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Abstract. This paper investigates the redundancy of representation in
grammatical evolution (GE) for binary trees. We analyze the entire GE
solution space by creating all binary genotypes of predefined length and
map them to phenotype trees, which are then characterized by their
size, depth and shape. We find that the GE representation is strongly
non-uniformly redundant. There are huge differences in the number of
genotypes that encode one particular phenotype. Thus, it is difficult for
GE to solve problems where the optimal tree solutions are underrepre-
sented. In general, the GE mapping process is biased towards short tree
structures, which implies high GE performance if the optimal solution
requires small programs.
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1 Introduction

One core component of any evolutionary algorithm (EA) is the representation
used [17]. Indeed, the choice of representation determines the success of a heuris-
tic search method [17]. In general, there are two types of representations: a direct
and an indirect representation [16]. When using a direct representation, no dis-
tinction between geno- and phenotype is made, just like in standard genetic pro-
gramming (GP) [9], which uses tree structures to represent the individuals. Here,
the search operators (e.g., crossover and mutation) are applied directly to these
tree structures. An indirect representation distinguishes between geno- and phe-
notype. In this case, a representation describes how the genotypes (e.g., binary
strings) are mapped to the phenotypes (e.g., expressions, trees) [16]. When using
this type of representation, the search operators are applied to genotypes, but
the actual effect of these operators is observed at the corresponding phenotypes.

Indirect representations may be biased due to redundant encodings [18].
If this is true, on average more than one genotype represents the same phe-
notype. A representation is uniformly redundant if every phenotype is repre-
sented by the same number of genotypes; it is non-uniformly redundant if one or
more phenotypes are represented by a larger number of genotypes than others.
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Consequently, the use of redundant representations may be biased and could
therefore influence the search process if the optimal solution or parts of it are
underrepresented [18].

Grammatical evolution (GE) uses a redundant representation [15]. In con-
trast to standard GP, GE [19] uses variable-length binary strings to encode the
programs/expressions and a grammar in Backus-Naur form (BNF) to map the
binary genotypes to the tree phenotypes. Consequently, GE applies standard
genetic search operators such as one-point crossover and mutation to linear bit
strings.

The distribution of trees in the GP solution space is well studied for various
problems [10] and can “[...] give an indication of problem difficulty for GP” [10].
For GE, there are no similar studies. In this paper, we study the non-uniform
redundancy of the GE representation, especially the GE genotype to phenotype
mapping. In our analysis, we focused on binary trees. We explored the entire
solution space of GE by applying different grammars and different genotype
lengths. We used two approaches to characterize trees: First, we used the tree
size and tree depth; second, we took the shape of a tree into account since this
property cannot be neglected when dealing with realistic programs. We showed
that GE representation is strongly non-uniformly redundant. The number of
different genotypes strongly exceeds the number of different phenotypes, and
there are phenotypes that are encoded with higher probabilities than others. In
general, short tree structures are represented most frequently.

In Sect. 2 we review bias and redundant representations. Section 3 reviews
former studies of representation bias in GE. Our analysis and results are pre-
sented in Sect. 4. The paper ends with some concluding remarks.

2 Bias and Redundant Representations

A bias exists if some solutions or solution structures are visited more frequently
than others during the run of a search procedure, or if certain actions are per-
formed more frequently than others during the search [22]. The existence of a
bias may be advantageous or disadvantageous for the search [17]. For example,
a bias of search operators may be used to guide the search in a certain direction
where promising solutions are presumed; this would be a desired bias. Unwanted
bias occurs if there is an interaction between the search operators used and the
chosen representation such that the problem becomes deceptive [1].

In heuristic search methods like GP, a desired bias results from the selec-
tion process. By selecting highly-fit individuals for the next generation, selection
pushes a population in the direction of fitter individuals. In addition, by using
problem-specific recombination or mutation operators, as well as suitable termi-
nal and function sets, GP performance can be improved [21,22]. Indeed, Dignum
and Poli showed that “[...] simple length biases can significantly improve the best
fitness found during a GP run” [5].

