
Artificially Inducing Environmental Changes
in Evolutionary Dynamic Optimization

Renato Tinós1 and Shengxiang Yang2(B)

1 Department of Computing and Mathematics, FFCLRP, University of São Paulo,
Ribeirão Preto, São Paulo 14040-901, Brazil

rtinos@ffclrp.usp.br
2 Centre for Computational Intelligence (CCI), School of Computer Science

and Informatics, De Montfort University, Leicester LE1 9BH, UK
syang@dmu.ac.uk

Abstract. Biological and artificial evolution can be speeded up by
environmental changes. From the evolutionary computation perspective,
environmental changes during the optimization process generate dynamic
optimization problems (DOPs). However, only DOPs caused by intrinsic
changes have been investigated in the area of evolutionary dynamic opti-
mization (EDO). This paper is devoted to investigate artificially induced
DOPs. A framework to generate artificially induced DOPs from any
pseudo-Boolean problem is proposed. We use this framework to induce
six different types of changes in a 0–1 knapsack problem and test which
one results in higher speed up. Two strategies based on immigrants,
which are used in EDO, are adapted to the artificially induced DOPs
investigated here. Some types of changes did not result in better per-
formance, while some types led to higher speed up. The algorithm with
memory based immigrants presented very good performance.

1 Introduction

In a recent work [11], Steinberg and Ostermeir investigated the hypothesis that
environmental changes can help molecular evolution to cross fitness valleys. They
experimentally tested four strategies for inducing environmental changes in the
evolution of an antibiotic resistance gene (TEM-15 β-lactamase). One particular
strategy, where low antibiotic resistance individuals are selected in the initial
steps, produced very interesting results. When the evolutionary pathways were
analysed, it was observed that an initially deleterious mutation allowed to access
a promising part of the sequence space. This part of the sequence space was very
difficult to be reached when environmental changes had not occurred.

The idea that biological and artificial evolution can be speeded up by envi-
ronmental changes is not new [6,9,12]. Kashtan et al. [6] compared two strate-
gies for inducing environmental changes in the in silico evolution of five mod-
els: (i) logic circuits; (ii) feed-forward logic circuits; (iii) feed-forward artificial
neural networks; (iv) feed-forward circuits; (v) RNA structure. The two strate-
gies were modularly varying goals and randomly varying goals. Greater speed
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 225–236, 2016.
DOI: 10.1007/978-3-319-45823-6 21



226 R. Tinós and S. Yang

up was obtained for the first strategy, where subgoals are inserted or removed
during the optimization process. Populations can spend long periods around
metastable states. Environmental changes modify the fitness landscape and evo-
lution dynamics [13], allowing populations to eventually escape from local optima
and plateaus [6]1.

In the evolutionary computation (EC) perspective, the occurrence of envi-
ronmental changes during artificial evolution generates dynamic optimization
problems (DOPs). In recent years, there is an increasing interest in evolutionary
dynamic optimization (EDO) [2,8]. However, to the best of the authors’ knowl-
edge, the works published in this area deal with DOPs where environmental
changes are intrinsic. In other words, artificially induced DOPs are not consid-
ered. Here, we investigate artificially induced DOPs in a perspective of EDO. In
[6], strategies for inducing environmental changes in specific DOPs were inves-
tigated. We propose a general framework to artificially induce environmental
changes in any pseudo-Boolean optimization problem2. The proposed frame-
work is based on the DOP benchmark generator introduced in [14], which will
be presented in Sect. 2. The proposed framework will be presented in Sect. 3.

