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Abstract. The selection of algorithms to build portfolios represents a
multi-objective problem. From a possibly large pool of algorithm candi-
dates, a portfolio of limited size but good quality over a wide range of
problems is desired. Possible applications can be found in the context of
machine learning, where the accuracy and runtime of different learning
techniques must be weighed. Each algorithm is represented by its Pareto
front, which has been approximated in an a priori parameter tuning. Our
approach for multi-objective selection of algorithm portfolios (MOSAP)
is capable to trade-off the number of algorithm candidates and the respec-
tive quality of the portfolio. The quality of the portfolio is defined as the
distance to the joint Pareto front of all algorithm candidates. By means
of a decision tree, also the selection of the right algorithm is possible
based on the characteristics of the problem.

In this paper, we propose a validation framework to analyze the per-
formance of our MOSAP approach. This framework is based on a para-
metrized generator of the algorithm candidate’s Pareto front shapes. We
discuss how to sample a landscape of multiple Pareto fronts with prede-
fined intersections. The validation is performed by calculating discrete
approximations for different landscapes and assessing the effect of the
landscape parameters on the MOSAP approach.

Keywords: Multi-objective optimization · Algorithm selection ·
Performance assessment · Benchmarking

1 Motivation

In algorithm selection tasks, it is still common practice to tune and compare
competing algorithms or models with respect to a single performance measure.
For instance, the mean error rate in classification or the best obtained function
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value in optimization. The best algorithm can easily be selected based on the
performance value. Often, however, additional performance measures are worth
consideration. For instance, the budget of computation time or function evalua-
tions could be considered as a second criterion. Since the performance measures
are likely to be contradicting, both the tuning and the selection have to be
adjusted. During the parameter tuning, the respective Pareto front has to be
approximated for each algorithm. As a consequence, sets of solutions are com-
pared in the selection step. As there is likely no single best candidate, the joint
Pareto front is formed by a set of algorithms. In multi-objective selection of algo-
rithm portfolios (MOSAP), we aim at approximating this subset of algorithms
to allow selecting the best algorithm for a specific task a posteriori.

A possible application is the training of support vector machines (SVMs).
Since the training of a single kernelized SVM scales at least quadratically with
the number of observations, exact SVMs may be inapplicable for large datasets.
Many approximative solvers have been introduced to compensate for this draw-
back. We conducted an exhaustive benchmark comparing the accuracy and the
training time of some representative solvers in a multi-objective way [7].

To the best of our knowledge, there is no other work on the MOSAP topic.
After the conceptual ideas of our MOSAP approach have been proposed and
tested on the SVM application [6], we are now interested in benchmarking and
validating MOSAP methods. In particular, we want to evaluate the performance
of our own approach. To accomplish this, we propose a generator for constructing
artificial data samples of candidate algorithms with known global Pareto fronts.
Based on this generator, the performance of the resulting portfolios is evaluated
for different properties of the generated data sets.

2 Multi-objective Selection of Algorithm Portfolios

In general, the performance of a set of r algorithms A = {A1, . . . , Ar} with
respect to m objectives (y1, . . . , ym) ∈ Y m shall be evaluated. Each algorithm
Ai (i = 1, . . . , r) has its own set of parameters. We assume that a multi-objective
parameter tuning has been performed in advance for each algorithm Ai. The
resulting discrete approximation of the respective Pareto front is denoted as
PF (Ai). We focus on the common case of two objectives (y1, y2) ∈ Y 2.

Usually, there is stochasticity in the tuning results (e.g., random start designs
in the optimization [8]). We assume that each tuning has been replicated n > 1
times, resulting in n independent approximations of PFj(Ai) (j = 1, . . . , n) for
each algorithm. From these replications, we can compute the empirical attain-
ment function [4]. In this paper, we use the median front (50%-EAF) as repre-
sentative of the outcome of each algorithm.

