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Abstract. In the presence of noise on the decision variables, it is often
desirable to find robust solutions, i.e., solutions with a good expected fit-
ness over the distribution of possible disturbances. Sampling is commonly
used to estimate the expected fitness of a solution; however, this option
can be computationally expensive. Researchers have therefore suggested
to take into account information from previously evaluated solutions. In
this paper, we assume that each solution is evaluated once, and that the
information about all previously evaluated solutions is stored in a mem-
ory that can be used to estimate a solution’s expected fitness. Then,
we propose a new approach that determines which solution should be
evaluated to best complement the information from the memory, and
assigns weights to estimate the expected fitness of a solution from the
memory. The proposed method is based on the Wasserstein distance, a
probability distance metric that measures the difference between a sam-
ple distribution and a desired target distribution. Finally, an empirical
comparison of our proposed method with other sampling methods from
the literature is presented to demonstrate the efficacy of our method.

1 Introduction

Many practical real-world problems involve uncertainty on decision variables.
For example, in engineering, the actual product often does not correspond to the
original design because of manufacturing tolerance. In such cases, the solutions
should not only be good, but also robust. If ξ ∈ Ξ are the possible disturbances to
the decision variables, then the solution’s expected fitness (which in the following,
due to consistency with previous publications, we call effective fitness) is

feff (x) =
∫

Ξ

f(x + ξ)dP (ξ) (1)

where P (ξ) is the probability distribution of disturbance ξ. The effective fitness
can be estimated by sampling as f̂eff (x) =

∑
n f(x+ ξn), ξn ∈ Ξ. However, this

is computationally expensive. Several researchers have thus attempted to speed
up the search for robust solutions, surveys on these topics can be found in [2,8].

A previous study [11] has suggested that, for evolutionary algorithms (EAs),
a single disturbed sample f(x+ξ) that is used to evaluate a solution may actually
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be sufficient. The same study has reported that, in the case of infinite popula-
tion size, an evolutionary algorithm with a single disturbed sample employed
to evaluate each individual behaves in an identical manner to an evolutionary
algorithm that operates directly on the effective fitness function. In the context
of evolution strategies, [1] propose a mechanism to adaptively increase the popu-
lation size over a run, along with a mechanism that adjusts mutation to account
for the noise on the decision variables. To improve the estimate of an individual’s
effective fitness, previous studies have proposed to compute for the average of
multiple samples, preferably based on Latin Hypercube Sampling [3,5].

EAs are population-based iterative search methods; hence, they usually con-
verge to a promising region of the search space and then evaluate many samples
in this area. Hence, at least towards the end of the optimisation run, when the
EA would like to evaluate a solution, information about many other solutions
in the neighbourhood is likely to be available if it is stored in a memory. This
information can be exploited when estimating the robustness of a solution. Two
questions arise:

1. How should the fitness values from the memory be weighted to yield a good
(i.e., accurate and unbiased) estimate of the effective fitness of an individual?

2. If new information in terms of additional fitness evaluations can be collected,
at what location(s) should this information be collected?

In [3], a new sample is taken at ξ = 0, and all the previous fitness values are
weighted with the probability that a disturbance might actually result in the cor-
responding decision vector. However, this may result in a rather biased estimate
if the distribution of memory samples is quite different from the distribution of
expected disturbances. [9] propose to generate several candidate disturbances ξn,
and then select the one that has the maximal minimum distance to any of the
existing memory samples. This aims to fill in gaps in the distribution of memory
samples; however, it is a rather simple heuristic and often results in extreme
solutions being evaluated that are close to the disturbance boundary. [10] uses
surrogate models to estimate the effective fitness.

In this paper, we propose a new method based on the Wasserstein distance
to address the above two questions mentioned above. The Wasserstein distance
measures the distance between two probability measures. The idea is to derive
a large-sample target distribution from the known probability distribution of
disturbances, and then collect new information and reallocate weight values such
that the Wasserstein distance between the used samples and the large-sample
target distribution is minimised.

