
On Constraint Handling in Surrogate-Assisted
Evolutionary Many-Objective Optimization

Tinkle Chugh1(B), Karthik Sindhya1, Kaisa Miettinen1,
Jussi Hakanen1, and Yaochu Jin1,2

1 University of Jyvaskyla, Department of Mathematical Information Technology,
PO Box 35 (Agora), FI-40014 University of Jyvaskyla, Finland

{tinkle.chugh,karthik.sindhya,kaisa.miettinen,
jussi.hakanen,yaochu.jin}@jyu.fi

2 Department of Computer Science, University of Surrey, Guildford, UK

Abstract. Surrogate-assisted evolutionary multiobjective optimization
algorithms are often used to solve computationally expensive problems.
But their efficacy on handling constrained optimization problems hav-
ing more than three objectives has not been widely studied. Particularly
the issue of how feasible and infeasible solutions are handled in generat-
ing a data set for training a surrogate has not received much attention.
In this paper, we use a recently proposed Kriging-assisted evolutionary
algorithm for many-objective optimization and investigate the effect of
infeasible solutions on the performance of the surrogates. We assume
that constraint functions are computationally inexpensive and consider
different ways of handling feasible and infeasible solutions for training the
surrogate and examine them on different benchmark problems. Results
on the comparison with a reference vector guided evolutionary algorithm
show that it is vital for the success of the surrogate to properly deal with
infeasible solutions.

1 Introduction

Problems involving several conflicting objective functions are called multiobjec-
tive optimization problems. Such problems are typical e.g. in industrial applica-
tions. Because of the conflict, there typically does not exist a single solution but
multiple so-called Pareto optimal solutions. The set of all Pareto optimal solu-
tions in the objective space is called a Pareto front. Problems involving more
than three objectives are sometimes referred to as many-objective optimiza-
tion problems. In industrial optimization problems, computationally expensive
functions are common, where function evaluations are time-consuming because
of employing e.g. finite element methods. Such problems are usually handled
using surrogates, which are approximate functions that replace the computation-
ally expensive ones. For overviews of surrogate-assisted evolutionary algorithms
(SAEAs) for single and multiobjective optimization, see [1,2]. Surrogate-assisted
evolutionary algorithms for many-objective optimization have not received much
attention but recently a novel Kriging-assisted evolutionary algorithm for many-
objective optimization called K-RVEA [3] has been proposed.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 214–224, 2016.
DOI: 10.1007/978-3-319-45823-6 20



On Constraint Handling 215

Although industrial problems involve constraints, they have received little
attention in the literature. The constraints pose a challenge for evolutionary
algorithms to generate feasible solutions. More importantly, the presence of both
feasible and infeasible solutions within a population especially during early gen-
erations may cause problems in surrogate training. Usually, a feasible set of
solutions is required to train the surrogate. In unconstrained problems, the solu-
tions generated always lie in the feasible region while in constrained problems,
it may not be the case. In many cases, an initial set of feasible solutions is not
available or it may take a substantial number of function evaluations. In addi-
tion, infeasible solutions can also play a major role in updating the surrogates
as it will affect the performance of the surrogates in subsequent generations.

Next, we present a summary of approaches used in the literature for con-
strained SAEAs. In [4–6], initial training of surrogates was performed without
considering any information from infeasible solutions, while in [7] a prefixed
number of feasible solutions was used to train Kriging models. For updating the
surrogate, in [4], all feasible nondominated solutions from the latest generation
were re-evaluated and added to the training data set. In [5], all nondominated
solutions after using surrogates were reevaluated without considering the feasi-
bility of the solutions. In [6,7], the probability of feasibility was used for selecting
individuals to update the surrogates. However, all these algorithms were tested
on biobjective optimization problems. Therefore, a detailed investigation has
not been done for handling infeasible solutions in constrained many-objective
optimization.