Our MOSAP approach is divided into three independent steps. In the first
step, unnecessary candidate algorithms producing so-called interfering fronts
are detected. Interfering fronts are completely dominated by the fronts of the
other candidates and therefore do not contribute to the joint Pareto front. In
our approach, we remove algorithms that are completely dominated in η of
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the replications. In the second step, we build a subset of algorithms with a
reasonable trade-off between the size and the quality with regard to the joint
Pareto front. This selection is a bi-objective decision making problem, as we
aim to minimize the size of the subset and to maximize its quality. We define
the quality of a given subset as the negative gap between its representative
Pareto front and the joint Pareto front of all algorithms. The gap can be mea-
sured by any binary performance indicator, for example the hypervolume [12].
The decision making is implemented by optimizing the augmented Tschebyscheff
norm [9] with a predefined weight vector w. In the third step, we aim at defin-
ing a decision rule for selecting the candidate algorithm for a specific problem.
As we assume a bi-objective problem, we know that for non-dominated points
the value of the second objective will decrease while the value of the first one
increases. Hence, the solutions of the Pareto front can be indexed with regard to
the first objective y1. The domain of this objective is partitioned into intervals
[x1, x2], [x2, x3], . . . , [xt−1, xt]. Each interval is assigned to a specific algorithm
Ai. For approximating this mapping, we calculate the joint non-dominated 50%-
EAF of all remaining algorithms and learn a decision tree [1] with input para-
meter y1. To avoid that xk−1 and xk (k = 2, ..., t) are too close to each other,
the decision tree is pruned with complexity control parameter cp.

In this paper, we aim at selecting an almost comprehensive portfolio of
algorithms, therefore we parametrize our method as follows: η = 0.5, cp = 0.1
and w = (0.01, 0.99) (it is more desirable to have a small gap than a small
portfolio).

3 Test Case Generator

Fig. 1. Result of a biobjective parameter tuning (test
error versus training time) of different approximative
SVM solvers on the mnist dataset [7].

Our goal is the automatic
construction of artificial
test cases that resem-
ble the real data we
observed in the SVM
benchmark [7], but are
also able to take rather
different shapes. In Fig. 1
an example of real data is
displayed.

Our framework for
creating the test cases
consists of four steps. In
the first step, we propose
a flexible parametrized
class of convex Pareto
front shapes. By adjust-
ing the parameters we are able to generate different Pareto fronts with pre-
defined locations and shapes. In the second step, the sampling is extended to
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sets containing multiple Pareto fronts corresponding to r different algorithms. In
this set, we differentiate between two types of Pareto fronts: active fronts that
do have a contribution to the joint Pareto front and interfering fronts without
contribution. The active fronts are constructed under consideration of prede-
fined intersection points. In the third step, we describe how to generate discrete
approximations from the continuously defined fronts in order to simulate the
outcome of each algorithm. We propose four methods with different types of dis-
tributions and approximation error. In the fourth step, we discuss how to create
n noisy replications of these discrete approximations.

Class of Functions. We define a parametrized function family y = e−ax − bx
for a, b > 0 to construct convex functions which differ in the location of the knee
(controlledbyparameter b) and the curvature (controlledbya).We restrict thegen-
erator to convex functions based on our experiences with real-world data [6,7,10].
With this general formulation, we can only define Pareto fronts with a knee point
skewed to lower values of the first objective y1. For skewing the knee point towards
lower values of y2, the function is reflected on the angle bisector. To accomplish
this, we utilize the Lambert W-function [2], which is the inverse function of xex.
We assign this inverse function to negative values of b. A value of b = 0 results in a
knee in the center of the front. The parameter a defines the curvature of the Pareto
front, higher values of a result in a stronger severity of the knee. The effects of a and
b are shown in Fig. 2. We normalize our fronts by subtracting e−a − b and dividing
by 1 − e−a + b. After normalization, all functions of the function family intersect
with the extreme points (0, 1) and (1, 0).

For preparing the next step of building defined sets of Pareto fronts, the
parameters c and d are added to the function family. These parameters allow
the Pareto fronts to be moved horizontally (c) and vertically (d). In addition,
the parameter s is introduced for scaling the Pareto fronts.

The final class of functions is defined as

y =

⎧
⎨

⎩

1
s

(
e−a(x+c)−b(x+c)−e−a+b

1−e−a+b + d
)

if b ≥ 0
1
s

(
1

a|b| [|b|W (u) + a(x + c − 1)(e−a − |b|) − a(x + c)] + d
)

if b < 0

with W the Lambert W-function [2] and

u =
a

|b| exp
(

a

|b|
[
e−a − b + x(b − e−a + 1)

]
)

.

