experiments on small change severity (i.e., k = 1.0, and s = 10) and
large severity (i.e., k = 0.25, and s = 50). Figure 1 gives the evolutionary curves



Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation 211

Table 3. Comparison results among SELS-am-ls, SELS-ls, and SELS based on exper-
imental results implemented on DCOP test functions. Here, +, −, and ≈ denotes
whether one algorithm is better, worse or equal to another according to Wilcoxon
ranksum test with a level of 0.05.

Func SELS-am-ls SELS-ls vs SELS-am-ls SELS vs SELS-ls

G24-l 0.133 ± 0.037 0.069 ± 0.019 + 0.025 ± 0.008 +

G24-2 0.186 ± 0.017 0.121 ± 0.021 + 0.050 ± 0.015 +

G24-3 0.124 ± 0.038 0.118 ± 0.025 ≈ 0.044 ± 0.022 +

G24-3b 0.233 ± 0.039 0.144 ± 0.021 + 0.052 ± 0.018 +

G24-4 0.199 ± 0.027 0.171 ± 0.030 + 0.082 ± 0.021 +

G24-5 0.162 ± 0.022 0.117 ± 0.017 + 0.054 ± 0.014 +

G24-6a 0.318 ± 0.040 0.163 ± 0.020 + 0.055 ± 0.009 +

G24-6c 0.284 ± 0.030 0.152 ± 0.017 + 0.052 ± 0.008 +

G24-6d 0.198 ± 0.033 0.128 ± 0.023 + 0.041 ± 0.007 +

G24-7 0.121 ± 0.017 0.138 ± 0.018 − 0.087 ± 0.016 +

G24-8b 0.387 ± 0.044 0.242 ± 0.031 + 0.055 ± 0.022 +

0 2000 4000 6000 8000 10000 12000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The Number of FEs

D
iff

er
en

ce
 o

f N
or

m
al

is
ed

 O
ffl

in
e 

Er
ro

r

large−meidum
medium−small

(a) G24-2

0 2000 4000 6000 8000 10000 12000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

The Number of FEs

D
iff

er
en

ce
 o

f N
or

m
al

is
ed

 O
ffl

in
e 

Er
ro

r

large−meidum
medium−small

(b) G24-8b

Fig. 1. The Evolutionary difference curves of SELS between different change severity

of the normalised offline error differences between medium and small severity,
and between large and small severity. The X axis denotes the number of objective
function evaluations, and the Y axis denotes difference of the normalised offline
error at each evaluation, which is normalised on each problem in one test func-
tion. In general, we found that SELS performed best on small severity, second
best on medium, and worst on large severity.

5 Conclusion and Future Work

In this paper, a novel speciation-based method was proposed to solve
DCOPs, which combines speciation methods as well as local search together.



212 X. Lu et al.

Although the techniques used in SELS are not new, the experimental studies
demonstrated the combination leads to an effective algorithm. In future work,
we will study the performance effect of the choice of local search strategies on the
proposed method, and will also evaluate this new method on more test functions.

Acknowledgments. This work was partially supported by NSFC (Grant No.
61329302), EPSRC (Grant No. EP/K001523/1), and Royal Society Newton Advanced
Fellowship (Ref. no. NA150123). The authors thank Stefan Menzel for giving the valu-
able advice.

References

1. Ameca-Alducin, M.Y., Mezura-Montes, E., Cruz-Ramirez, N.: Differential evolu-
tion with combined variants for dynamic constrained optimization. In: 2014 IEEE
Congress on Evolutionary Computation (CEC), pp. 975–982. IEEE (2014)

2. Ameca-Alducin, M.Y., Mezura-Montes, E., Cruz-Ramı́rez, N.: A repair method for
differential evolution with combined variants to solve dynamic constrained opti-
mization problems. In: Proceedings of 2015 on Genetic and Evolutionary Compu-
tation Conference, pp. 241–248. ACM (2015)

3. Campos, M., Krohling, R.: Bare bones particle swarm with scale mixtures of gaus-
sians for dynamic constrained optimization. In: 2014 IEEE Congress on Evolution-
ary Computation (CEC), pp. 202–209. IEEE (2014)

4. Campos, M., Krohling, R.A.: Entropy-based bare bones particle swarm for dynamic
constrained optimization. Knowl.-Based Syst. 000, 1–21 (2015)

5. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical report, DTIC Document (1990)

6. Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments:
a survey on problems, methods and measures. Soft. Comput. 15(7), 1427–1448
(2011)

7. Darwen, P., Yao, X.: Automatic modularization by speciation. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 88–93. IEEE
(1996)

8. De, S., Pal, S.K., Ghosh, A.: Genotypic and phenotypic assortative mating in
genetic algorithm. Inf. Sci. 105(1), 209–226 (1998)

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

10. Filipiak, P., Lipinski, P.: Infeasibility driven evolutionary algorithm with feed-
forward prediction strategy for dynamic constrained optimization problems. In:
Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602,
pp. 817–828. Springer, Heidelberg (2014)

11. Filipiak, P., Lipinski, P.: Making IDEA-ARIMA efficient in dynamic constrained
optimization problems. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015.
LNCS, vol. 9028, pp. 882–893. Springer, Heidelberg (2015)

12. Grefenstette, J.J., et al.: Genetic algorithms for changing environments. In: PPSN,
vol. 2, pp. 137–144 (1992)

13. Ho, P.Y., Shimizu, K.: Evolutionary constrained optimization using an addition of
ranking method and a percentage-based tolerance value adjustment scheme. Inf.
Sci. 177(14), 2985–3004 (2007)



Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation 213

14. Kundu, S., Biswas, S., Das, S., Suganthan, P.N.: Crowding-based local differen-
tial evolution with speciation-based memory archive for dynamic multimodal opti-
mization. In: Proceedings of 15th Annual Conference on Genetic and Evolutionary
Computation, pp. 33–40. ACM (2013)

15. Li, C., Nguyen, T.T., Yang, M., Yang, S., Zeng, S.: Multi-population methods
in unconstrained continuous dynamic environments: the challenges. Inf. Sci. 296,
95–118 (2015)

16. Mahfoud, S.W.: Niching methods for genetic algorithms. Urbana 51(95001), 62–94
(1995)

17. Mezura-Montes, E., Coello Coello, C.A., Tun-Morales, E.I.: Simple feasibility
rules and differential evolution for constrained optimization. In: Monroy, R.,
Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI),
vol. 2972, pp. 707–716. Springer, Heidelberg (2004)

18. Morales, A.K., Quezada, C.V.: A universal eclectic genetic algorithm for con-
strained optimization. In: Proceedings of 6th European Congress on Intelligent
Techniques and Soft Computing, vol. 1, pp. 518–522 (1998)

19. Nguyen, T.T.: Continuous dynamic optimisation using evolutionary algorithms.
Ph.D. thesis, University of Birmingham (2011)

20. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

21. Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems.
In: 2009 IEEE Congress on Evolutionary Computation, pp. 690–697. IEEE (2009)

22. Nguyen, T.T., Yao, X.: Solving dynamic constrained optimisation problems using
repair methods. IEEE Trans. Evol. Comput. (2010, submitted)

23. Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimization-the chal-
lenges. IEEE Trans. Evol. Comput. 16(6), 769–786 (2012)

24. Pal, K., Saha, C., Das, S.: Differential evolution and offspring repair method based
dynamic constrained optimization. In: Panigrahi, B.K., Suganthan, P.N., Das, S.,
Dash, S.S. (eds.) Swarm, Evolutionary, and Memetic Computing. LNCS, vol. 8297,
pp. 298–309. Springer, Heidelberg (2013)

25. Pal, K., Saha, C., Das, S., Coello, C., et al.: Dynamic constrained optimization with
offspring repair based gravitational search algorithm. In: 2013 IEEE Congress on
Evolutionary Computation (CEC), pp. 2414–2421. IEEE (2013)

26. Richter, H.: Memory design for constrained dynamic optimization problems. In:
Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–
561. Springer, Heidelberg (2010)

27. Salcedo-Sanz, S.: A survey of repair methods used as constraint handling techniques
in evolutionary algorithms. Comput. Sci. Rev. 3(3), 175–192 (2009)

28. Voigt, H.M., Lange, J.M.: Local evolutionary search enhancement by random mem-
orizing. In: The 1998 IEEE International Conference on Computational Intelli-
gence, pp. 547–552. IEEE (1998)


	Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation
	1 Introduction
	2 Related Work
	3 The Proposed Method
	4 Experimental Studies
	4.1 Experimental Setup
	4.2 Comparison Results with Existing Algorithms
	4.3 The Performance Effect of AM, LS and Different Dynamics

	5 Conclusion and Future Work
	References


