
A General-Purpose Framework
for Genetic Improvement

Francesco Marino1, Giovanni Squillero1, and Alberto Tonda2(B)

1 Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
francesco.marino@studenti.polito.it, giovanni.squillero@polito.it

2 UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 1 Av. Brétignières,
78850 Thiverval-Grignon, France
alberto.tonda@grignon.inra.fr

Abstract. Genetic Improvement is an evolutionary-based technique.
Despite its relatively recent introduction, several successful applications
have been already reported in the scientific literature: it has been demon-
strated able to modify the code complex programs without modifying
their intended behavior; to increase performance with regards to speed,
energy consumption or memory use. Some results suggest that it could
be also used to correct bugs, restoring the software’s intended function-
alities. Given the novelty of the technique, however, instances of Genetic
Improvement so far rely upon ad-hoc, language-specific implementations.
In this paper, we propose a general framework based on the software engi-
neering’s idea of mutation testing coupled with Genetic Programming,
that can be easily adapted to different programming languages and objec-
tive. In a preliminary evaluation, the framework efficiently optimizes the
code of the md5 hash function in C, Java, and Python.

Keywords: Genetic improvement · Genetic programming · Linear
genetic programming · Software engineering

1 Introduction

The term “genetic improvement” has been commonly used to denote the science
of applying genetic, breeding principles and biotechnology to improve plants and
animals, that is, to maximize the expression of their genetic potential making
them more productive for human use. While such techniques are dated back to
1700 s, the very same term has been quite recently renovated in a completely
different context: computer science. Nowadays among evolutionary computa-
tion scholars, Genetic Improvement (GI) denotes the application of evolutionary,
search-based optimization methods to the improvement of existing software.

The hope to automatically improve, let alone create, software has been a
driving force of evolutionary computation. In 1992, John Koza asked “how can
computers be made to do what is needed to be done, without being told exactly
how to do it?”, then tried to answer the question by introducing the paradigm
of Genetic Programming (GP) [1]. Despite an unquestionable series of successes,
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 345–352, 2016.
DOI: 10.1007/978-3-319-45823-6 32

346 F. Marino et al.

GP cannot be used to evolve from scratch a full computer program able to solve
a generic problem, yet.

With the more recent GI, practitioners are tackling an apparently easier
problem: given the code of an existing program, GI strives to tweak it in order to
reach a specific goal, such as: improve speed, reduce memory usage, reduce code
length, remove bugs, etc. Such a technique raised the interest of the scientific
community, and several works on the subject have appeared in literature, in the
last few years [2–4]. Despite the interest, so far each application of GI has been
developed in-house by researchers, with solutions designed for specific problems
and computing languages, with little to none code re-usability.

In this paper, we propose a general-purpose framework for GI, able to tackle
problems in any computer language and with user-definable goal. The approach
exploits an existing general-purpose evolutionary algorithm (EA), and is tested
on a simple but challenging test case, the md5 hash function. For three different
languages, C, Java, and Python, the proposed methodology is proven able to
reduce the code size of the function without introducing errors, given a target
number of items for which to generate a hash value.

2 Background

2.1 Genetic Improvement

GI was introduced as a technique able to automatically modify the source code of
existing software, optimizing its performance with regards to user-defined met-
rics [2]. GI was originally based on Genetic Programming (GP) [1]: individuals
are encoded as linear graphs, each one representing a series of permutations on
the code, ranging from commenting blocks, to swapping two lines, to change
the initialization of a variable. Even if the fitness evaluation is specifically tai-
lored for each application, the general idea is always to improve code behavior
with respect to one or more objectives, all the while maintaining the software’s
functionalities.

GI has been successfully applied to different case studies, in order to decrease
energy consumption [3], improve speed [2], specialize a program to optimize
some specific functions [4], and minimize memory usage [5], respectively. Recent
results, aiming at repairing the firmware of a router, prove that GI is also able
to act on compiled code, correcting bugs without direct access to the source or
to test suites [6]. The rising interest of the evolutionary research community for
the topic culminated in a first workshop on the subject, organized during the
GECCO conference in 20151.

