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Abstract. In steady state Twin GP both children created by sub-tree
crossover and point mutation are used. They are born together and die
together. Evolution is little changed. Indeed fitness selection using the
twin’s co-conceived doppelganger is possible.
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1 Introduction

In genetic programming it is very common to represent programs as trees (like
Lisp s-expressions) and to use two point subtree crossover (Koza 1992) to create
new programs. Although subtree crossover can be symmetric and can be used
to create two new programs, it is common to it to use it to create a single child
(Poli et al. 2008, p. 15). The offspring inherits its root node from one parent
and a subtree from its other parent. Typically the second parent passes less
genetic material to its offspring than the first. Also, being lower in the child’s
tree, typically the second parent’s genes have less impact. Here we create and
use both children of each two point crossover. The combined genetic contents
of the two children is the same as the combined contents of their two parents.
Although often subtree crossover creates a smaller and a larger child, it never
changes the average size of programs. However, subtree crossover will typically
mean the children are different from each other and from their parents. In many
cases not only are they genetically different (their trees are different) but also
the children are different sizes from each other and different from both parents.

For simplicity we restrict the GP function set to binary functions so that the
trees have internal nodes with two outward facing edges. However theoretical
results have also been provided for mix-arity as well as fixed arity trees (Dignum
and Poli 2010). Without selection and using only crossover, GP populations
of any initial distribution of sizes and shapes rapidly converge to a limiting
distribution (Dignum and Poli 2010). The final size distribution depends on the
initial total number of functions of each arity and the number of terminals (tree
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leafs). For typical GP populations, the limit distribution contains a few very
small trees, the number of trees rises to a peak near the average tree size and
then there is a long tail of rapidly decreasing frequency of bigger trees (see, e.g.
Dignum and Poli 2010, Fig. 6).

The tendency for GP populations to bloat, i.e. for evolution to produce pro-
gressively larger programs with little increase in their ability, is well known (Poli
et al. 2008, Sect. 11.3). It has been suggested (e.g. Dignum and Poli 2010) that
bloat in tree genetic programming is due to subtree crossover producing small
children with below average fitness. Such children are removed from the pop-
ulation by fitness selection. Since crossover does not change the average size,
the remaining programs will tend to be bigger than average. Thus the remain-
ing population after selection will on average be bigger than their parents. In
the next round of crossovers, subtree crossover will again produce some small
programs. It will keep doing this no matter how big the parent trees are. The
limiting distribution still contains a sizeable fraction of small programs no matter
how big its mean. This bloat theory says they will always have a tendency to be
too small to be useful and so fitness will always cause selection to preferentially
remove them, so the average size of trees will always increase.

Twin genetic programming was conceived with the idea (which failed) of
foiling bloat. The idea being to force simultaneous fitness based removal of both
the smaller and the larger child. Thus in twin GP, two children are created
with the same average size as their parents. Although, whilst in the popula-
tion, they can be independently selected to be parents, when either child is
deleted, she takes her twin with her. (If the two parents were not selected
independently but locked together, like the offspring, then the population would
degenerate into independent lines and interbreeding would be impossible.)

The next section presents twin GP, Sect. 3 describes our experiments, whose
results are given in Sect. 4. The failure to contain bloat and the success of kin
selection are analysed in Sect. 5, including a mathematical model of the disrup-
tion caused by kin selection (in Sect. 5.3), before we summarise in Sect. 6.

2 Twin Genetic Programming

2.1 TinyGP

Our implementation of twin genetic programming is based on Riccardo Poli’s C
implementation of TinyGP (Poli et al. 2008) for Boolean problems. TinyGP pro-
vides a steady state (Syswerda 1989) fixed sized population evolutionary frame-
work.

2.2 Two Offspring Sub-tree Crossover

TinyGP’s subtree crossover essentially provides Koza’s subtree crossover (Koza
1992) but without a bias in favour of choosing functions as crossover points.
That is, the two crossover points (one per parent tree) are chosen independently
at random from all internal and external (leafs) nodes in the tree.
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In TinyGP once the initial population has been created, there are no size
or depth restrictions on the evolving trees and after a few generations bloat is
usually rampant.