In this study, we focus on constrained SAEAs for many-objective optimiza-
tion problems and investigate three different approaches for creating a training
data set for surrogates. In the first approach, we neglect all infeasible solutions
and the surrogate is trained only with feasible solutions. In the second approach,
we consider some infeasible solutions close to the feasible region in addition to
the feasible ones and in the third approach, we add a penalty to infeasible solu-
tions to train the surrogates. In all of these cases, we also consider infeasible
solutions for selecting individuals to update the surrogates and to limit the size
of the training data set. To update the surrogates, we select individuals so that
a maximum number of feasible solutions is used without a compromise in con-
vergence and diversity. A similar strategy is used to limit the size of the training
data set. As this can affect the training time, we eliminate individuals in such a
way that the performance of the surrogate is not compromised.

We assume that constraint functions themselves are not computationally
expensive. In other words, the computation time of evaluating constraints is sig-
nificantly lower than evaluating objective functions and therefore, surrogates are
not trained for constraint functions. Such a scenario where constraint functions
are not computationally expensive can exist in different cases. For instance, if
objective and constraint functions are independently evaluated or constraints
are available as analytical functions of the decision variables e.g. thickness to
height ratio while considering the design of some structural part of an aircraft.
Regardless of this assumption, our major contribution is towards showing the
effect of infeasible solutions in training surrogates.
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To test different approaches for handling infeasible solutions, we use
K-RVEA [3]. One of the main reasons and also an advantage to use K-RVEA is
its ability to solve problems with more than three objectives. K-RVEA is based
on the reference vector guided evolutionary algorithm RVEA [8], where the man-
agement of surrogates involves reference vectors. In RVEA, reference vectors are
used to decompose the original problem into a number of subproblems. These
subproblems are simultaneously solved and a set of solutions that approximate
the entire Pareto front is finally obtained. Additionally, the balance of conver-
gence and diversity of the solutions in the high-dimensional objective space is
achieved by using a novel scalarization approach called angle penalized distance
(APD) [8]. K-RVEA is an extension of this algorithm and it uses Kriging models
as surrogates to approximate computationally expensive functions. A flowchart
of K-RVEA is presented in Fig. 1.
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Fig. 1. Flowchart of K-RVEA

Initially, a population is initialized randomly or e.g. using Latin hypercube
sampling [9]. Individuals of this population are then evaluated with the original
objective functions and added to a training data set. If the size of this set exceeds
a predefined limit, we eliminate individuals from it. Kriging models for each
objective function are then trained and used to approximate objective function
values. In any generation, if a termination criterion e.g. maximum number of
function evaluations is not met, we update the surrogates after a prefixed number
of generations. To update the surrogates, an efficient selection of individuals is
performed with the help of reference vectors. Individuals are selected so that both
convergence and diversity are managed while updating the surrogates. These
individuals are then re-evaluated with the original functions and added to the
training data set. If the termination criterion is met, nondominated solutions
among all individuals evaluated with the original functions are obtained as the
final solutions. For more details about K-RVEA, see [3].

In the next section, we provide the details of different approaches to handle
infeasible solutions. In Sect. 3, we test and compare three approaches with the
constrained RVEA [8]. Finally, in Sect. 4, we conclude the paper and discuss
future research directions.
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2 Approaches to Handle Infeasible Solutions

In this section, an extension of K-RVEA for constrained problems is presented,
to be called cK-RVEA is given in Algorithm1. cK-RVEA has three phases; ini-
tialization, using the surrogates and updating the surrogates.

Initialization. In the initialization phase, an initial set of feasible and/or infea-
sible solutions is used to train the surrogates. It may be difficult to obtain enough
feasible solutions in the first generation therefore, in some cases, we first find fea-
sible solutions by optimizing the constraint violation as an objective function.
These individuals are stored in a training data set A1. In addition, another set
A2 is used as the storage of nondominated feasible solutions.

