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Abstract. We discuss the use of surrogate models in the field of genetic
programming. We describe a set of features extracted from each tree and
use it to train a model of the fitness function. The results indicate that
such a model can be used to predict the fitness of new individuals without
the need to evaluate them. In a series of experiments, we show how
surrogate modeling is able to reduce the number of fitness evaluations
needed in genetic programming, and we discuss how the use of surrogate
models affects the exploration and convergence of genetic programming
algorithms.
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1 Introduction

Evolutionary algorithms are great optimizers, however, they require a large num-
ber of objective function evaluations to find a suitable solution for a given prob-
lem. This large number of evaluations may be problematic in practice. Surrogate
modeling [4] helps to reduce the number of fitness evaluations needed to find a
solution of a given quality. Its main idea is to build an approximate model of the
fitness function, which is used during the optimization as a cheap replacement
of the expensive fitness. In the most common case, the model is built using var-
ious machine learning techniques from the individuals evaluated earlier in the
evolution. The surrogate model is usually a standard regression model. So far,
this technique is used almost exclusively in the field of continuous optimization,
i.e. the optimization of functions R

n → R.
The spread of surrogate modeling to different areas of evolutionary opti-

mization is limited by the higher complexity of machine learning in these cases.
Creating a surrogate model that maps, for example, a genetic program to a real
number is a much more challenging task than running a regression algorithm
on a vector of real numbers. In genetic programming, the surrogate modelling
additionally includes, at least, the extraction of features from the genetic pro-
grams. So far, there are few applications of surrogate modeling outside the field
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of continuous optimization, one such example is provided by Li et al. [6] who
use surrogate models to solve a problem in mixed integer programming.

Hildebrandt and Branke [3] proposed a method based on phenotypic features
to predict the fitness values of an individual in genetic programming and used
it to evolve dispatching rules for job shop scheduling. To create the feature
vectors, they evaluate the individual on a few tasks and use the results of the
individual as features. Then, they use a nearest neighbor model to predict the
fitness of the individual (the fitness of the closest evaluated individual is used
as a fitness of the new one). Such approach can be used in scenarios where the
evolved program is used as a controller and it can be evaluated on a smaller task.
However, in other scenarios the applicability of this method may be limited. For
example, our motivation for this work is based on our previous work [5], where
we attempted to evolve machine learning workflows with genetic programming.
In such a scenario a partial evaluation of the individual does not make sense.

In this work we investigate the extraction of features directly from the tree
individuals used in GP, with no need to evaluate the individuals. Our main goal
is to create an algorithm, which can use these features to predict the quality
of an individual based solely on it genotypic representation. To this end, we
first extract as many features as possible from the individual and then train a
surrogate model based on random forests. We also investigate the importance
of individual features and how well the predictions match the real quality of
individuals.

2 Surrogate-Based Genetic Programming

We propose a set of features, that can be extracted in a single pass through the
tree without the need to evaluate the program. The features contain information
of different kinds: general features regarding the tree, features concerning the
primitives (i.e. functions) used in the tree, features on the arguments of the
program, features regarding the constants used in the tree, and also the fitness
of the parents of an individual. Particularly, the following features were used in
the experiments in this paper:

– tree features – depth of the tree, size of the tree (number of nodes)
– constant features – maximum, minimum, and mean, number of constants and

distinct constants divided by the size of tree
– argument features – average number of times an argument is used and pro-

portion of arguments used
– for each terminal or primitive – the number of times it is used divided by the

length of the individual
– parents’ fitness – minimum, maximum and mean of the fitness of parents

Therefore, the number of features extracted from each individual equals the
number of different non-terminals + the number of arguments of the program
+ 1 (for the constants as terminals) + 12 (the general features, the counts of
arguments and constants, the statistics on the constants values, and the statistics
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Algorithm 1. Surrogate-based Genetic Programming
Require: n: population size, τ : number of evaluations before surrogate modeling,

Am: maximum size of training set, w: the proportion of worst individuals to discard
1: t ← 0, A = ∅, P0 ← InitRandomPopulation(n)
2: for i in P0 do
3: fi ← Evaluate(i)
4: ϕi ← ExtractFeatures(i); A ← A ∪ {(i, fi, ϕi)}
5: end for
6: while termination criterion not met do
7: t ← t + 1
8: S ← Selection(Pt−1)
9: Ot ← GenerateOffspring(S)

10: if |A| > τ then
11: T ← A � training set
12: if |T | > Am then T ← RandomSample(T , Am)
13: M ← BuildModel(Features(T ), Targets(T ))
14: I ← {i ∈ O|FitnessNotEvaluated(i)}
15: f̂i = {PredFit(i, ExtractFeatures(i), M)|i ∈ I}
16: W ← the indices of w|I| worst individuals
17: for i in I do
18: if i ∈ W then I ← replace i with its parent from S in I
19: end for
20: end if
21: I ← {i ∈ O|FitnessNotEvaluated(i)}
22: for i in Pt do
23: fi ← Evaluate(i)
24: ϕi ← ExtractFeatures(i); A ← A ∪ {(i, fi, ϕi)}
25: end for
26: Pt ← Best(Pt) ∪ RemoveWorst(O)
27: end while

on fitness of parents). We investigate the importance of these features and also
the performance of some models based on these features in Sects. 3.1 and 3.2.