Sets of Pareto Fronts. For generating a set of Pareto fronts, we want to sample
N active and M interfering functions of the function family. The N active fronts
are arranged according to predefined cut points {t0 = 0, t1, . . . , tN−1, tN = 1}
of the joint Pareto front. Again, we want the joint Pareto front to lie in [0, 1]2

with extreme points (0, 1) and (1, 0).1 The M interfering fronts benchmark the
ability of the algorithm selection approach to sort out unnecessary algorithms.
1 If desired, an a posteriori scaling to arbitrary intervals is possible.
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Fig. 2. Influence of the parameters a and b on the function family. In the left plot b is
set to 0.1, in the right plot a is set to 20.

First the N fronts contributing to the joint Pareto front are sampled. The
parameters a, b and c are drawn randomly as shown in Table 1. Due to numerical
reasons the interval [−0.05, 0.05] for parameter b is excluded. The value of c is
slightly perturbed around the desired left cut point. For the first Pareto front, c
is drawn with μ = 0. This ensures that the knee of the front still lies in (0, 1)2.
The parameter d is automatically calculated based on the sampled values of a,
b and c. It guarantees that the Pareto front intersects with the previous front or
the extreme points in the predefined cut point.

Table 1. Types and parameters of the sam-
pling distributions used in the generator.

Parameter Distribution Distr. parameters

log2 a Uniform [−1, 5]

b Uniform [−5,−0.05] ∪ [0.05, 5]

c Absolute µ = left cut point ti−1

Normal sd = 0.05

This procedure for generating
the active Pareto fronts does not
guarantee that a suitable joint
Pareto front can always be con-
structed. To avoid infeasible data
sets D, several checks are performed
after each Pareto front part PFj has
been sampled. The front PFj has to
be dominated by the remaining fronts for x ∈ [0, tj−1) and x ∈ (tj , 1]. For
x ∈ [tj−1, tj ], it has to be non-dominated. Furthermore, the front must not be
quite similar to one of the other fronts. If one of this criteria is violated, a new
value of the parameter c of the front is sampled. If no suitable front can be found
after 10 samples, all its parameters are sampled again. This is done up to 100
times. If still no suitable front has been found, the next to last front is resampled,
too.

In the next step, the M interfering fronts are generated. The parameters
a and b are sampled according to Table 1. The parameters c and d are copied
randomly from one of the active fronts and a positive noise value is added to
make the function dominated by the corresponding active front. In addition, it
is checked that the interfering front has no intersections with the joint front.
If necessary, the parameters of the interfering front are sampled again. Up to
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now, only y1 is scaled to [0, 1]. In the last step, this also done for y2 by setting
d = d − min y2 and s = |max y2 − min y2|.

Sampling Discrete Approximations. In reality, we have to deal with discrete
approximations of the true Pareto front of an algorithm Ai. We propose
four methods to construct those discrete approximations from the continu-
ously defined Pareto fronts. In the first method called deterministic approx-
imation, k points are distributed with a regular spacing along the front. To
accomplish this, vectors vi = (vi,1, vi,2) are generated with vi,1 = i−1

k−1 and
vi,2 = 1− vi,1 (i = 1, . . . , k). The respective points on the front with v1y1 = v2y2
are calculated. The second method samples the weight vectors vi,1 ∈ [0, 1]
randomly from a uniform distribution (random approximation). The last two
methods are based on actual approximations of the NSGA-II [3], where we
use a population size of k. To construct the respective multi-objective prob-
lem, the continuous Pareto front is plugged as shape function h into the ZDT-
concept [11] ZDT(x1, . . . , xl) = (x1, g · h(x))), where g is a function encoding the
distance to the front with minimum 1. We consider an NSGA-II approximation,
where g is fixed to its minimum value, and a NSGA-II g approximation, where
g(x2, . . . , xl) = 1 + 9

l−1

∑l
i=2 xi [11] is optimized for a few iterations to add a

small approximation error to the front. In our experiments, we set l = 10 and
fix the budget of the NSGA-II to 400 evaluations (400k generations).