Using the Surrogates. In the phase of using the surrogates, Kriging models are
used to approximate objective function values. We use Kriging up to a predefined
fixed number of generations (wmax) before updating the surrogates. We use
the same parameter for the prefixed number of generations that was proposed
for K-RVEA based on a sensitivity analysis. For the selection criterion in this
phase, an individual from each subpopulation with minimum APD is selected
if it is feasible. Otherwise, an individual with a minimum constraint violation
is selected. Individuals thus selected are used as the population for the next
generation.

Updating the Surrogates. The Kriging models are updated after using them
for a fixed number of generations. The selection of individuals to be re-evaluated
is very important for the performance of the surrogates especially when con-
straints are involved. For example, it may be possible that after re-evaluations,
the number of infeasible solutions increases. Therefore, a maximum number
of feasible solutions should be selected. In K-RVEA, a set of individuals U is
selected based on the need of convergence or diversity. To this end, a fixed set of
reference vectors (Vf ) is generated in addition to the adaptive reference vectors
(Va). These reference vectors are used in the selection strategy to be described
below.

Selection Strategy to Update the Surrogates. In K-RVEA, after using
Kriging models for a fixed number of generations, individuals are assigned to the
fixed reference vectors. Then the change in the number of inactive (or empty)
fixed reference vectors from the previous update is calculated. If this change
is smaller than a threshold, we select an individual with the minimum APD,
otherwise with a maximum uncertainty (from the Kriging models). In cK-RVEA,
we use APD or uncertainty if there is at least one feasible solution. Otherwise,
we select an individual with a minimum constraint violation. Next, we provide
a strategy to manage the training data set.

Managing the Training Data. In order to reduce the computation time to
train the Kriging models, we limit the size (maximum size is NI) of the training
data set. For this purpose, we eliminate some individuals from the set after every
time we update the surrogates. We first assign individuals other than the recently
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Algorithm 1. cK-RVEA
Input: FEmax= max number of function evaluations; wmax= prefixed number of gen-

erations before updating Kriging models; NI= max number of individuals in set
A1

Output: nondominated feasible solutions of all evaluated ones from A2

/*Initialization*/
1: Initialize the number of function evaluations FE=0, the generation counter for

using Kriging models w=1 and a counter for the number of updates, tu = 0.
Initialize set A2 = φ

2: Obtain solutions (all feasible OR feasible and infeasible) in the training data set
A1 and update A2 = A1

3: Train a Kriging model for each objective function by using individuals in A1

4: while FE ≤ FEmax do
/*Using the surrogates*/

5: while w ≤ wmax do
6: Run RVEA with Kriging models and update w = w + 1
7: end while

/*Updating the surrogates*/
8: Select a set of individuals U using a selection strategy to update the surrogates

and re-evaluate them with the original functions and update FE = FE + |U |
9: Add individuals from step 8 to A1 and A2 and update |A1| = |A1| + |U | and

|A2| = |A2| + |U |
10: Remove |A1| − NI individuals from A1 using management of the training data,

update w = 1 and tu = tu + 1 and go to step 3
11: end while

evaluated ones to the adaptive reference vectors. These reference vectors are then
clustered into a prefixed number of clusters and an individual either randomly
(if feasible) or with a minimum constraint violation (if infeasible) is selected
from each cluster. In this way, a fixed number of individuals is maintained in the
training data set in order to improve the quality of Kriging models as much as
possible while limiting the computation time.

In the following, we present three different approaches to handle infeasible
solutions and variants of cK-RVEA using them are denoted by cK-RVEA1, cK-
RVEA2 and cK-RVEA3.

Rejecting All Infeasible Solutions. In cK-RVEA1, surrogates are trained
only with feasible solutions. Using feasible solutions to train the surrogates can
help in increasing their performance, especially when the feasible region is very
small. This is the case for example in problem C1-DTLZ1 [10], which also con-
tains many locally Pareto optimal solutions. If the surrogate is trained with
infeasible solutions, the approximated values from it may be far from the feasi-
ble region. Therefore, it is appropriate to find feasible solutions first and then
use the surrogate for approximating objective functions.