Search bias can also be a result of redundant encodings [18]. Encodings are
redundant if there are phenotypes that are encoded by more than one genotype.
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A redundant encoding is biased (i.e., non-uniformly redundant) if not all pheno-
types are encoded by the same number of genotypes; but rather some phenotypes
are represented by a larger number of genotypes than others. When using GE,
there is a redundant representation since there is more than one genotype that
represents the same phenotype [15]. Non-uniform redundancy, where the phe-
notypes are non-uniformly represented by the genotypes, leads to a bias and
causes structural difficulty since some solution structures are underrepresented.
Rothlauf and Goldberg [18] examined the impact of redundant representations
on the performance of evolutionary algorithms (EA). In general, redundant rep-
resentations are less efficient because they use more alleles to store the same
amount of information compared to non-redundant representations. In the case
where a uniformly redundant representation is used, the general performance of
the EA is neither decreased nor increased. In opposition to this, the performance
of the algorithm can be increased or decreased if a non-uniformly redundant rep-
resentation is used. In their experiments, Rothlauf and Goldberg [18] showed that
performance can be increased when the optimal solution is overrepresented, and
it can be decreased when the optimal solution is underrepresented.

3 Bias of Representation in Grammatical Evolution

GE [19] is a variant of GP that uses a complex genotype-phenotype mapping
to create the phenotype programs/expressions from variable-length binary geno-
types. A genotype consists of groups of eight bits (called codons) which encode
an integer value that selects production rules from a grammar in BNF. These
rules are used in the deterministic mapping process to create a phenotype.

Several studies have examined the bias of representation and grammar in GE.
Most of them have focused on the impact of different representations or different
search operators on performance rather than on the impact of the redundant rep-
resentation. O’Neill and Ryan [12,14] examined the effect of genetic code degen-
eracy on genotypic diversity and the performance of GE. When a degenerate
genetic code is used, each codon consists of more bits than actually necessary to
encode a sufficient amount of integer values to select the rules from the grammar.
They found that genetic diversity is higher when a degenerate genetic code is
used. In addition, the amount of invalid individuals is lower. The impact on per-
formance depends on the grammar used. Montes de Oca [11] focused on creating
numerical values by concatenating digits and found that the most-commonly-
used GE grammar induces a bias towards short-length numbers. Hemberg et al.
[8] considered three different GE grammars (postfix, prefix, infix) and their influ-
ence on performance for various symbolic regression problems. They observed
no differences between the grammars for small problem instances. However, for
large problems, a postfix grammar was found to be advantageous. Fagan et al. [6]
compared the performance of GE when using four different genotype-phenotype
mappings (depth-first, breadth-first, random and πGE [13]) for four benchmark
problems and measured the average best fitness, the average size of genotypes,
and the average number of derivation tree nodes over the number of genera-
tions. The πGE mapper outperformed the other mapping strategies in three out
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of four problems. The breadth-first mapper produced larger trees in three out of
four problems compared to the other mapping strategies. Harper [7] showed that
standard GE random bit initialization produces trees that are non-uniformly dis-
tributed since “80 % of the trees have 90 % of their nodes on one side of the tree
or the other” [7]. Trees are biased to be “tall and skinny” [7]. He distinguished
between two types of grammars: explosive and balanced. He defined a grammar
to “be explosive if the number of non-terminals (functions) exceeds the num-
ber of terminals” [7]. A grammar is balanced if the probability for expanding a
non-terminal into a multiple of the same non-terminal is equal to the probability
of expanding into a terminal. Therefore, when using an explosive grammar, the
probability is high that the mapping process will run out of genes [7]. Daida and
co-workers [2–4] studied the influence of the standard GP tree representation
on the search process, and showed that not only crossover and selection does
influence GP search behavior, but so does the representation. Inspired by their
work, Thorhauer and Rothlauf [20] found that a random walk with GE using
standard operators (one-point crossover, mutation and duplication) has a strong
bias towards sparse tree structures.