The paper is structured as follows. Section 2 describes our proposed method
and the mathematical foundation. Section 3 reports on several empirical exper-
iments and a comparison with other methods from the literature. Finally, the
paper concludes with a summary and some ideas for future work.
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Algorithm 1. EA with ASA
Set t ← 1, initialise population P t.
while Termination criterion is not met do

Generate offspring population O from P t.
Generate N disturbance samples xt

n ∈ Ξt, n = 1, . . . , N
for each solution xm ∈ O, m = 1, . . . , λ do

Compute approximate target zn = xm + ξtn
Identify memory solutions in neighbourhood A(xm)
Construct N approximate set candidates Yn(xm) = A(xm) ∪ zt

n

Compute the Wasserstein distance value of each approximate set Yn(xm).
Select the best approximate set Y∗(xm) with the minimum distance value.
Compute the optimal weight values P (Y∗(xm)).
Compute f̂eff (xm) =

∑
k=1 P (yk)f(yk), yk ∈ Y∗(xm).

end for
Set t ← t + 1, update population P t according to f̂eff (xm), m = 1, . . . , λ

end while

2 Proposed Method

This section describes our proposed method called archive sample approximation
(ASA). The following notations are used throughout the paper:

– ξn ∈ Ξ,n = 1, . . . , N : the underlying disturbance on decision variables.
– zn = x + ξn ∈ Z(x), n = 1, . . . , N (approximation target): one realisation of

disturbed solution x.
– yk ∈ Y(x), k = 1, . . . ,K(K ≤ M) (approximation set): the set is used to

approximate Z(x).
– P (Z), P (Y): the probability measure over approximation sets Z(x),Y(x).
– W (P (Y), P (Z)): the Wasserstein distance between P (Y) and P (Z).
– A = {a1, . . . , aL}: the archive of previous fitness evaluations.
– A(x): a subset of A that contains locations in the “disturbance neighbour-

hood”of solution x.

Algorithm 1 describes how ASA can be integrated into an evolutionary algo-
rithm. First, we generate a set of disturbances Ξ from the underlying noise
distribution. Note that the disturbance set changes in every generation, but we
use the same disturbances for all the individuals within one generation. With
disturbance set Ξ, we can generate the approximation target set Z(xm) for solu-
tion xm that would, if evaluated, allow us to compute a good-enough estimate
of the individual’s effective fitness.

Next, we search A(xm) in the “disturbance neighbourhood” of solution xm

from archive A, and include all available memory solutions into approximation
set Y(xm). Meanwhile, we would like to add one additional disturbance realisa-
tion zn for solution xm into its approximation set. As candidates, we consider
all the points in the target set Z(x), and try inserting each one, resulting in N
approximation sets Yn(xm) = A(xm) ∪ zn. The goal of the ASA procedure is to
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find the best approximation set Y∗(xm) with probability measures P (Y∗(xm))
to well approximate the target Z(xm).

Our algorithm uses the Wasserstein distance [6] to decide which approxima-
tion set is the best option (i.e., where to sample) and how to weigh the sam-
ples. This paper implements the L1 Wasserstein distance to quantify the error
in the approximation set, which can be computed by solving the Kantorovich-
Rubinstein transportation problem, as follows.

W (P (Yn), P (Z)) = min
μ

∑
k

∑
n

d(yk, zn)μ(yk, zn)

s. t.
∑

k

μ(yk, zn) = P (zn), ∀n

μ ≥ 0

(2)

Once we obtain the optimal “transportation plan” μ∗ in (2) is obtained, the
optimal weights (probability measure P (Yn) can be determined immediately by
using

P (yk) =
∑

n

μ∗(yk, zn), ∀k. (3)

To identify the best candidate, we simply add, one by one, each target point
to the set of relevant memory locations A(x), and compute their Wasserstein
distance values W (P (Yn), P (Z)). The ASA algorithm aims to find the approx-
imation set Y∗ with the minimum distance value given by

W (P (Y∗), P (Z)) = min
n

(W (P (Yn), P (Z))). (4)

Finally, we discuss the computation issue of linear program (2) and its effi-
cient solution method. For the Kantorovich-Rubinstein transportation problem,
the computation complexity is significantly influenced by the size of the approxi-
mation target. In this paper, we apply duality theory to reduce the computational
effort. We assume that ηn is the dual decision variable for the nth constraint in
(2), then we have

W (P (Yn), P (Z)) = max
η

∑
n

P (zn)ηn

s.t. ηn ≤ d(yk, zn), ∀n, ∀k

(5)

The optimal value is found if ηn satisfies

η∗
n = min

n
d(yn, zk) (6)

Hence, the Wasserstein value can be computed by using

W (P (Yn), P (Z)) ≤
∑

n

P (zn)η∗
n. (7)

The equality will hold if the linear program exhibits strong duality. By nature
of the transportation problem, the optimal decision algorithm should select the
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closest starting point for each destination to minimise the total transportation
cost. Therefore, the optimal weight value for each element in the approximation
set can be computed as

P (yk) =
∑

n λknP (zn)
N

(8)

with

λkn =

{
1 if yk is the closest sample to zn

0 otherwise

where λkn is an index function that is used to count the number of times yk is
the closest sample to zn.