We also considered a number of different features, i.e. the numbers times
each tree of depth one is used. However, such structural features would increase
the length of the feature vector significantly and would make the model training
slower.

2.1 Baseline Algorithm

The main loop of the proposed algorithm (cf. Algorithm1) is a relatively stan-
dard GP algorithm. It first generates a random initial population (line 1) and
evaluates its fitness (line 3). Then, the evolution loop starts, the offspring are
generated (line 9), those with unknown fitness are evaluated (line 23) and, finally,
the environmental selection is performed (line 26). In the environmental selec-
tion, we use a weak elitism, i.e. the best individual from the parents replaces the
worst offspring.
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The part of the algorithm described in the paragraph above is also what we
call the baseline algorithm in our experiments.

2.2 Surrogate Modeling

The surrogate version of the algorithm contains an archive of all individuals eval-
uated during the run which is initialized in the beginning (line 1) and updated
after each evaluation of the real fitness with the value of the fitness and the
features of the evaluated individual (lines 4 and 24).

The main part regarding the surrogate modeling lies between lines 10 and 20.
First, there is a test, whether there are enough (at least τ) evaluated individuals
in the archive, if not, the surrogate part is skipped and the algorithm works
precisely as the simple algorithm described above. Otherwise, the training set is
created. It contains either the whole archive, if there are less then Am individuals,
or a random sample of Am individuals from the archive if there are more. The
sampling step improves the speed of the surrogate model training.

The training of the model is performed on line 13. The features and the
fitness of the individuals from the training set are collected and used for the
training of the surrogate model. The output variable considered by the models
is the fitness of the respective individual. Then, the individuals with unknown
fitness, denoted by set I, are evaluated by the surrogate model. To this end, the
features are extracted from each such individual and its fitness is predicted by the
surrogate model. On line 16, the individuals are sorted by the estimated fitness
and the indices of w|I| worst individuals are put into set W . Each individual with
its index in W is replaced by its parent. This ensures that such an individual
does not need to be evaluated by a real fitness function, and it gives the parent
another opportunity to generate new individual in the next generation (if it
survives the mating selection).

Finally, the rest of the unevaluated individuals (now only (1 − w)|I|) is eval-
uated using the real fitness function. The newly evaluated individuals are added
to the archive and the next generation begins.

2.3 Discussion

We use a rather unusual way of discarding the individuals predicted to be bad
by the model – we replace them by their parents. In preliminary experiments,
we have also tried a more traditional approach, i.e. discarding the individuals
completely and replacing them by random or best parents. However, both these
cases (random or best parents) lead to a fast loss of diversity in the population,
as some of the parents get repeated. That in turn significantly slows down the
convergence of the algorithm and can even lead to pre-mature convergence.

Another feature of the algorithm, which may be slightly unusual in genetic
programming, is the use of weak elitism. We do not need the elitism from the
point of view of preserving the best individual, as we already save the archive of
all of them, however, preliminary experiments have shown, that it may slightly
improve the performance of this simple algorithm.
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3 Experiments

In order to evaluate the performance of our approach, we used four symbolic
regression benchmarks described by White et al. [11] (keijzer-6, vladislavleva-4,
nguyen-7, and pagie-1). The benchmarks represent a range of different func-
tions with one to five arguments and each of the benchmarks uses a differ-
ent set of primitives. For their precise definition refer to [8,11]. In preliminary
experiements, we also used the korns-12 benchmark, however neither the base-
line nor the surrogate algorithm were able to improve the random solutions from
the initial population significantly, so these results are not presented here.

The objective is defined as the base 10 logarithm of the root mean square error
(RMSE) of the prediction. The logarithm is used to make the values smaller and
also easier for the surrogate model to train. As the algorithm uses only tournament
selection (i.e. only comparisons of values), the objective is equivalent to RMSE.

The GP algorithm described above uses a population of 200 individuals and
is run for a maximum of 15,000 objective function evaluations. The population is
initialized by the ramped half-and-half method with maximum depth of trees set
to 5. The mating selection is a tournament of 3 individuals, and the environmen-
tal selection uses a weak elitism (i.e. the best parent is added to the offspring
population and the worst offspring is removed). The algorithm uses a simple
one-point crossover (i.e. random subtrees are selected from each individual and
swapped) and a uniform mutation which replaces a random subtree by a random
subtree of a random depth between 1 and 4. The probability of crossover is 0.2
and the probability of mutation is 0.7. Those parents that do not undergo any
of the operators are simply copied to the offspring population.