As it is common for techniques in the early stages of research, case studies of
GI use ad hoc tools, usually developed from scratch for the specific application.
Now that GI is getting more and more adopted, a general-purpose framework
could be extremely helpful to practitioners and researchers alike, speeding up
prototyping and development of new ideas.

1 http://geneticimprovementsoftware.com/.

http://geneticimprovementsoftware.com/

A General-Purpose Framework for Genetic Improvement 347

2.2 µGP

µGP (MicroGP) [7,8] is an evolutionary toolkit. Originally devised to evolve
assembly-language programs for test program generation [9], it was later
expanded to a general-purpose open-source project2 and exploited for several
applications, ranging from Bayesian network structure learning [10] to analyz-
ing the behavior of wireless network routing protocols [11], from adapting the
number of cards in reactive pull systems [12] to the detection of power-related
software errors in industrial verification processes [13].

What makes µGP suitable to tackle such a wide range of diverse problems is
its design, based on a distinct separation between the description of individuals
in the target application, the evolutionary core, and the fitness evaluator. In
essence, the framework evolves a set of linear directed graphs, where each node
represents a macro, that can in turn present several parameters. The descrip-
tion of the macros is specified by the user through a configuration file. When
individuals are evaluated, the macros in each node are converted to text, and
the resulting file is passed to a user-designed evaluator program. For a high-level
depiction of the framework, see Fig. 1.

Fig. 1. High-level structure of the μGP toolkit. In order to prepare the framework to
tackle a new application, only the parts in gray (XML description file and external
evaluator) need to be modified by the user.

3 Proposed Approach

Given the rising interest around applications of GI, we propose a general-purpose
framework, to ease prototyping and development. The framework is based on the
µGP evolutionary toolkit, and can be quickly adapted to new GI applications,
across different languages, without any need to recompile the source code, simply
acting on configuration files and fitness evaluation.

2 μGP is hosted on SourceForge http://ugp3.sourceforge.net/.

http://ugp3.sourceforge.net/

348 F. Marino et al.

Table 1. Set of MT operations selected for the proposed framework.

Short-code Description

CAR Arithmetic operator replacement

CAS Assignment operator replacement

CBI Bitwise operator replacement

CCO Logic connector replacement

CLO Logic operator replacement

CST Constant value replacement

CUN Unary operator replacement

DEL Statement deletion

An individual encodes a sequence of operations to be performed on the tar-
get code. Such operations are inspired by Mutation Testing (MT), a technique
devised in the early 1970s to evaluate the quality of a test suite [14]. The basic
idea is to slightly mutate a program, emulating developers’ errors. All such
mutants are eventually used to assess the effectiveness of a test suite in dis-
criminating bug-free software.

As for GI, most approaches exploiting MT are either problem or language
specific. However, being a well-established technique, one can find in literature
lists of mutation operators that can be applied to programs [15–20].

Our approach exploits the possibility to mutate a source program. We select
a compact list of standard MT operations that are both general and relevant
for all languages. It is important to notice that some MT functions have the
clear purpose of causing a fault, and they have not been considered here. Table 1
shows the set of selected operations.

The proposed approach is summarized in Fig. 2.

3.1 Evolutionary Core

An individual is a variable-length sequence of modifications. Each modification
is encoded as an operation (see Table 1) and one or more operands. Possible
operands, e.g., the list of used operators or the list of used constants, are pre-
computed with static analysis.

The evolutionary core is the out-of-the-box µGP. µGP mutates and recom-
bines individuals using classical genetic operators. In more details: an operation
may be substituted with another operation, or its operands changed. Two indi-
viduals may be mixed using one-cut, two-cut, and uniform crossover operators.