Overall, GE literature is dominated by experimental studies on the impact of
different search operators or representations on performance, but a fundamental
mathematical analysis of the entire solution space has been omitted.

4 Analysis and Results

We studied the bias of representation in GE for binary trees. Using the defini-
tion from Harper [7], we used a balanced grammar (Fig. 1(a)) and an explosive
grammar (Fig. 1(b)) to map the genotypes to the phenotype trees. We set the
number of codons to 10 and 20, and created all possible binary genotypes by
using 10 and 20 codons respectively, and studied their phenotypic properties.
For the balanced grammar A (Fig. 1(a)), only the least significant bit in each
codon (usually eight bits) determines which rule to choose during the mapping
process. Therefore, we reduced the total number of possible binary genotypes
from 280 to 210 = 1024 when using 10 codons (each consists of one bit), and
from 2160 to 220 when using 20 codons. For the explosive grammar B (Fig. 1(b)),
we needed the last two bits of each codon to define the rule to choose since we
wanted to ensure that all rules were chosen with equal probability. Again, we got
220 different genotypes. So the value of any bit directly affects the phenotype.
We used standard depth-first mapping to create the phenotypes. No wrapping
operator was used since the mapping process would never terminate and thus
the corresponding individuals would be invalid anyway. This is a result of the
structure of the chosen grammars. Before we analyzed the characteristics of all
phenotype trees, the derivation trees were transformed into syntax trees to get
binary trees that only consisted of functions (internal nodes) and terminals (leaf
nodes). For all the tree structures, we measured the following properties: tree
depth, tree size (internal nodes plus leaf nodes) and tree shape.

We started our analysis by distinguishing individuals according to their phe-
notype tree properties: size and depth. Figures 2(a)–(c) show the phenotype
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<start> ::= <expr>
<expr> ::= (<expr> + <expr>)

| <var>
<var> ::= X

(a) grammar A

<start> ::= <expr>
<expr> ::= (<expr> + <expr>)

| (<expr> + <expr>)
| (<expr> + <expr>)
| <var>

<var> ::= X

(b) grammar B

Fig. 1. Production rules in BNF. Balanced (left) and explosive variant (right).

(tree) solution spaces that were created with 10 codons using grammar A, 20
codons using grammar A, and 10 codons using grammar B. We plotted the num-
ber of nodes (tree size) over the tree depth for all phenotype trees. The outer
dashed lines show the boundaries for valid binary trees with a minimum and a
maximum number of nodes. The circles between these lines represent valid trees,
whereas the triangles represent invalid trees. In these cases, the mapping process
could not be finished because the genotype ran out of genes. As a result, there
are invalid binary trees, where not all internal nodes (+) have two child nodes
or not all external nodes are terminals (X). When 10 codons and grammar A
were used, we observe 7 different valid trees and 7 different invalid trees that can
be created with 210 different genotypes (Fig. 2(a)). Under these conditions, valid
trees with a maximum size of 9 nodes can be created. Consequently, when using
20 codons and the same grammar, the phenotype solution space increases, and
the limit of the maximum tree size rises to 19 nodes (Fig. 2(b)). Thus 220 differ-
ent genotypes encode 30 different valid and 16 invalid trees. Figure 2(c) shows
the same result as seen in Fig. 2(a). Here, we used 10 codons and grammar B.
In summary, the solution space of binary trees that can be covered with GE
depends on the length of the genotype. The change from the balanced grammar
A to the explosive grammar B does not modify the solution space of possible
binary trees in GE.