In the experiments used to test the proposed framework, environmental
changes are artificially induced in the 0–1 knapsack problem in order to eventu-
ally speed up evolution. The experimental results are presented in Sect. 4. It is
important to highlight that testing whether environmental changes can speed up
evolution is only one of the possible motivations to artificially induced changes
in EC. For example, we can artificially induce environmental changes in order
to increase the robustness of the solutions [3]. Also, we can control when envi-
ronmental changes can be inserted in some applications, e.g., those involving
cooperation and competition [10]

From a programmer point of view, there are two main differences between
artificially induced and intrinsic DOPs. In artificially induced DOPs, the pro-
grammer should decide when and how to change the problem, which is impossi-
ble in intrinsic DOPs. To this aim, one needs to answer two questions: (i) When
should the changes be inserted? (ii) How the fitness landscape should be modi-
fied? We strongly believe that trying to answer these two questions opens new
research possibilities in EDO. Researchers can investigate the best way to change
the fitness landscapes from a theoretical point of view.

From a practical point of view, knowing beforehand when the changes occur,
new algorithms and operators can be designed. For example, hypermutation
re-introduces diversity by increasing the mutation rate after a change. Knowing
when a change will occur allows to apply hypermutation some generations before
the change. The development of new algorithms and operators is also important

1 The idea of changing the static fitness landscape in order to make the optimiza-
tion process easier is also present in other approaches. For example, in multi-
objectivization, a single-objective problem is transformed into a multi-objective
problem [7]. Another example is adding noise to the fitness function [5].

2 In a pseudo-Boolean optimization problem P , the fitness function is fP (x) ∈ R,
where x ∈ B

l is a candidate solution vector with dimension l.



Artificially Inducing Environmental Changes in EDO 227

because the goal in intrinsic and artificially induced DOPs can be different.
In intrinsic DOPs, the goal is to track the moving optima, while in artificially
induced DOPs we can be interested in finding the optima only for the static
problem. Here, we test two very simple strategies to deal with artificially induced
DOPs in Sect. 3.

2 DOP Benchmark Generator

Based on the analysis of fitness landscape changes in someDOPs, a benchmark gen-
erator for dynamic pseudo-Boolean optimization problems was proposed in [14].
The generator allows to create DOPs from any pseudo-Boolean optimization prob-
lem P with (static) fitness function fP (x), where x ∈ B

l. A DOP is considered as a
sequence of static landscapes (environments) modified by changes [8]. In the DOPs
created by the generator, the fitness function is given by:

f(x, e) = fP
(
g(x, e)

)
+ Δf

(
g(x, e), e

)
, (1)

where e is the index of environment, i.e., it indicates a static fitness landscape
between two consecutive changes [13]. Instead of computing the static fitness
fP (.) at position x, it is computed at position g(x, e). Besides, a deviation
Δf

(
g(x, e), e

)
is added to fP (.). The generator allows to create 6 different types

of DOPs based on the choice of g(x, e) and Δf
(
g(x, e), e

)
, as described below.

2.1 DOP Type 1: DOP with Permutation

In this case, Δf
(
g(x, e), e

)
= 0 and g(x, e) is given by a permutation of x. In

the generator, 3 different ways to permute x are employed.

DOP Type 1.1 (Permutation of the XOR Type): The candidate x is
permuted according to: g(x, e) = x ⊕ m(e), where:

m(e) =
{
0l, for e = 1
m(e − 1) ⊕ r(e), for e > 1 (2)

where “⊕” is the XOR operator and r(e) is a binary template that is randomly
created in each environment e and contains �ρ · l� ones, where 0 ≤ ρ ≤ 1. The
change severity is controlled by ρ. DOP Type 1.1 produces the same type of
change as the XOR DOP generator [14].

DOP Type 1.2 (Permutation Defined by a Permutation Matrix): The
permutation is given by: g(x, e) = B(e)x, where the permutation matrix B(e)
is incrementally modified according to:

B(e) =
{
Il, for e = 1
C(e)B(e − 1), for e > 1 (3)



228 R. Tinós and S. Yang

where C(e) is a permutation matrix obtained by randomly exchanging �ρ · l�
lines of the l-dimensional identity matrix Il. In fact, the use of matrices would
imply in a computational cost O(l2). This cost can be reduced to O(l) by using
an integer vector to record the positions of the permuted variables of x. Similar
strategies are adopted for other DOP types.