The only change for twin GP is to use the two crossover points twice so
creating two offspring (the twins).

2.3 Point Mutation

Children not created by crossover are created by applying point mutation (Poli
et al. 2008, pp. 16–17) at 5 % per node to a copy of their parent. Thus larger
trees are proportionately more likely to be changed at multiple places. Notice
this type of tree mutation does not change the size or the shape of the program.

For twin genetic programming, two child programs are created by two inde-
pendent mutations and then locked together as twins. Since the parents are
chosen independently the twins (like those created by crossover) are typically of
different sizes and shapes.

2.4 Fitness 6 Multiplexor

As a demonstration we use TinyGP’s Boolean six multiplexor problem. The goal
is to evolve a program which takes six Boolean inputs and outputs a Boolean
corresponding to 6-Mux (Koza 1992, Sect. 7.4). I.e. two inputs correspond to
two address lines (giving 4 combinations) which select one of the remaining four
inputs and connect it to the output. There are 26 = 64 possible tests. We use
them all. An individual program’s fitness is the number of test cases it for which
it gives the correct answer. I.e. fitness is an integer between 0 and 64.

2.5 Twin Selection in Steady State Populations

In twin GP both selection to be a parent and deciding which two programs are
to be removed from the population is on the basis of the fitness of the two twins.
We looked at five ways of combining the twins’ fitnesses: twin) the default, just
use the individual program’s fitness. MEAN) use the mean of the fitness of the
program and its twin. MAX) use the best fitness of the two programs. MIN) use
the worse fitness. KIN) use the fitness of the twin, i.e. kin selection. Finally, as
a sanity check, we ignore fitness of the twins entirely and select randomly. As
expected under random selection, evolution does not solve the problem at all
and the populations do not bloat.

3 Experiments

We tried each of the five settings described in Sect. 2.5 and the original TinyGP.
(Results for TinyGP “no twin” are at the top of Table 2). The parameters of twin
GP are summarised in Table 1. Initial results for kin selection were disappointing
and no solutions were found. Hence kin was re-run with a population ten times
as big. We run each experiment 30 times. The results are summarised in Table 2.
(For completeness, all GP runs were also made with the larger population size.)
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Table 1. Twin genetic programming parameters for solving 6 multiplexor

Terminals: 6 Boolean inputs D0–D5

Functions: AND, OR, NAND, NOR

Fitness: All 64 fitness cases

Selection: Binary tournaments used for both parent and replacement selection

Population: 1000 (or 10 000)

Initial pop: Grow, max depth 6

Parameters: 80 % subtree crossover. Both crossover points chosen at random, i.e.
no function bias

20 % point mutation. 5 % chance of substitution with primitive of the
same arity per primitive. Notice mutants are subjected to zero or
more flips and larger programs have proportionately more changes

No depth or size limits

Termination: Problem is solved, or 100 generation equivalents

4 Results

Table 2 shows twin GP working surprisingly well.1 Evolution of successful pro-
grams is even possible if we use the fitness of the worst of the twins. Although
kin selection is obviously doing less well, if we increase the population size, evo-
lution can proceed even if we totally ignore the fitness of the individual and
always use instead the fitness of her twin. As the last pair of columns in Table 2
makes clear, twin GP has totally failed to address bloat.