3 Numerical Experiments

3.1 Test Functions

We demonstrate the performance of our proposed method on three 5-D test
problems listed in Table 1. A 1-D visualisation of each test function is shown
in Fig. 1. TP 1 has a single asymmetric peak and has been adapted from [10].
It will allow to examine an algorithm’s ability to precisely identify the location
of the robust solution. TP 2 has been taken from [4] and is multi-modal. The
original fitness function has its optimum at x = 1, whereas the optimum of the
effective fitness is at x = −1, which allows to test whether an algorithm is able
to correctly identify the robust optimum. TP 3 combines both characteristics
and has been adapted from a function used in [10].

Table 1. Test function description

esioNnoitalumroF

TP 1 min 0.9d +
∑d

i=1 Q1(xi),

U(−1, 1)Q1(xi) =

{
−(8 − xi)

0.1e−0.2(8−xi) xi < 8

0 otherwise

x ∈ [0, 10]

TP 2 min
∑d

i=1 Q2(xi)

U(−0.2, 0.2)Q2(xi) =

⎧⎪⎨
⎪⎩

−(xi + 1)2 + 1.4 − 0.8 |sin(6.283xi)| −2 < xi < 0

0.6 · 2−8|xi−1| + 0.958887 − 0.8 |sin(6.283xi)| 0 ≤ xi < 2

0 otherwise

x ∈ [−2, 2]

TP 3 min
∑d

i=1 Q3(xi)

U(−1, 1)Q3(xi) = 2sin(10e(−0.2xi)xi)e
(−0.25xi)

x ∈ [0, 10]
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Fig. 1. 1-D visualisation of test functions

3.2 Evolutionary Algorithm

Our method can be combined with any metaheuristic. In this paper, we use
a standard CMA-ES [7] for our experiments, with μ = 4, λ = 8, initial
σ0 = 1

4Search Interval Width and equal weighting of the four individuals to
determine the next centre of the mutation distribution.

3.3 Final Solution Selection and Performance Measure

Due to the noise, the effective fitness estimated by the algorithm is likely to
deviate from the true effective fitness. For this reason, we use the barycenter of
the selected parents as the solution that would be returned to the user.

xfinal =
μ∑

i=1

wixi, wi =
1
μ

The effective fitness of final solution is evaluated using Monte-Carlo simulation
with N = 10, 000 samples.

feff (xfinal) =
1
N

N∑
i=1

f(xfinal + ξi)

In order to better understand the quality of the effective fitness estimation, we
furthermore report on the average absolute error AEt by calculating the mean
squared error between the true and approximate effective fitness as follows.

AEt =
1
λ

λ∑
j=1

∣∣∣feff (xm) − f̂eff (xm)
∣∣∣ , xm ∈ Pt

3.4 Target Samples Generation

We test the following three techniques for generating target samples.

1. Monte Carlo sampling (MC).
2. Latin hypercube sampling (LHS).
3. Equidistant sampling (ES) which places all samples on a regular grid with

three points in each dimension.



Sampling for Searching Robust Solutions 243

3.5 Experimental Setup

We compare our method with three alternative approaches:

1. SEM: take one random sample for each solution. This is the approach pro-
posed in [11].

2. SEM+AR: take one additional random sample for each solution, but also take
into account all memory points in the area of disturbance. The new sample
and all memory points are equally weighted. This is the approach proposed
in [3].

3. ABRSS: A method that uses Latin Hypercube Sampling as reference points,
and then includes for each reference point the closest memory point. To add
a new sample, some random samples are generated and the one furthest from
any memory point is selected. This method has been proposed in [9].

All methods are incorporated into CMA-ES, the size of target samples or refer-
ence points is 35 = 243 for all methods. All reported results are averaged over
30 runs. The computational budget for each run was 2,500 fitness evaluations.