Table 2. Standard
deviations in the
parameter-noise
approach.

Parameter sd

a 0.030

b 0.004

c 0.020

d 0.020

Stochastic Replications. In the last step, we simulate n
replications of potential tuning runs for a given joint Pareto
front. We consider two practically motivated situations. In
the first situation, the experiment is repeated under exactly
the same circumstances. Hence, the only source of varia-
tion is the approximation quality of the tuning algorithm.
This variation is simulated by adding noise to each point
of the discrete approximation (point-noise). Following the
idea of approximation error, we use absolute normal ran-
dom variables with μ = 0 and σ = 0.02. In the second situation, some details
of the experiments change in the replications. In the context of machine learn-
ing, a different subset of learning instances may be considered during tuning [6],
whereas a different rotation of the test function could be used for optimiza-
tion [5]. For this situation, we create different instances by adding noise to the
parameters of the Pareto fronts (parameter-noise). We use normally distributed
random numbers with μ = 0 and standard deviations according to Table 2. As
a baseline method, we also consider a noiseless variant (without-noise), that
simply replicates the discrete approximation n times. Examples of the possible
combinations of approximation and replication methods are shown in Fig. 3. For
reproducing our results, the generation of test data has been implemented in our
MOSAP R-package2.

2 https://github.com/danielhorn/multicrit result test.

https://github.com/danielhorn/multicrit_result_test
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Fig. 3. Different types of generating discrete approximations and noisy replications.

4 Experimental Validation

A MOSAP method can make two types of errors: In the first type, it fails in
predicting the correct subset of algorithms. A type 1 error occurs if active Pareto
fronts are not selected, interfering fronts are selected, or the sequence of active
fronts is swapped. The second type of error (type 2 error) is related to the
accuracy of approximating the split points in the algorithm mapping.

Performance Measure. We propose an error measure that simultaneously takes
both types of errors into account. Due to the construction principles of our test
generator, there exists an oracle f : [0, 1] → A which assigns the best algorithm
A for a given value x of the performance measure y1. Furthermore we define f̂
as an estimator for f obtained by the MOSAP approach. The performance of f̂
can be measured by

z(f, f̂) =
∫ 1

0

1(x)f(x)=f̂(x)dx.

z can be interpreted as the ratio of correct predictions of f̂ over y1. The optimum
value is 1. In case of type 1 error, the z-value decreases by the length of the
interval assigned to the wrong algorithm. In case of type 2 error, the z-value
decreases by the approximation error of the split point. The integral can be
easily computed in closed form because 1(x)f(x)=f̂(x) is a piecewise constant
function with known split points.

Benchmark. For benchmarking our MOSAP approach, we consider situations
motivated by our practical applications in SVM tuning [7]. We consider N ∈
{2, 3, 5} active Pareto fronts. The split points between these optimal fronts are
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Table 3. Split points of the considered joint Pareto fronts.

N 2 2 3 3 5 5

Split.type Unif. Non-unif. Unif. Non-unif. Unif. Non-unif.

Split.points {0.5} {0.2} {
1
3
, 2
3

} {0.3, 0.5} {0.2, 0.4, 0.6, 0.8} {0.18, 0.2, 0.55, 0.75}

given in Table 3 and are chosen either uniformly (unif.) or non-uniformly (non-
unif.). In addition, we add M ∈ {0, 2, 5} interfering fronts and consider all four
types of noise in creating the discrete approximation using k ∈ {4, 12, 40, 80}
points and all three types of stochastic replications resulting in 864 different
setups with 100 replications each. For each experiment, we store the correspond-
ing z–value. A higher error corresponds to decreasing z–values.

Hypotheses.

1. Even if a MOSAP method does not make any type 1 error, there will always
be a type 2 error. This error should increase with the number of split points,
the strength of the noise and decreasing quality of the coverage of the Pareto
frontier (number of solutions k, spread and distribution).

2. The MOSAP-method should be able to eliminate the interfering fronts. Hence,
M should not have a significant influence on the z–values.