Table 2. Twin genetic programming six multiplexor (30 runs each)

Experiment Successful runs Best fitness Mean size generation 100

pop size 1000 10000 1000 10000 1000 10000

no twin 21 30 64 64 1518.2 -

twin 13 29 64 64 1357.7 1654.5

MEAN 17 30 64 64 1167.8 -

MAX 19 30 64 64 1136.4 -

MIN 6 28 64 64 960.6 1103.9

KIN 0 11 61 64 259.4 327.0

RAND 0 50 13.6

1 According to the binomial distribution the first three variants of twin GP, i.e. twin,
mean and max, are not significantly worse than TinyGP without twins.
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5 Discussion: Why Does Twin GP Bloat

5.1 Two Can Bloat Too

Figure 1 plots the change in total program size each time a new pair of programs
is created (and so a twin is removed from the population). Figure 1 suggests a
near symmetric distribution but notice the rapidly increase in variation as the
population evolves to contain bigger trees. What Fig. 1 conceals is that the dis-
tribution is not exactly symmetric. Figure 2 plots the average change. In almost
every generation, on average, smaller trees are replaced with bigger ones. I.e.
binary fitness tournaments have a bias towards selecting larger trees to be par-
ents than they select to be killed. This leads to bloat. (Binary tournaments
have the lowest selection pressure or intensity of any simple tournament selec-
tion scheme (Blickle and Thiele 1996, Fig. 4).) That is, despite twin GP’s careful
control of the genetic operations of crossover and mutation, to ensure they do not
change the total size, fitness selection is still bloating the population (Langdon
and Poli 1997).

5.2 How Different Are Twins?

A possible explanation for all twin selection runs evolving fitter trees (including
sometimes finding solutions), might have been that the twins are identical or at
least very similar. However as Fig. 3 shows, there is more to it than that. Firstly
we consider what do we mean by two trees are similar. Figure 3 considers four
similarity metrics. Firstly we look at the trees themselves and then we look at
two metrics based on their outputs.

We can consider if the trees are identical. (This is Koza 1992’s population
variety.) And secondly if they are the same size. As expected twin GP pop-
ulations, like usual GP populations (Koza 1992), do not converge in terms of
their genotypes. Even in the early generations there are almost no tournaments
between identical trees and, in a typical run, none at all after generation nine. If
we look at a much loose definition of tree similarity: are the trees the same size,
we see a similar picture. (Of course identical trees must also have the same sizes,
but not vice versa.) In the early generation about of 5 % of tournaments are
between trees of the same size but this falls to less than 1 % after generation 13.

We also looked at similarity of behaviour. As expected (Langdon et al. 1999),
the populations converge to some extent. Again Fig. 3 looks at two types of
(phenotypic) convergence. Do two programs return identical answers on all the
test cases and secondly do they have the same fitness. (Since fitness is define by
the test cases, two trees which give the same answers on all 64 test cases must
have the same fitness, but not vice versa.)

Phenotypes (i.e. behaviour) in twin GP populations do show some conver-
gence (e.g. Fig. 3) and also twins’ phenotypes (and so fitness) are slightly more
similar than those of the population as a whole. For example at the end of the
run in Fig. 3 30.6 % (+) of twins gave exactly the same answer on all 64 tests
whilst the figure for random pairs was 29.4 % (×).
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Fig. 1. Change in combined size (2 × 2 trees) per tournament in typical twin run
(i.e. selection uses twin’s own fitness). 6-Mux. Population 1000.
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Fig. 2. Mean of size changes per generation. (+) same run as Figure 1
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Fig. 3. Evolution of 4 measures of twin similarity in typical twin selection run (same
run as Figure 1). + similarity of twins. × similarity of population. Twins (+) are slightly
more similar than the population as a whole (×).
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Fig. 4. Evolution of 4 measures of twin similarity in typical kin selection run with
population of 10 000. Notice although the population convergence is smaller, other-
wise population and twin similarity are much like selecting by the individuals fitness,
Figure 3. Again twins are slightly more similar than the population.
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Fig. 5. Evolution of expected fraction of binary tournaments with different outcome in
typical twin run with population of 1000 (+). (Same run as Figure 1) Expected fraction
for whole population plotted × for comparison. Ties are broken at random.
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5.3 Expected Impact of Kin Selection in Boolean Problems

We next show in the limit in random populations kin selection impacts half
fitness selection tournaments and calculate the ratio for n = 6 (34.3 % and show
it agrees with experiment (see Fig. 6).