Additionally, the surrogate version of the algorithm starts using the surrogate
model after τ = 1000 evaluations and uses at most Am = 5000 random individuals
from the archive for the surrogate training. The surrogate model, unless otherwise
noted, is a random forest for regression with 100 trees with the depth of at most 14
(the rest of the parameters of the trees uses the default values from scikit-learn [9]).
The worst w = 2/3 of the individuals according to the model are discarded and
replaced by their parents. The whole algorithm is implemented in Python using the
deap framework [2] and the source codes are available as supplementary materials
at the authors’ webpage (www.martinpilat.com).

3.1 Model Quality

Before we use the surrogate model in the GP algorithm, we first test the perfor-
mance of the features and different models for predicting the quality of solutions
generated by the algorithm. To this end, we start the baseline GP and in each
generation evaluate the new (therefore never before seen by the model) indi-
viduals with the surrogate model and also the real fitness function. Then, we
compute the Spearman’s rank coefficient, which expresses how similar the rank-
ing provided by two methods is.

The Spearman’s rank coefficient is used instead of correlation, as in the algo-
rithm, we only use comparisons between pairs of individuals and not the actual
values of the fitness (the algorithm uses tournament selection).

www.martinpilat.com
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Fig. 1. The Spearman’s correlation coefficient between the prediction provided by the
model and the real fitness function. Median over 25 independent runs. The predictions
made by the model were not used by the algorithm.

We compare support vector machines for regression (SVM) [10] and random
forests [1] of 100 trees with two different depth limits - either unlimited (RF)
or limited to 14 (RF (14)). Both methods use the default parameters from the
scikit-learn framework and a standardization of the inputs is performed for the
SVM. The limit on the depth of the random forest was set after preliminary
experiments. It should be noted that the algorithm is quite sensitive to these
settings and the provided values are a compromise, which seems to provide the
best overall results. Different settings of the random forests were able to provide
better results for some of the benchmarks than those presented here. In the
preliminary experiments, we also used several types of linear models, however,
their performance in this setting is unsatisfactory.

The results are presented in Fig. 1. The plots show the median of the
Spearman’s correlation coefficient computed over 25 independent runs as a func-
tion of the number of fitness evaluations. These runs were performed without the
algorithm using the model in any way. In most cases, the model needs around
2,000 individuals in the training set before its performance becomes stable. After
that, the Spearman’s correlation coefficient is between 0.5 and 0.6 for most of
the problems (except vladislavleva-4), which indicates a correlation of medium
strength between the model and the observed fitness. For vladislavleva-4 the
Spearmann’s correlation drops to 0.3 after a thousand evaluations, this also coin-
cides with the fact, that after thousand evaluations the convergence speed drops
significantly (c.f. Fig. 2). This may be caused by the fact that the differences
between the individuals get smaller and are thus harder to predict.
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SVM provides the worst results of the three types of models used in this com-
parison, while the random forest with unlimited tree depth provides the best. How-
ever, the differences are rather small for some of the problems (mainly pagie-1 and
vladislavleva-4). As expected, the performance of random forest with the depth of
trees limited to 14 is slightly worse than that of unlimited random forest, but the
difference is negligible. On the other hand, the smaller random forests are trained
much faster, therefore, the RF (14) will be used in the rest of the paper.

3.2 Importance of Features

We have proposed a number of features. Naturally the importance of some of
them is larger than the importance of others. In this section, we investigate which
of the variables are the most important and therefore provide the most informa-
tion about the quality of the programs. Such an information about the features
is interesting not only for surrogate modeling in GP, but also for the design of
better genetic programming operators. One can, for example, mutate more often
those terminals that are more important for the quality of the program. We use
the feature importance as computed by the random forest algorithm to judge
the importance of the variables. This importance is computed [7] as the sum
of the decreases in the performance metric used by the tree (mean square error
in this case) caused by a given variable divided by the number of trees in the
ensemble. Higher values indicate more important features.

To measure the importance, we run the same algorithm as in the previous
section, i.e. the non-surrogate baseline with the model trained in each generation.
This time, we log the importance of each variable provided by the model. The
results of this experiment are summarized in Table 1. We report the four most
important features for each of the problems after 5,000 and 10,000 evaluations
together with their importance.

We can see that among the most important features are almost always some
of the features which relate to the size of the tree – either the height of the tree
or the size (len) of the tree. This should not be surprising, as too small trees can
have a poor performance.