Using Some Infeasible Solutions. In cK-RVEA2, we use some infeasible
solutions close to the feasible region in addition to the feasible ones to train the
surrogates. The main advantage of this is that when infeasible solutions are also
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used for training, the surrogates may be able to approximate a more diverse area
without too much reduction in their performance. However, how close and how
many infeasible solutions should be used are two important challenges.

For both cases mentioned above i.e. cK-RVEA1 and cK-RVEA2, a single
objective genetic algorithm with niche based selection [11] is used for consider-
ing constraint violation as the objective function to obtain a fixed number of
solutions in the feasible region. The termination criterion in this algorithm is to
obtain adequate number of feasible solutions. A niche based selection ensures
that a diverse set of feasible individuals in the decision space is obtained to train
the surrogates. However, the diversity in the decision space does not guarantee
diversity in the objective space and needs further attention.

Adding Penalty to Infeasible Solutions. In cK-RVEA3, we train surrogates
with individuals generated randomly or e.g. with a Latin hypercube sampling
and add a penalty to infeasible solutions. The main challenge in penalty based
methods is to use an appropriate penalty parameter and we adopt here three
methods from the study in [12]. In the first method, denoted by cK-RVEA3-I, a
static penalty is added to each objective function value of fi i.e.

fi(x) = fi(x) + R
m∑

j=1

|gj(x)|, (1)

where R is the penalty parameter and | | denotes the absolute value of the con-
straint gj . Note, however, that, we use | | to represent the number of individuals
in a set hereafter (except in (3)).

In the second method of using a penalty parameter denoted by cK-RVEA3-
II, we adapt it with the number of feasible solutions obtained. After a certain
number of function evaluations e.g. FE ≥ FEth, the penalty parameter R is
decreased if the number of feasible solutions has increased from the previous
generation and vice versa i.e.

R =

⎧
⎨

⎩

R

c1
if FE ≥ FEth Δ|Pf | > 0

Rc2 if FE ≥ FEth Δ|Pf | < 0
(2)

where c1 and c2 are predefined parameters and Δ|Pf | denotes the change in the
number of feasible solutions.

In the third method, cK-RVEA3-III, we use the method of parameter free
penalty, where

fi(x) =
{

fi(x) if gj(x) ≥ 0, j = 1, . . . ,m
fmax
i +

∑m
j=1 |gj(x)| otherwise (3)

where fmax
i is the maximum value of fi at the current generation. The main

advantage of using this method is that no parameter is included and infeasible
solutions are always penalized.
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3 Numerical Experiments

In this section, results of experiments on the constrained versions of DTLZ prob-
lems [10] are presented. As mentioned, we consider three different approaches and
compare them with each other and also with the constrained variant of RVEA
[8]. Parameter values for niching are the same as used in [11] and values of para-
meters involved in K-RVEA are as follows: (a) number of individuals to train
the surrogate in initialization phase = number of reference vectors, NI = 50,
(b) number of independent runs = 10, (c) maximum number of function eval-
uations = 300 and (d) number of generations before updating Kriging models,
wmax = 20. In addition, we introduced the following parameters in cK-RVEA:
(a) number of feasible solutions in cK-RVEA2 = 40, (b) static penalty used in
cK-RVEA3-I, R=10000, (c) parameters used in cK-RVEA3-II (from [12]), c1 = 3,
c2 = 4 and initial value of penalty parameter, R = 1.

The number of decision variables was set to 10 for all problems and the
number of constraints varied from one to ten. Inverted generational distance
(IGD) was used as the performance measure and a Wilcoxon rank sum test
analysis with a significance level of 5% was adopted to compare the results.
Results for cK-RVEA1, cK-RVEA2, cK-RVEA3-I and cRVEA for different num-
bers of objectives (denoted by k) are reported in Table 1, where ↑ represents that
cK-RVEA1 performed better than the other, ↓ means that it performed worse,
while ≈ means that statistically there is no significant difference between the
two algorithms.