To study the redundancy in GE representation, we had to examine the fre-
quency of all trees. Figures 3(a)–(c) present the proportion of trees of a given
size and depth in a 3D view. This clearly shows that the GE mapping process
creates specific trees with higher probabilities than it does others. Therefore,
representation in GE is non-uniformly redundant. Indeed, trees with a size of
one and a depth of zero were created most frequently, independent from codon
lenght or the grammar used. All trees of size 10 (Figs. 3(a) and (c)) and 20
(Fig. 3(b)) are the result of an unfinished mapping. As Harper [7] described, the
use of the explosive grammar B strongly overrepresents these invalid individuals
(Fig. 3(c)) compared to the use of the balanced grammar A (Figs. 3(a) and (b)).
In summary, we observe an overrepresentation of short valid trees in all three
figures. The GE mapping process has a strong bias towards short trees when
grammar A is used (Fig. 3(a) and (b)); whereas when grammar B is used, the
mapping process more frequently creates longer, but invalid, trees (Fig. 3(c)).



On the Non-uniform Redundancy in Grammatical Evolution 297

(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 2. Phenotype (binary tree) solution
spaces for different codon lengths and
grammars.

(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 3. Proportion of different binary
trees for different codon lengths and
grammars.

Figures 4(a)–(c) represent the proportion of trees that have the same size and
depth (the proportion of invalid trees are not shown). Table 1 (rows A and B)
describes how the probabilities to create particular trees can be calculated. The
probabilities to represent specific trees in Fig. 4(a) when using 10 codons and
grammar A cover a range between 0.5 and 0.0078125 ( 1

27 ). This implies 50% of



298 A. Thorhauer

genotypes represent a tree that consists of one terminal X, whereas only 0.78125%
of genotypes represent a full tree of depth two (Fig. 4(a) d = 2, s = 7). The proba-
bility that a sparse tree with the same size of seven and a depth of three (Fig. 4(a)
d = 3, s = 7), which has only one expanded node at any depth level, is represented
by a binary genotype is four times higher (3.125 %). For 20 codons and grammar
A, the probabilties actually range between 0.5 and approximately 0.000031. The
use of grammar B and 10 codons hugely changes the probabilities to create each
tree since it is three times more likely to choose the rule < expr > + < expr >
than to choose < var > (see Table 1 column B). In this case, the probabilities
range between 0.25 and about 0.00165. In summary, these results reveal a strong
overrepresentation of short and rather sparse trees.

Table 1. The probabilities of representing particular trees for both grammars. Row A
and B: Trees are characterized by their size and depth. Row A: The probabilities to
create a full tree. Row B: The probabilities to create a sparse tree (i.e., same number
of nodes as a full tree but only one expanded node at any depth level). Row C: Trees
are characterized by their size, depth and shape; the probabilities to create any tree of
a given size, depth and shape.

grammar A grammar B

A ( 1
2
)size ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes)

B ( 1
2
)size × 2(d−1) ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes) ∗ 2(d−1)

C ( 1
2
)size ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes)

To study the distribution of different trees in greater detail, we also took the
shape of the trees into account. This implies that the exact ordering of nodes is
relevant (i.e., important in realistic programs). Consequently, the number of dif-
ferent valid phenotype trees that can be encoded by 210 different binary genotypes
increases from 7 (Figs. 4(a) and (c)) to 23 (Figs. 5(a) and (c)). With 220 genotypes,
the number of trees increases from 30 (Fig. 4(b)) to 6918 (Fig. 5(b)). As an exam-
ple, let’s take the case of two trees of different shapes that have a size of five and a
depth of two (Fig. 5(a) d = 2, s = 5).Table 1, rowC shows how to calculate the prob-
ability that a specific tree will be created. The probabilities to encode the different
phenotypes range between 0.5 and approximately 0.00195 ( 1

29 ) when grammar A
and binary genotypes of 10 codons are used, and between 0.5 and about 0.000002
when grammar A and 20 codons are used. Again, the use of grammar B and 10
codons hugely changes the probabilty that a genotype creates a particular tree. In
this case, the distribution of probabilites ranges between 0.25 and about 0.00031.
In summary, the larger the size of a particular tree, the lower the probability that
this tree is represented by a binary genotype (independently from the grammar
used). The probability of creating a specific binary tree depends only on its size.
The additional consideration of the tree shape increases the number of different
trees that can be encoded by 210 and 220 different genotypes, but does not prevent
the overrepresentation of particular binary trees.
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(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 4. Number of instances per valid
tree (normalized over all tree instances)
for different codon lengths and gram-
mars. Trees are characterized by their
size and depth.