3.6 Results on Convergence Rate and Average Approximation
Error

Figures 2 and 3 compare the convergence rate and approximation error of differ-
ent methods. The effective fitness of the final solution is also reported in Table 2.
As can be seen, ASA has the best convergence behaviour and smallest approx-
imation error in all three test problems. The use of the Wasserstein distance
effectively controls the approximation error, and thus it has a fast convergence
rate. On TP 1, SEM+AR works almost as good as ASA. Because this problem
is unimodal, all algorithms converge to the correct peak, and a lot of memory
samples accumulate there, leading to a very small approximation error also for
SEM+AR. ABRSS is much worse, probably because its sampling mechanism
tries to sample away from existing memory samples, which in this case means at
less relevant points and introducing a bias. The increase in approximation error
for SEM and ABRSS can be explained by their focusing on the peak area, which
has a very large gradient.

ABRSS is the second best method for TP 2 and TP 3. Since SEM and
SEM+AR draw samples randomly, they are more prone to “lucky” over evalu-
ations of individuals. As a consequence, they always discover new presumably
good solutions, move there, and then realise after some time that the solution
was actually not really very good, leading to a jumping behaviour from one local
optimum to another.

3.7 Influence of the Target Sample Generation Mechanism

ASA requires a set of target samples to start with. To better understand the
influence of the target sample generation mechanism, we compare the influence
of different sample generation methods in Figs. 4 and 5. LHS (which we also



244 J. Branke and X. Fei

0.6

0.8

1.0

1.2

1.4

0 500 1000 1500 2000 2500
Evaluations

Ef
fe

ct
iv

e 
Fi

tn
es

s

LHS+ASA

ABRSS

SEM+AR

SEM

Optimal Effective Fitness

TP 1

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

0 500 1000 1500 2000 2500
Evaluations

Ef
fe

ct
iv

e 
Fi

tn
es

s

LHS+ASA

ABRSS

SEM+AR

SEM

Optimal Effective Fitness

TP 2

2.0

2.5

3.0

3.5

4.0

4.5

0 500 1000 1500 2000 2500
Evaluations

Ef
fe

ct
iv

e 
Fi

tn
es

s

LHS+ASA

ABRSS

SEM+AR

SEM

Optimal Effective Fitness

TP 3

Fig. 2. Convergence rate of different methods
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Fig. 3. Average absolute error of different methods

Table 2. Effective fitness after 2,500 evaluations

Method mean ± s.e.

TP 1 TP 2 TP 3

SEM 0.8988 ± 0.0314 −4.1279 ± 0.0434 3.3569 ± 0.0945

SEM + AR 0.5388 ± 0.0069 −4.1845 ± 0.0420 2.8368 ± 0.0939

ABRSS 0.8893 ± 0.0451 −4.3293 ± 0.0388 2.5574 ± 0.0717

LHS + ASA 0.5269 ± 0.0013 −4.4231 ± 0.0362 2.3083 ± 0.0297

used in the previous experiment) performs well in all test functions. Interestingly,
equidistant sampling outperforms other sampling methods in TP 3, but produces
a bad solution in TP 1. This is probably because the boundary of the disturbance
region has a particular large influence for TP 1, and the way we chose the grid
structure that boundary region was never sampled.
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Fig. 4. Convergence rate of different target sample generation schemes
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Fig. 5. Average absolute error of different target sample generation schemes

Table 3. Effective fitness after 2,500 evaluations

Target samples mean ± s.e.

TP 1 TP 2 TP 3

MC+ASA 0.5304 ± 0.0030 −4.3308 ± 0.0625 2.3988 ± 0.0583

ES+ASA 0.6416 ± 0.0076 −4.3042 ± 0.0466 2.2872 ± 0.0439

LHS+ASA 0.5269 ± 0.0013 −4.4231 ± 0.0362 2.3083 ± 0.0297

4 Conclusion

We have looked at the problem of searching for robust solutions, where robust
means a good expected fitness over a given distribution of disturbances to the
decision variables. In particular, we have re-considered the idea of estimating a
solution’s effective fitness by making use of previous fitness evaluations stored in
the memory. We proposed a methodology based on the Wasserstein distance to
decide at what location we should evaluate the fitness in order to gain the most
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useful additional information about a solution’s effective fitness, and also how
to weigh the different samples in the neighborhood for estimating the effective
fitness. Empirical comparisons with several previous methods for this problem
on three test functions demonstrates the superiority of our new approach.

Future work will include developing other distance metrics and moving from
an individual based view to a population based view when determining where
to evaluate fitness.
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