DOP Type 1.3 (Permutation According to a Set of Templates): The
permutation is defined by:

g(x, e) =
{
x ⊕ mj(e), if x ∈ sj(e), j = 1, . . . , ns

x, otherwise (4)

where sj(e) is a template defining a hyperplane in B
l and ns is the number of

templates. The templates, or schemata in the genetic algorithms terminology,
are composed of digits 0, 1 and * (do not care) and can be associated with
subsets of solutions. Each template sj(e) is given by:

sj(e) =

⎧
⎨

⎩

0l, for e = 1
rj , for e = 2
D(e)sj(e − 1), for e > 2

(5)

where rj is a random template with order equal to os, and D(e) is a permutation
matrix obtained by randomly exchanging os lines of the l-dimensional identity
matrix. The template mj(e) ∈ sj(e) contains l−os

2 ones generated in random
non-fixed positions of sj(e). The order of the template sj(e) is equal to os for
e > 1. The following combinations (os, ns) ∈ {(3, 1), (2, 1), (1, 1), (1, 2), (1, 3)},
corresponding to ρ ∈ {0.125, 0.25, 0.5, 0.75, 0.875}, are used.

2.2 DOP Type 2: Copying Decision Variables

Here, Δf
(
g(x, e), e

)
= 0 and g(x, e) is a transformation that produces decision

variables that are copies of other decision variables. Two ways of copying the
variables are considered: one where the variables in x are copied from other vari-
ables in x and another where the variables are copied from those in a template.

DOP Type 2.1 (Copying Decision Variables Using a Linear Transfor-
mation): The candidate solutions are linearly transformed by: g(x, e) = L(e)x,
where L(e) is a binary matrix generated according to:

L(e) =
{
Il, for e = 1
Q(e), for e > 1 (6)

where Q(e) is a matrix obtained by randomly copying �ρ · l
2� lines of the

l-dimensional identity matrix into other lines.



Artificially Inducing Environmental Changes in EDO 229

DOP Type 2.2 (Copying Decision Variables from a Template): The
transformation is given by:

g(x, e) =
{
m(e), if x ∈ s(e)
x, if x /∈ s(e) (7)

where s(e) is a template given by:

s(e) =
{
0l, for e = 1
θ(e), for e > 1 (8)

The order of the random template θ(e) is l − �ρ · l
2�. The binary template

m(e) ∈ s(e) is randomly generated at each environment e.

2.3 DOP Type 3: Adding Fitness Deviation by a Set of Templates

In this DOP type, x is not transformed, i.e., g(x, e) = x. The fitness deviation
Δf

(
g(x, e), e

)
= Δf(x, e) is given by:

Δf(x, e) =
ns∑

j=1

a(x, sj(e), e), (9)

where ns is the number of templates. The order of each template sj(e) is os.
The parameters os and ns are defined in the same way as in DOP Type 1.3. In
Eq. (9), a

(
x, sj(e), e

)
is given by:

a
(
x, sj(e), e

)
=

{
Δfj(e), x ∈ sj(e)
0, x /∈ sj(e)

(10)

where Δfj(e) is the fitness deviation for sj(e). Here, Δfj(e) is randomly gener-
ated from a uniform distribution in the range [−ρfrange, ρfrange] in each envi-
ronment e. The value of frange is given by the difference between the best and
mean fitness in the initial population (or, if this difference is too small, by the
best fitness in the initial population).

3 Framework for Inducing Environmental Changes

Here, changes are artificially induced in order to test whether they can speed up
evolution. Changes are inserted according to one of the 6 DOP types described
in Sect. 2; we want to test which one produces the best results for speeding up
evolution of a genetic algorithm applied to the 0–1 knapsack problem. In fact,
a little modification is introduced in DOP types 1.3, 2.2, and 3, as described in
Sect. 3.2. The framework for inducing environmental changes in EDO is described
in Sect. 3.1. Variants of the standard genetic algorithm used in EDO are also
tested (Sect. 3.3).