Since the list of operations to be performed on the code is not language-
specific, a parser is required to translate the generic high-level operations to
language-specific ones. After the modified program has been generated, it is then
tested on a set of test cases to ensure that the features are maintained and to
evaluate the quality of the improvement reached, as for standard GI procedure.

A General-Purpose Framework for Genetic Improvement 349

Fig. 2. Structure of the proposed approach. The μGP toolkit is used to generate a
sequence of operations to be performed on the target code. The resulting modified
program is then run through a test suite, in order to assess its functionality, and then
evaluated with regards to a user-defined metric, for example speed, memory usage, etc.

4 Experimental Evaluation

In order to assess the suitability of our approach, we test the proposed framework
on the MD5 function [21], a small, yet paradigmatic, case study. The MD5
message-digest algorithm is a widely used cryptographic hash function producing
a 128-bit (16-byte) hash value, typically expressed in text format as a 32-digit
hexadecimal number. MD5 has been utilized in a wide variety of cryptographic
applications and is also commonly used to verify data integrity despite the fact
that it is now considered unsuitable for further cryptographic use.

The classical MD5 implementation computes the value starting from the key
and performing a series of arithmetic and binary operations on it. The experi-
ments aim at improving the classical MD5 by reducing its size while still guar-
anteeing zero collision of the generated hashes on different fixed input set.

The necessity to optimize a general algorithm applied in a reduced scenario
is not uncommon. And calculating hashes in an embedded system, thus for a
known and fixed number of keys is a plausible scenario.

Experiments tackle the same function implemented in three different lan-
guages: C, Java and Python. Each function was improved in four scenarios, for
a different number of keys: 8, 256, 1, 024, and 4, 096. The parameters used by
the µGP in all the experiments are shown in Table 2. The evolution was stopped
after 50 generations with no improvement in the fitness of the best individual.

In total, twelve different experiments were executed, producing four improved
versions of the original function, in each language. Every improved program
showed a reduced size, while guaranteeing to produce no collisions over the set
of keys. Each run has been repeated 10 times. Results are shown in Table 3.

350 F. Marino et al.

Table 2. μGP parameters

Parameter Value Description

μ 30 Population size

ε 1 Elite size

λ 20 Genetic operators applied in each generation

α 0.8 Self-adaptation inertia

τ 2 Tournament size

M 300 Maximum number of generations

St 50 Steady-state threshold

Table 3. Hash function size reduction compared among languages and test suites (10
repetitions)

keys C Java Python

8 46 % 40 % 36%

256 41 % 37 % 39%

1,024 41 % 36 % 36%

4,096 37 % 38 % 44%

Although preliminary, results are interesting. In both C and Java the achieved
improvement is larger when the key set is smaller, as expected. The less different
inputs are used, the more lines can be removed. Indeed, it must be noted that
the tool is able to modify the original programs, tweaking constants or changing
operators, and not only removing lines. For the Python implementation, on
the other hand, the type of the keys and not their simple number, is the most
important element. Thus, the tool is able to improve the original MD5, but
improvement are not directly connected with the size of the key set.

Table 4 reports the average computational resources required to run the
experiments. The tool was executed on a i7 computer with 16 GB of RAM, using
a Linux-based operating system. Column CPU shows the total time required

Table 4. Time elapsed in each experiment (10 repetitions)

keys CPU (h:mm) Generations

C Java Python C Java Python

8 2:06 4:20 3:10 162 54 50

256 2:22 4:26 5:09 300 69 147

1,024 2:03 6:25 6:26 300 72 206

4,096 3:50 3:58 5:56 248 53 185

A General-Purpose Framework for Genetic Improvement 351

to run µGP, the tool for applying changes, and the evaluator. Column Gen-
erations reports the average number of generations before a steady-state is
reached.