Other often important features are the counts of some of the primitives.
Interestingly, among them the exp is the most important feature for the pagie-1
benchmark and one of the two most important features for the nguyen-7 dataset.
In these cases, the features are important in the negative sense – programs
with exp are inferior to programs without it, as none of the benchmarks use
this function. Otherwise, the more simple primitives (multiplication, addition,
subtraction) seem more important.

The vladislavleva-4 benchmark is interesting – it is the only one, where the
importances of the different statistics on constants are among the top five fea-
tures. The V-F1 feature in this benchmark corresponds to the special function
in this benchmark defined as nε, where ε is a constant evolved by the algorithm.
As this function is important to find the correct solution, it makes sense the
number of times it is used is an important feature.
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Table 1. The four most important features for each of the benchmarks after a given
number of function evaluations. The importance is represented by median importance
of each feature computed over 25 independent runs with the random forest regressor
with 100 trees with maximum depth of 14. “depth” and “size” are the respective tree
features, “const-mean” is the mean value of constants used in the individual and “arg-
count” is the number of arguments used by the individual. The rest of the features
represent the counts of the respective functions used by the individual.

Bench Evals Most important features

keijzer-6 5000 depth (0.397), safesqrt (0.097), mul (0.058), inverse (0.055)

keijzer-6 10000 depth (0.350), safesqrt (0.069), mul (0.050), size (0.050)

pagie-1 5000 exp (0.260), add (0.067), sub (0.060), size (0.060)

pagie-1 10000 exp (0.275), size (0.061), mul (0.058), arg-count (0.050)

nguyen-7 5000 depth (0.134), exp (0.096), safediv (0.068), mul (0.062)

nguyen-7 10000 depth (0.160), exp (0.085), size (0.065), mul (0.064)

vladisl.-4 5000 const-mean (0.150), V-F1 (0.076), depth (0.068), size (0.062)

vladisl.-4 10000 const-mean (0.159), size (0.062), V-F1 (0.059), depth (0.057)

3.3 Algorithm Performance

To test the algorithm, we made 25 runs on each of the benchmarks described
above. The results are presented in Fig. 2. The plots show the dependence of the
fitness (logarithm of the RMSE) on the number of fitness evaluations. Moreover,
the red dotted line shows the p-value of one-sided Mann-Whitney U-test to test
the statistical significance of the differences.

The best results were obtained for the keijzer-6 and pagie-1 benchmarks.
Here, the surrogate version is able to decrease the number of evaluations needed
to find a solution of given quality by almost 50 the evolution (approx. between
2,000 and 7,000 evaluations). After this phase, the baseline version performs
similarly on keijzer-6. For pagie-1, the surrogate is better during the whole 15,000
evaluations given as a budget to the algorithm, however, the differences get
smaller. For the nguyen-7 benchmark, the median run of the surrogate algorithm
is better between 2,000 and 6,000 fitness evaluations. However, the difference is
rather small and the standard deviations are large, which means we can draw
no definitive conclusion from this experiment.

The performance was the poorest for the vladislavleva-4 benchmark. There
is no significant difference between the two algorithms in this case. We believe,
there are two reasons for this behavior. First, most of the improvement happens
before the surrogate modelling is even enabled – the baseline converges fast in
the first 1,000 evaluations and does not improve much further. It may indicate
that the problem becomes too difficult for the simple GP used in this work.
Second, the performance of the model, as indicated by the tests in the previous
sections was quite poor for this benchmark, which also may affect the results in
a negative way.
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Fig. 2. The convergence rate of the algorithm on the four selected benchmarks. The
lines represent the median of 25 runs, the shaded areas represent the first and third
quartile. On the right axis, the red dotted line represents the p-value of the one-sided
Mann-Whitney U-test computed after each 100 evaluations.

4 Conclusions and Future Work

We have proposed a simple surrogate-based genetic programming algorithm
which provides promising results on the selected benchmark problems. We have
shown that the surrogate models are capable of predicting the real fitness value
without the need to evaluate the program, only by utilizing some static features.
This may help to improve the effectiveness of genetic programming for problems
with hard-to-evaluate fitness functions.

We also proposed a basic set of features which can be used for the building of
surrogate models in genetic programming and we have evaluated the performance
of these features. It seems that one of the most important features is the size of
the tree, and among the more important features are the number of times each
of the primitives is used. On the other hand, statistical features on the constants
and features regarding the arguments actually used by the problem seem less
important. In the case of the arguments, it may be caused by the fact that most
of the benchmarks use all of the arguments, thus making these feature useless.

The presented approach should be considered mostly a proof of concept.
There are definitely still many things that require more attention before it can
be successfully used to solve practical tasks. The strategies for replacing the
individuals deemed un-promising by the surrogate model can be refined, as well
as the method for the selection of the training set from the archive – selecting a
diverse set of samples instead of a random one may lead to better models.
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