230 R. Tinós and S. Yang

3.1 Framework

As the objective is to speed up evolution for problem P , we propose a framework
where the static environment for problem P is modified every τ iterations of the
algorithm (generations). The DOP is seen as a sequence of environments, where
the type of each environment is indicated by d(e). While d(e) = 0 indicates that
f(x, e) = fP (x) (i.e., the e-th environment is equal to the static environment for
problem P ), d(e) = c �= 0 indicates an environment produced by DOP type c,
where c ∈ {1.1, 1.2, 1.3, 2.1, 2.2, 3}. When e is odd, i.e., mod(e, 2) = 1, the e-th
environment is equal to the static environment for problem P , i.e., d(e) = 0.
When e is even, i.e., mod(e, 2) = 0, two strategies are compared: (i) Static,
where d(e) = 0; (ii) Dynamic, where d(e) = c and c identifies the DOP Type for
environments where mod(e, 2) = 0. Experiments with each one of the six DOP
types will be presented in Sect. 4.

3.2 DOP Types

Some properties of the DOP types produced by the generator are described [14]:

– Neighbourhood relations: the transformation of the fitness landscapes for DOP
Types 1.1 and 1.2 preserves the neighbourhood relations in the search space. In
other words, instead of transforming the fitness landscape, we could move the
population according to the respective transformation only one time after the
change and compute f(x, e) = fP (x) during τ generations. The neighbourhood
relations are not preserved for the other DOP types.

– All solutions of the search space are changed for DOP Type 1.1. For DOP
Types 1.3. and 3, the fractions of the search space affected by a change are
equal to ρ ∈ {0.125, 0.25, 0.5, 0.75, 0.875}. For the remaining DOP types, the
number of solutions of the search space affected by a change varies from 2l−1

to 2l − 2 for ρ > 0.

A consequence of the last property is that the change can have no effect in
the dynamics of the population. For example, no effect will be observed when the
solutions in the population are not among those affected by the fitness landscape
modification. As we want to change the dynamics of the population here, we will
use the knowledge about the best current solution in order to change the fitness
landscape for DOP Types 1.3, 2.2 and 3. In this way, a small modification is
introduced. In the DOP generator presented in [14], the first template sj(e) for
DOP Types 1.3, 2.2 and 3 is randomly chosen with no restriction. Here, the
template is chosen assuring that xb(e − 1) ∈ sj(e), where xb(e − 1) is the best
solution found in the e-th environment. Thus, DOPs produced by changes of
types 1.3, 2.2 and 3 have the time-linkage property, i.e., knowing the current
best solution influences the future dynamics of the problem [8].



Artificially Inducing Environmental Changes in EDO 231

3.3 Algorithms

The influence of artificially inducing changes in the 0–1 knapsack problem opti-
mized by a standard genetic algorithm (GA) is investigated here. We also test
variants of approaches used in EDO that replaces part of the population by
immigrants. Two types of immigrants are tested:

– Random immigrants (RIs) [1]: when this strategy is used, 20% of the popula-
tion is replaced by randomly generated individuals.

– Memory immigrants (MIs) [15]: when this strategy is used, 10% of the popu-
lation is replaced by individuals stored in a memory population.

Instead of inserting immigrants in every generation, they are inserted only
after a change. Also, as we want to optimize problem P , the memory is formed
by the best individuals found in environments with d(e) = 0. As all the indi-
viduals in the memory were generated in environments with the same fitness
landscape, it is not necessary to re-evaluate them when they are re-introduced
in the population. The MIs are re-introduced in environments where d(e) = 0.
The maximum size of the memory population is equal to the size of the GA
population (popsize). When the maximum size is reached, a random individual
of the memory population is replaced by the new individual, with exception for
the best individual in the memory population. One can observe that we are using
the knowledge about the changes in the problem in order to design the memory
immigrants approach.