5 Conclusions

Genetic Improvement (GI) is a recently presented evolutionary technique for
software engineering, able to automatically modify the source code of a program,
increasing its performance with regards to energy/memory consumption or speed
of execution. While the methodology has been proven to be rather promising,
all solutions found in literature are ad-hoc implementations, often devised from
scratch for a specific application. In this paper, we presented a generic framework
for GI, able to target different programming languages and different objectives,
requiring only minor tweaking on the part of the user. The proposed approach
is experimentally tested on simple case studies in Python, C++ and Java, and
the results show that it is able to satisfactorily perform in all instances. Future
works will focus on providing a Graphical User Interface for the framework, and
releasing a full test set of benchmarks for GI, in different languages and for
different objectives.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

2. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation (99) (2013)

3. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: Proceedings of the 2015 on Genetic and Evolutionary Computa-
tion Conference, pp. 1327–1334. ACM (2015)

4. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nicolau,
M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo, J.J.,
Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149.
Springer, Heidelberg (2014)

5. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference,
pp. 1375–1382. ACM (2015)

6. Schulte, E.M., Weimer, W., Forrest, S.: Repairing COTS router firmware without
access to source code or test suites: a case study in evolutionary software repair.
In: Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation. GECCO Companion 2015, pp. 847–854.
ACM, New York (2015)

7. Squillero, G.: MicroGP - an evolutionary assembly program generator. Genet. Prog.
Evol. Mach. 6(3), 247–263 (2005)

8. Squillero, G.: Artificial evolution in computer aided design: from the optimization
of parameters to the creation of assembly programs. Computing 93(2–4), 103–120
(2011)

352 F. Marino et al.

9. Corno, F., Sánchez, E., Squillero, G.: Evolving assembly programs: how games help
microprocessor validation. IEEE Trans. Evol. Comput. 9(6), 695–706 (2005)

10. Tonda, A., Lutton, E., Squillero, G., Wuillemin, P.-H.: A memetic approach to
Bayesian network structure learning. In: Esparcia-Alcázar, A.I. (ed.) EvoApplica-
tions 2013. LNCS, vol. 7835, pp. 102–111. Springer, Heidelberg (2013)

11. Bucur, D., Iacca, G., Squillero, G., Tonda, A.: The impact of topology on energy
consumption for collection tree protocols: an experimental assessment through evo-
lutionary computation. Appl. Soft Comput. 16, 210–222 (2014)

12. Belisário, L.S., Pierreval, H.: Using genetic programming and simulation to learn
how to dynamically adapt the number of cards in reactive pull systems. Expert
Syst. Appl. 42(6), 3129–3141 (2015)

13. Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework
for automated detection of power-related software errors in industrial verification
processes. J. Electron. Test. 26(6), 689–697 (2010)

14. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 4, 34–41 (1978)

15. King, K.N., Offutt, A.J.: A FORTRAN language system for mutation-based soft-
ware testing. Softw. Pract. Exp. 21(7), 685–718 (1991)

16. Delamaro, M.E., Maldonado, J.C., Mathur, A.: Proteum-a tool for the assessment
of test adequacy for C programs users guide. In: PCS, vol. 96, pp. 79–95 (1996)

17. Ma, Y.S., Offutt, J., Kwon, Y.R.: Mujava: an automated class mutation system.
Softw. Test. Verif. Reliab. 15(2), 97–133 (2005)

18. Derezińska, A., Rudnik, M.: Quality evaluation of object-oriented and standard
mutation operators applied to C# programs. In: Furia, C.A., Nanz, S. (eds.)
TOOLS 2012. LNCS, vol. 7304, pp. 42–57. Springer, Heidelberg (2012)

19. Derezińska, A., Ha�las, K.: Operators for mutation testing of python programs.
Research report (2014)

20. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

21. Rivest, R.: The Md5 Message-digest Algorithm. Princeton, RFC (1992)

	A General-Purpose Framework for Genetic Improvement
	1 Introduction
	2 Background
	2.1 Genetic Improvement
	2.2 GP

	3 Proposed Approach
	3.1 Evolutionary Core

	4 Experimental Evaluation
	5 Conclusions
	References