Table 1. Results for IGD values obtained by cK-RVEA1, cK-RVEA2, cK-RVEA3-I
and cRVEA. The best results are highlighted

Prob. k cK-RVEA1 cK-RVEA2 cK-RVEA3-I cRVEA

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

C1-DTLZ1 3 0.098 0.154 0.166 ≈ 0.147 0.159 0.168 ↑ No feasible solution ↑ No feasible solution

6 0.148 0.176 0.199 ≈ 0.107 0.174 0.219 ↑ No feasible solution ↑ No feasible solution

8 0.258 0.269 0.281 ↓ 0.217 0.248 0.270 ↑ No feasible solution ↑ No feasible solution

10 0.197 0.205 0.236 ≈ 0.166 0.212 0.252 ↑ 0.309 0.359 0.420 ↑ 0.194 0.228 0.311

C2-DTLZ2 3 0.155 0.213 0.271 ≈ 0.189 0.215 0.283 ↑ 0.433 0.592 0.752 ↑ 0.205 0.260 0.291

6 0.373 0.388 0.407 ≈ 0.349 0.406 0.443 ↑ 0.599 0.737 0.965 ↑ 0.389 0.435 0.530

8 0.387 0.479 0.598 ≈ 0.424 0.542 0.755 ↑ 0.533 0.782 0.974 ↑ 0.522 0.601 0.703

10 0.527 0.623 0.729 ↑ 0.571 0.727 0.878 ↑ 0.624 0.783 0.956 ↑ 0.571 0.615 0.673

C3-DTLZ4 3 0.163 0.198 0.256 ≈ 0.160 0.187 0.216 ↑ 0.183 0.249 0.386 ≈ 0.199 0.220 0.236

6 0.467 0.500 0.534 ≈ 0.489 0.527 0.602 ↑ 0.537 0.587 0.646 ↑ 0.574 0.595 0.649

8 0.629 0.674 0.713 ≈ 0.602 0.682 0.808 ↑ 0.713 0.801 0.856 ↑ 0.739 0.798 1.008

10 0.779 0.860 0.903 ↓ 0.781 0.824 0.897 ↑ 0.891 0.991 1.299 ≈ 0.799 0.836 0.916

As can be seen, in C1-DTLZ1, cK-RVEA3-I and cRVEA were not able to
find any feasible solutions in 300 function evaluations. The feasible region in C1-
DTLZ1 is very small, therefore, using directly a surrogate or adding a penalty
without finding feasible solutions was not useful for the surrogates as solu-
tions are far from the feasible region. Therefore, it is important to find suffi-
ciently many feasible solutions and then use surrogates. Both cK-RVEA1 and
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Fig. 2. Nondominated solutions obtained by cK-RVEA1, cK-RVEA2, cK-RVEA3-I and
cRVEA denoted by circles of the run with the best IGD value for three-objective C2-
DTLZ2 test problem. Here ∗’s represent the Pareto front.

cK-RVEA2 found feasible solutions using the single objective genetic algorithm
with constraint violation as the objective function.

We also performed a sensitivity analysis for the parameters of cK-RVEA2
i.e. the number of infeasible solutions and how close to the feasible region they
should be. As mentioned in the parameter settings, the number of solutions was
50 to train the surrogates. In this sensitivity analysis, we used 10, 20 and 30
infeasible solutions out of 50 and rest of them were feasible. For each case, we
changed the distance of solutions from the feasible region. To do that, we used
the normalized constraint violation of 0.5, 0.25, 0.1 and 0.001. Therefore, all
together 12 studies were performed to analyze the number of infeasible solutions
and their distance to the feasible region. Out of all these limited studies, the
case with 10 infeasible solutions and the normalized constraint violation of 0.1
performed best and results from this case are shown in Table 1. However, self-
adapting both the parameters is a future research topic.