4 Experiments

4.1 Experimental Design

The fitness function for the 0–1 knapsack problem [4] is given by:

fP (x) =
l∑

i=1

pixi − R(x) (11)

where x ∈ B
l defines the subset of items in the knapsack and pi is the profit of

the i-th item. The penalty R(x) is equal to zero if the sum of the weights in the
knapsack is less than the knapsack capacity C. Otherwise, the penalty is:

R(x) = α

(
l∑

i=1

wixi − C

)

(12)

where wi is the weight of the i-th item and α = maxi=1,...,l(pi/wi). The prof-
its and weights are integers randomly generated in the beginning of each run.



232 R. Tinós and S. Yang

The profits are in the range [40, 100], while the weights are in the range [5, 20].
The capacity C is equal to 50% of the sum of all weights. The objective is to
maximize the fitness given by Eq. (11).

For all algorithms, the population size (popsize) is 100. Tournament selection,
elitism, bit flip mutation, and uniform crossover are employed. The mutation rate
is 1/l, while the crossover rate is 0.6. In tournament selection, the best among 3
individuals randomly chosen is selected. Results for 4 algorithms, where RIs and
MIs are inserted or not, are tested. The 2 strategies described in Sect. 3.1 are
tested. For the dynamic strategy, results for runs with each one of the 6 DOP
types are presented. The results of 50 runs for each combination of algorithm,
dimension (l), change severity (ρ), and DOP strategy are presented. In the runs,
the change period (τ) is equal to 500 generations. Each algorithm is run for l
seconds. As the execution time is fixed and the number of evaluations for the
algorithms can be different, the number of generations can also be different.

The best fitness obtained in each run is compared to the evaluation of the
global optimum obtained by dynamic programming. The complexity of dynamic
programming for the 0–1 knapsack problem is O(lC), i.e., if C is polynomial, the
algorithm runs in polynomial time. However, for the general case, the problem is
NP-complete. In the experiments presented in the next section, the best fitness
is stored only for the environments where d(e) = 0. In this way, the best from
all generations are considered for the static strategy. However, for the dynamic
strategy, only the results for environments where the index is odd are recorded.

4.2 Experimental Results

Table 1 shows the average error for the experiments. The average error is
obtained by comparing, for each run, the static fitness of the global optimum
with the static fitness of the best solution found by the algorithm. In order
to test whether the best results are due to the use of immigrants (instead of
due to changing the environment), results for runs of the static case with RIs
and MIs are also presented. The results for the dynamic (with different DOP
types) strategy are compared to the respective results for the static strategy.
The Wilcoxon signed-rank test with the confidence level equal to 0.95 is used to
test the statistical significance of the results.

Changing the environments resulted in better performance for some DOP
types, but not for all. The worse results were obtained for DOP Types 1.1 and
1.2. As commented in Sect. 3.2, neighbourhood relations in the search space are
preserved for changes in DOP Types 1.1 and 1.2. The changes produce the same
effect that uniformly moving the solutions to other regions of the search space.
Uniformly moving the individuals of the algorithm to new regions of the search
space did not result in a better performance in the experiments.

The best results were obtained by DOP Type 2.2, followed by DOP Type 3.
It is interesting to observe that, even directly optimizing fP (.) in approximately



Artificially Inducing Environmental Changes in EDO 233

Table 1. Average error (over 50 runs) for static and dynamic environments. The
symbol s indicates that the results are statistically different according to the Wilcoxon
signed-rank test. Bold face indicates that the results for the changing environments are
statistically better than the respective results for the static environment. Italic face
indicates the best result for each dimension.