In GP it is common (as we do here, see Table 1) to use an unbiased set of
primitives. Thus before fitness selection, in Boolean problems, like the 6 Mul-
tiplexor, the chance of getting any individual test right is 50 %. Therefore for
an n bit problem, in large trees the initial random distribution of fitness fol-
lows the binomial distribution 2−NCi

N (where N = 2n).2 Notice 2−NCi
N is

symmetric about N/2. In the limit of large n the binomial distribution can be
approximated by a Gaussian distribution (The same holds when the functions
are reversible (Langdon 2003).) The distribution’s mean is 2n−1 and its variance
is 2n−2 (standard deviation 2n/2−1). (E.g. for the 6-mux the mean is 32 and the
standard deviation is 4.) In a random 6-mux population there is a reasonable
chance of drawing two programs with the same fitness. In higher order problems
(i.e. letting n increase) the width of the distribution grows. When it is large com-
pared to 1.0 there is essentially no chance two random programs will have the
same fitness. Thus for large n we need not consider the chance of tournaments
having to consider a draw where individuals have the same fitness.

Consider a program with fitness i having a twin with fitness j in a binary
tournament with a program of fitness k. It will win if i > k and lose if i < k.
Draws i = k are resolved randomly. We can calculate the likelihood that substi-
tuting it with its twin’s fitness will not change the outcome of the tournament.
The twin still wins if i > k & j > k and still loses if i < k & j < k and half draws
will yield the same answer as before, i.e. 1

2 (i = k | j = k). Assuming fitness are
randomly distributed, we can calculate the probability of the same outcome as:

N∑

i=0

2−NCi
N

N∑

j=0

2−NCi
N

N∑

j=0

2−NCi
N

⎛

⎝
δ(i > k & j > k)+
δ(i < k & j < k)+
1/2δ(i = k | j = k)

⎞

⎠ (1)

where δ(x) is 1 if x is true and 0 otherwise. If N is large we can ignore the
draws (i.e. neglect the space occupied by (i = k | j = k)). (i > k & j > k) and
(i < k & j < k) both partition the (0..N)3 cube and allocate a quarter of it each.
I.e. a half in total. Since the density function 2−3NCi

NCj
NCk

N is symmetric
about the centre of the (0..N)3 cube the total sum of probabilities will be a half.
Thus in random populations of large Boolean problems kin selection which uses
the twin’s fitness will disrupt half of binary tournaments.

In the case of 6-mux, N = 64 and we evaluate Eq. 1 numerically using the
actual random tree’s fitness distribution as 65.7 %. (See horizontal line in Fig. 6.)
Notice the close agreement with estimates drawn from a real run in Fig. 6 for
the first generation. Some variation as the population moves away from its ini-
tial random distribution might be expected but the similarity in later generations

2 For the small trees the distribution is only approximately binomial (Langdon 2009).
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suggests although the population’s average fitness has changed its variation (stan-
dard deviation) remains similar (see dotted lines in Fig. 6).

6 Conclusions

In twin genetic programming the combined size of the two children is always
identical to that of their parents. Thus no genetic operation changes the average
size of programs in the evolving population. Nonetheless a very small but sus-
tained bias in fitness selection to kill smaller trees leads to cumulative increase
in program size commonly known as bloat.

Twin genetic programming can be effective even when using elements of
the fitness of the other twin, see Table 2. Evolution is adversely effected when
either ignoring the best fitness of the twins or exclusively using the fitness of
the other twin (kin selection). However we have demonstrated kin selection can
evolve solutions. Surprisingly it is able to do this although using the twin’s
fitness disrupts almost as many selection tournaments as choosing at random
from the population (Fig. 6) and yet evolution makes no progress at all with
totally random selection (last row in Table 2). Section 5.3 presents a generic
theoretical analysis of the impact of kin selection using binary tournaments for
large programs in high order (large n) Boolean problems and applies numerical
values for the special case of small trees and n = 6.

Implementation

C code for twin GP is available via anonymous FTP and via http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/gp-code/tiny gp twin.c

Acknowledgements. I am grateful for discussions with T.H. Westerdale.
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