Nondominated solutions of C2-DTLZ2 with three objectives of the run with
the best IGD value from cK-RVEA1, cK-RVEA2, cK-RVEA3-I and cRVEA are
shown in Fig. 2. As can be seen, cK-RVEA1 and cK-RVEA2 performed compa-
rably and solutions from both variants got close to the Pareto front. In contrast,
solutions of cK-RVEA3-I, where a penalty is added to infeasible solutions did
not converge to the Pareto front. However, when infeasible solutions were used in
addition to feasible ones in cK-RVEA2, they got closer to the Pareto front. Paral-
lel coordinate plots of C3-DTLZ4 with 10 objectives of the run with the best IGD
values are shown in Fig. 3. As can be seen, solutions from both cK-RVEA1 and
cK-RVEA2 had large ranges in some of the objective values compared to other
algorithms. Furthermore, as can be seen from the table, in most of the cases, the
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Table 2. Results for IGD values obtained by cK-RVEA3-I, cK-RVEA3-II and cK-
RVEA3-III. The best results are highlighted

Problem k cK-RVEA3-I cK-RVEA3-II cK-RVEA3-III

Min Mean Max Min Mean Max Min Mean Max

C1-DTLZ1 10 0.309 0.359 0.420 ≈ 0.257 0.313 0.336 ≈ 0.284 0.362 0.497

3 0.433 0.592 0.752 ↓ 0.206 0.332 0.461 ≈ 0.318 0.637 0.961

C2-DTLZ2 6 0.599 0.737 0.965 ↓ 0.528 0.636 0.913 ≈ 0.570 0.850 1.036

8 0.533 0.782 0.974 ≈ 0.579 0.682 0.787 ≈ 0.620 0.888 1.038

10 0.624 0.783 0.956 ≈ 0.575 0.704 0.867 ↑ 0.632 0.903 0.998

3 0.183 0.249 0.386 ↓ 0.180 0.200 0.222 ≈ 0.195 0.251 0.293

C3-DTLZ4 6 0.537 0.587 0.646 ≈ 0.554 0.599 0.723 ↑ 0.586 0.673 0.730

8 0.713 0.801 0.856 ≈ 0.731 0.837 1.006 ↑ 0.772 0.938 1.052

10 0.891 0.991 1.299 ≈ 0.836 0.967 1.126 ↑ 1.013 1.169 1.363
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Fig. 3. Parallel coordinate plot of nondominated solutions obtained by cK-RVEA1, cK-
RVEA2, cK-RVEA3-I and cRVEA of the run with the best IGD value on 10-objective
C3-DTLZ4 test problem.

constrained variant of RVEA (i.e. without surrogates) performed worse than the
others.

When comparing penalty based methods as detailed in Sect. 2, results are
given in Table 2. As can be seen, the adaptive penalty method in most of the
cases performed equivalently or better than the static penalty method. In any
case, the method of the parameter free penalty was not able to outperform
other methods. All these results show the influence of infeasible solutions on the
performance of the surrogates. These results indicate that an adaptive way of
handling infeasible solutions seems to be needed although more testing needs to
be done on other benchmark problems.
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4 Conclusions and Future Research

In this paper, we investigated the influence of different constraint handling
strategies for collecting training data on the performance of surrogates. These
strategies were investigated on the constrained DTLZ problems using K-RVEA.
Results from the study show that handling infeasible solutions in selecting train-
ing data is very important. Using only feasible solutions i.e. cK-RVEA1 in most
cases performed better than others because individuals approximated by the
surrogates lie in the feasible region. However, it depends on the problem used as
infeasible solutions may be helpful to increase the performance of the surrogates.
Moreover, a hybrid approach to combine the different approaches e.g. how many
and how close should be infeasible solutions to the feasible region, how to adapt
the penalty parameter etc. can be beneficial. In addition, as few constrained
many-objective optimization problems exist in the literature, developing and
testing on new problems will also be our future work.
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