Fig. 5. Number of instances per valid
tree (normalized over all tree instances)
for different codon lengths and gram-
mars. Trees are characterized by their
size, depth and shape.

Table 2 presents the number |Φp| of different valid phenotypes and the number
|Φpinvalid

| of different invalid phenotypes that can be encoded by genotypes of
either 10 or 20 codons using grammars A and B. These results emphasize that
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Table 2. Number |Φg| of different genotypes (genotype search space Φg), number
|Φp| of different possible valid phenotype trees (phenotype solution space Φp), number
|Φpinvalid | of different possible invalid phenotype trees (Φpinvalid). Trees are character-
ized by their size, depth and shape.

|Φg| |Φp| |Φp|
|Φg | |Φpinvalid | |Φpinvalid

|
|Φg |

grammar A, 10 codons 210 23 0.0225 252 0.2461

grammar A, 20 codons 220 6 918 0.0066 184 756 0.1762

grammar B, 10 codons 220 23 0.00002 252 0.00024

GE representation is strongly redundant since the phenotype solution space (Φp)
is obviously smaller than the genotype search space (Φg). The number of different
valid phenotype trees over the number of different genotypes for grammar A and
10 codons is 0.0225, whereas the proportion of different invalid phenotype trees
is obviously larger (0.2461). Both values are even lower when grammar B is used.
In general, |Φpinvalid

| exceeds |Φp| for both grammars and codon lengths. During
a GE run, these invalid trees are penalized with a mimimum fitness value, and
provide no additional benefit since they will be sorted out.

5 Conclusions

We studied the redundancy in GE representation for binary trees. We used two
different grammars (balanced and explosive) and two different genotype lengths.
We explored the entire solution space of GE by creating all possible binary
genotypes and mapped them to phenotype trees. When trees are characterized
by their size and depth, sparse trees are more likely to be represented than
full trees of the same size. If in addition the shape of a tree is relevant, the
probability of creating a particular binary tree depends only on its size. In this
case, the number of different invalid trees is larger than that of valid trees.
Independent from the grammars used or codon lengths, the number of different
binary genotypes strongly exceeds the number of different binary phenotypes.
Moreover, there are large differences in the number of genotypes that encode one
particular phenotype tree. Thus, it is difficult for GE to solve problems if the
optimal tree solutions are underrepresented. In general, the GE mapping process
is biased towards short tree structures.

A higher genotype length increases the number of different phenotypes that
can be encoded. Moving from a balanced to an explosive grammar alters the
probabilities for creating any tree. Furthermore, the probability that a genotype
encodes an invalid tree is higher.

The focus of our study was on binary trees. Using more complex grammars
and non-binary trees would create a greater variety of different trees and there-
fore reduce the probability of creating trees with the same characteristics. In the
future, we will extend this analysis to different grammars that allow the creation
of more complex non-binary trees.



On the Non-uniform Redundancy in Grammatical Evolution 301

References

1. Caruana, R.A., Schaffer, J.D.: Representation and hidden bias: Gray vs. Binary
coding for genetic algorithms. In: Proceedings of the Fifth International Conference
on Machine Learning, pp. 153–161. Morgan Kaufmann (1988)

2. Daida, J.M.: Limits to expression in genetic programming: lattice-aggregate mod-
eling. In: CEC 2002, pp. 273–278. IEEE Press, NJ, USA (2002)

3. Daida, J.M., Hilss, A.M.: Identifying structural mechanisms in standard genetic
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