RI MI ρ DOP type

Static 1.1 1.2 1.3 2.1 2.2 3

l= 200

No No 0.125 0.8± 1.4 0.7± 1.1 0.7± 1.3 0.1 ± 0.4 (s) 0.2 ± 0.4 (s) 0.1 ± 0.2 (s) 0.1 ± 0.4 (s)

0.500 2.3± 1.8 (s) 1.5± 1.6 (s) 0.2 ± 0.5 (s) 0.8± 1.1 0.1 ± 0.3 (s) 0.2 ± 0.5 (s)

0.875 3.1± 2.2 (s) 1.9± 2.4 (s) 0.5± 1.1 1.3± 1.4 0.1 ± 0.4 (s) 0.2 ± 0.5 (s)

No Yes 0.125 0.7± 1.1 1.4± 1.7 (s) 1.5± 2.0 (s) 0.3 ± 0.5 (s) 0.9± 1.2 0.2 ± 0.6 (s) 0.6± 1.1

0.500 1.6± 1.7 (s) 1.6± 1.9 (s) 0.5± 0.9 1.5± 1.8 (s) 0.3 ± 0.5 (s) 0.7± 1.2

0.875 1.4± 1.9 (s) 1.5± 2.0 (s) 0.7± 1.4 1.1± 1.5 (s) 0.1 ± 0.5 (s) 0.8± 1.2

Yes No 0.125 1.1± 1.7 0.7± 1.4 0.9± 1.2 0.2 ± 0.6 (s) 0.4 ± 0.7 (s) 0.0± 0.2 (s) 0.2 ± 0.5 (s)

0.500 1.9± 1.9 (s) 2.0± 2.5 0.2 ± 0.5 (s) 0.8± 1.1 0.1 ± 0.4 (s) 0.2 ± 0.5 (s)

0.875 2.2± 1.9 (s) 1.6± 2.0 0.4 ± 0.7 (s) 1.2± 1.5 0.0± 0.2 (s) 0.1 ± 0.4 (s)

Yes Yes 0.125 0.7± 1.2 1.2± 1.5 1.4± 1.9 (s) 0.3 ± 0.5 (s) 0.9± 1.4 0.1 ± 0.4 (s) 0.7± 1.3

0.500 1.4± 1.7 (s) 1.8± 1.9 (s) 0.5± 1.0 1.2± 1.8 0.2 ± 0.6 (s) 0.7± 1.3

0.875 1.2± 1.6 (s) 1.0± 1.5 0.7± 1.1 1.5± 1.8 (s) 0.1 ± 0.3 (s) 0.6± 1.0

l= 500

No No 0.125 4.4± 2.8 61.6± 9.6 (s) 60.8± 10.0 (s) 13.0± 3.5 (s) 27.8± 5.0 (s) 4.5± 2.0 7.1± 2.8 (s)

0.500 80.7± 15.5 (s) 72.0± 18.6 (s) 9.1± 3.1 (s) 31.4± 7.4 (s) 4.5± 1.5 4.6± 1.7

0.875 124.0± 15.5 (s) 65.9± 11.7 (s) 16.2± 5.6 (s) 75.1± 10.0 (s) 7.1± 2.4 (s) 6.8± 2.2 (s)

No Yes 0.125 6.3± 3.4 4.9 ± 2.3 (s) 5.7± 3.0 5.7± 2.7 4.9 ± 2.6 (s) 2.9 ± 1.9 (s) 5.6± 3.1

0.500 5.3± 2.8 8.2± 3.1 (s) 4.1 ± 2.7 (s) 5.4± 3.5 2.0 ± 1.6 (s) 3.6 ± 2.3 (s)

0.875 7.7± 3.2 (s) 7.3± 3.5 4.7 ± 2.7 (s) 7.1± 3.9 2.0 ± 1.6 (s) 4.2 ± 2.3 (s)

Yes No 0.125 5.2± 2.4 31.6± 7.4 (s) 76.1± 11.2 (s) 16.5± 4.3 (s) 29.5± 4.8 (s) 7.1± 2.0 (s) 4.3 ± 2.2 (s)