All hypotheses are checked by means of a linear regression. The variables are coded
as factors using dummy variables. The reference classes are set to: N = 2, M = 0,
k = 80, split.type = uniform, discretize.type = deterministic and replications.type
= without-noise. We do not report significance tests, as most observable results
became significant due to the large number of replications.

5 Results

Due to space restriction we only provide the results of the linear regression in this
paper, its coefficients are summarized in Table 4. The full results are available
in the data-section of our MOSAP R-package.

The intercept of our model is slightly greater than 1. Hence, in the most eas-
iest setting our method is able to reach a perfect result. With only N = 2 active
and M = 0 inference fronts and no noise from both the discrete approximation
and the replication, this case essentially measures how accurate the decision tree
estimates the single split point.

The number of active fronts N has the largest effect. As expected, a higher
number of active fronts or split points results in an increase of the error. For
N = 5 we observe an effect size greater than 0.2. Hence, it is likely that some
type 1 errors occur. This effect can be explained by the trade-off between the
gap of the hypervolume and the number of algorithms which has to be found for
deciding on the subset. Seemingly the gap is too small to be traded-off against
the inclusion of another algorithm. This decision can be manipulated be using
more extreme values of w in our method. Another option might be a human-in-
the-loop, who reconsiders the parameter settings after looking at the results.
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Table 4. Results of the linear regression.

Variable Value Estimator

Intercept 1.02

N 3 −9.47e-2

N 5 −2.35e-1

Split.type Non-uniform 2.71e-2

M 2 −3.74e-3

M 5 −7.74e-3

k 40 9.48e-4

k 12 −1.43e-2

k 4 −1.26e-1

Replications.type Point-noise −2.90e-2

Replications.type Parameter-noise −2.89e-2

Discretize.type NSGA-II −1.58e-2

Discretize.type Random −7.69e-3

Discretize.type NSGA-II g −1.12e-1

Both types of adding noise to the
n replications do result in signifi-
cant decreases of the z-value. This
decrease is of the same level for both
approaches. Compared to the noise
added by the NSGA-II g approach,
however, the decrease of the z-values
for both replication types is rather
low.

The results of the discretization
types are nearly as expected. The
deterministic type is the easiest for
the MOSAP approach. As expected,
NSGA-II g combining both approx-
imation error and a non-uniform distribution results in a significant loss of per-
formance. Surprisingly, random point sets result in better z-values than the ones
of NSGA-II without approximation error. In fact, the random point sets are only
slightly inferior to the deterministic ones. Hence, there is no need for perfectly
spaced Pareto front approximations. This observation is confirmed by the effect
of the approximation size. The reduction from k = 80 to k = 40 points even has
a very small, positive effect, actually it is the only effect without a significant
influence. Nevertheless, a further reduction to k = 12 or k = 4 points results in
a either a slight or strong decrease of the z-value. Hence, k should not be set
too small, but it is unnecessary to use very large discrete approximations. In
conclusion, we can confirm our first hypothesis.

An increase of the number of interfering fronts M results in decreases of
the z-value in the order of 10−3. Compared to the effects of approximation error
(NSGA-II g) or additional active fronts (N = 5), these effects are small, but they
indicate that an increasing amount of interfering fronts may have a negative effect
on the result. Therefore, we can only partially confirm our second hypothesis.

As additional observation, the non-uniform cut points result in better
z-values than the uniform ones. This seems meaningful, since some of the active
fronts cover only a small portion of the joint front. Hence, type 1 errors will
result in a smaller decrease of the z-value.

6 Conclusion and Outlook

In this paper, we present a validation framework for MOSAP methods.
We applied the framework to evaluate to performance of our approach. As
expected, the performance slightly decreases with an increasing number of active
fronts and noisy approximation sets. Nevertheless, our method is capable of find-
ing suitable portfolios and mappings even in the hardest cases considered.

In future work we are going to apply our MOSAP method to more practical
test cases. One possibility would be to derive algorithm portfolios from the results
of the Black-Box Optimization Benchmarking workshop (BBOB) [5]. In this
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workshop, the objectives are the number of function evaluations and the ratio
of target levels attained over a set of functions. In this context, it would also
be interesting whether the Pareto fronts can be merged over different instances
instead of only replications on the same instance.
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