0.500 75.3± 14.8 (s) 63.6± 13.3 (s) 19.8± 4.3 (s) 62.2± 9.4 (s) 3.9 ± 1.6 (s) 4.7± 2.1

0.875 74.2± 16.5 (s) 71.6± 11.7 (s) 28.7± 6.9 (s) 83.6± 10.6 (s) 8.0± 2.6 (s) 6.9± 3.3 (s)

Yes Yes 0.125 5.0± 2.6 5.5± 3.0 6.0± 3.3 3.8 ± 2.2 (s) 7.6± 4.6 (s) 2.7 ± 1.9 (s) 5.7± 2.6

0.500 5.7± 3.4 4.8± 2.7 4.4± 2.5 7.5± 3.4 (s) 3.2 ± 2.1 (s) 6.2± 3.1 (s)

0.875 5.7± ± 3.4 5.5± 2.8 4.7± 3.2 7.6± 4.1 (s) 1.8± 1.6 (s) 6.6± 3.3 (s)

half of the generations, the algorithms eventually obtained better results for the
changing environments. With few exceptions, the dynamic strategy with DOP
Type 2.2 resulted in better performance than the static strategy. Table 2 shows
the percentage of successful runs, i.e., where the global optimum was found. For
l = 200, the best result for the static case is 68%, while the global optimum was
found in 96% of the runs of the algorithm with RIs for the dynamic strategy
with DOP Type 2.2. The best results for the changing environments generally
were obtained when the immigrants strategies were employed. However, immi-
grants generally did not result in better performance for the static environment.
In particular, the best results for the changing environments for the experiments
with l = 500 were obtained when MIs were inserted.



234 R. Tinós and S. Yang

Table 2. Percentage of runs where the global optimum was found. Bold face indicates
that the result for the dynamic environment is better than the respective result for the
static environment. Italic face indicates the best result for each dimension.

RI MI ρ DOP Type (l = 200) DOP Type (l = 500)

Static 1.1 1.2 1.3 2.1 2.2 3 Static 1.1 1.2 1.3 2.1 2.2 3

No No 0.125 62 62 62 88 84 94 92 4 0 0 0 0 2 0

0.500 22 38 88 54 94 82 0 0 0 0 2 2

0.875 16 40 70 40 92 86 0 0 0 0 0 0

No Yes 0.125 64 46 50 78 54 84 68 2 2 2 2 2 16 0

0.500 36 38 62 44 76 62 0 0 8 4 22 6

0.875 44 48 68 52 90 56 0 2 2 0 24 2

Yes No 0.125 56 62 54 82 76 96 84 0 0 0 0 0 0 2

0.500 32 34 80 56 88 84 0 0 0 0 2 0

0.875 24 42 74 42 96 88 0 0 0 0 0 0

Yes Yes 0.125 68 44 48 76 58 90 62 0 2 0 8 2 14 0

0.500 42 40 72 54 86 66 2 4 2 0 6 0

0.875 44 54 58 46 92 66 2 0 4 0 26 0

5 Conclusions

We investigated artificially induced DOPs in this paper. Environmental changes
can be artificially induced for different reasons, e.g., for speeding up evolution.
A framework for generating artificially induced DOPs from any pseudo-Boolean
problem was presented. Six different types of changes can be induced in the
framework proposed here. The experiments with DOPs generated based on the
0–1 knapsack problem showed that better performance was obtained only for
some change types and change severities.

Particularly, changes generated in DOP Type 2.2 resulted in better perfor-
mance. For static environments, the best percentages of successful runs were:
68% (l = 200) and 4% (l = 500). For DOP Type 2.2, the best percentages of
successful runs were: 96% (l = 200) and 26% (l = 500). Results not shown here
for experiments with l = 300 and l = 400 also indicate better performance for the
dynamic strategy3. The best results were obtained when random and memory
immigrants were employed. The memory immigrants approach employed here
makes use of the knowledge about the sequence of changes in the problem. This
is an example of designing strategies to deal with artificially induced DOPs. The
knowledge about the changes and their impact are usually not known in intrin-
sic DOPs. In artificially induced DOPs, the designer controls when and how to
change the environments.

3 The best percentages of successful runs for DOP Type 2.2 were 66% (l = 300) and
42% (l = 400), against 28% (l = 300) and 18% (l = 400) for the static environments.



Artificially Inducing Environmental Changes in EDO 235

Several future works are possible. Concerning the framework proposed here,
it is necessary to better understand the impact of the different change types in
different problems and state-of-art algorithms developed for static and dynamic
optimization. In artificially induced DOPs, it is necessary to theoretically investi-
gate how and when to change the environment according to the objectives of the
programmer. Also, it is necessary to investigate new algorithms and operators
that make use of the knowledge about the changes.

Acknowledgments. This work was funded partially by FAPESP under grant
2015/06462-1 and CNPq in Brazil, and partially by the Engineering and Physical Sci-
ences Research Council (EPSRC) of U.K. under grant EP/K001310/1.

References

1. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environ-
ments. In: Proceedings of 5th International Conference on Genetic Algorithms, pp.
523–530 (1993)

2. Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)

3. Fu, H., Sendhoff, B., Tang, K., Yao, X.: Robust optimization over time: problem
difficulties and benchmark problems. IEEE Trans. Evol. Comp. 19(5), 731–745
(2015)

4. Han, K.H., Kim, J.H.: Genetic quantum algorithm and its application to combina-
torial optimization problem. In: Proceedings of the 2000 Congress on Evolutionary
Computation, vol. 2, pp. 1354–1360 (2000)

5. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Comp. 9(3), 303–317 (2005)

6. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
Proc. Natl. Acad. Sci. 104(34), 13711–13716 (2007)

7. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 269.
Springer, Heidelberg (2001)

8. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comp. 6, 1–24 (2012)

9. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: how evolution learns from
past environments to generalize to new environments. PLOS Comput. Biol. 4(11),
e1000206 (2008)

10. Richter, H.: Coevolutionary intransitivity in games: a landscape analysis. In: Mora,
A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 869–881.
Springer, Heidelberg (2015)

11. Steinberg, B., Ostermeier, M.: Environmental changes bridge evolutionary valleys.
Sci. Adv. 2(1), e1500921 (2016)

12. Tan, L., Gore, J.: Slowly switching between environments facilitates reverse evolu-
tion in small populations. Evolution 66(10), 3144–3154 (2012)

13. Tinós, R., Yang, S.: Analyzing evolutionary algorithms for dynamic optimization
problems based on the dynamical systems approach. In: Yang, S., Yao, X. (eds.)
Evolutionary Computation for Dynamic Optimization Problems. SCI, vol. 490, pp.
241–267. Springer, Heidelberg (2013)



236 R. Tinós and S. Yang

14. Tinós, R., Yang, S.: Analysis of fitness landscape modifications in evolutionary
dynamic optimization. Inf. Sci. 282, 214–236 (2014)

15. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in
dynamic environments. Evol. Comput. 16(3), 385–416 (2008)


	Artificially Inducing Environmental Changes in Evolutionary Dynamic Optimization
	1 Introduction
	2 DOP Benchmark Generator
	2.1 DOP Type 1: DOP with Permutation
	2.2 DOP Type 2: Copying Decision Variables
	2.3 DOP Type 3: Adding Fitness Deviation by a Set of Templates

	3 Framework for Inducing Environmental Changes
	3.1 Framework
	3.2 DOP Types
	3.3 Algorithms

	4 Experiments
	4.1 Experimental Design
	4.2 Experimental Results

	5 Conclusions
	References


