
Multi-objective Local Search
Based on Decomposition

Bilel Derbel1, Arnaud Liefooghe1(B), Qingfu Zhang2, Hernan Aguirre3,
and Kiyoshi Tanaka3

1 University Lille, CNRS, UMR 9189 – CRIStAL/Inria Lille-Nord Europe,
Villeneuve-d’ascq, France

bilel.derbel@univ-lille1.fr
2 Computer Science Department, City University, Kowloon Tong, Hong Kong

3 Faculty of Engineering, Shinshu University, Nagano, Japan

Abstract. It is generally believed that Local search (Ls) should be used
as a basic tool in multi-objective evolutionary computation for combina-
torial optimization. However, not much effort has been made to investi-
gate how to efficiently use Ls in multi-objective evolutionary computation
algorithms. In this paper, we study some issues in the use of coopera-
tive scalarizing local search approaches for decomposition-based multi-
objective combinatorial optimization. We propose and study multiple
move strategies in the Moea/d framework. By extensive experiments on
a new set of bi-objective traveling salesman problems with tunable corre-
lated objectives, we analyze these policies with different Moea/d para-
meters. Our empirical study has shed some insights about the impact of
the Ls move strategy on the anytime performance of the algorithm.

1 Introduction

Several single-objective approaches, ranging from problem-specific algorithms to
more generic approaches such as meta-heuristics and evolutionary algorithms,
have been designed, tuned and studied extensively in combinatorial optimiza-
tion. Among many others, local search (Ls) heuristics [2] refer to algorithms
where a solution is improved in an iterative search process by performing lit-
tle perturbation on its vicinity. A common ingredient being at the basis of this
class of algorithms is the so-called neighborhood exploration and move strat-
egy. The specification of at least one neighborhood structure and its proper
combination with a move strategy is in general a cornerstone in the design of
advanced single-objective Ls-based algorithms. Actually, this statement holds
also when turning to the multi-objective setting, where a whole set of solu-
tions, optimizing simultaneously two or more objective functions, is to be com-
puted. Ls components have been investigated to design effective aggregation-
based [3,4,10,12] and dominance-based [9,10,12] multi-objective algorithms. In
particular, within the class of dominance-based algorithms, it is shown in [9]
how different move strategies can have a deep impact on search performance.
In this paper, we are interested in studying the new opportunities offered by
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 431–441, 2016.
DOI: 10.1007/978-3-319-45823-6 40

432 B. Derbel et al.

the so-called Moea/d (multi-objective evolutionary algorithm based on decom-
position) [14] framework in incorporating Ls components. In fact, Moea/d is
a recently-proposed aggregation-based framework which was extensively stud-
ied for continuous problems. Interestingly, Moea/d is a reference algorithm in
multi-objective optimization, mainly due to its high flexibility in incorporating
different search paradigms, and the high quality of the so-obtained algorithms.
Nonetheless, very few investigations can be found on the proper incorporation
of Ls within Moea/d for discrete domains. Some adaptations exist, but they
are often based on genetic operators [1,11], and relatively few in-depth investi-
gations [5,6] considering Ls in Moea/d were conducted against the large body
of works in continuous domains.

In this paper, we provide a comprehensive study on incorporating basic Ls
move strategies into the Moea/d framework. More precisely, our contribution
is three-fold. Firstly, we revisit conventional single-objective move strategies and
illustrate how they can be hybridized with Moea/d. In particular, we highlight
how the replacement flow of Moea/d can be adapted to support such strate-
gies. Secondly, we study the performance of the so-designed algorithms using a
new set of bi-objective traveling salesman problem (TSP) instances with tunable
objective correlations. Our thorough experimental analysis shows that different
behaviors can be obtained depending on objective correlation, and more impor-
tantly on available budgets. Our findings are the byproduct of a running time
analysis providing evidence on the importance of the Ls move strategy in the
design of anytime decomposition-based multi-objective algorithms. Thirdly, we
provide a comprehensive study on the impact of Moea/d common parameters.
The research conducted in this paper is also to be viewed as establishing the first
steps towards the design of more powerful decomposition-based multi-objective
algorithms based on more advanced local search components. In fact, notwith-
standing that we are not horse-racing against state-of-the-art algorithms for the
considered optimization problems, and that we consider basic move strategies,
our findings on the anytime performance of the designed algorithms suggests
that incorporating Ls into Moea/d is still in its very infancy beginning, and
hence, would deserve further research investigations in the future.

The rest of this paper is organized as follows. In Sect. 2, we recall some
background on Ls and Moea/d. In Sect. 3, we describe in more details different
strategies for incorporating Ls components into Moea/d. In Sect. 4, we give our
experimental setup. In Sect. 5, we discuss our experimental findings. In Sect. 6,
we conclude the paper and discuss some open research directions.

2 Background

A multi-objective optimization problem (MOP) can be defined by a solution
set X and by an objective function vector f = (f1, . . . , fm) to be minimized.

The Moea/d [14] framework. Moea/d falls into the class of decomposition-
based algorithms. It seeks good-performing solutions in multiple regions of the
Pareto front by decomposing the original MOP into a number of scalarized

Multi-objective Local Search Based on Decomposition 433

single-objective sub-problems. Different scalarizing functions have been proposed
so-far. In this paper, we use the common weighted Chebyshev function, to
be minimized: g(x | λ, z�) = maxk∈{1,...,m} λk · ∣

∣z�
k − fk(x)

∣
∣; where x ∈ X,

λ = (λ1, . . . , λm) is a positive weighting coefficient vector, and z� = (z�
1 , . . . , z�

m)
is a reference point. In this respect, the originality of the Moea/d framework
is to define a T -neighborhood relation between sub-problems. Let (λ1, . . . , λμ)
be a set of μ uniformly distributed weighting coefficient vectors defining μ sub-
problems. Moea/d maintains a population P = (x1, . . . , xμ), where every indi-
vidual corresponds to one sub-problem. For each sub-problem i ∈ {1, . . . , μ}, its
T -neighbors, denoted B(i), are defined by considering the T closest weight vec-
tors. Sub-problem solutions are evolved with respect to their neighbors. For
every sub-problem, an offspring solution from the T -neighbors set B(i) is gener-
ated using some evolutionary operators. Then, the offspring can replace one or
more T -neighbors if it improves the scalar (Chebyshev) value of the correspond-
ing solution of the neighboring sub-problem. Different variants of this baseline
Moea/d flow exist. In the remainder, we consider the modifications introduced
in [8], considered as a state-of-the-art variant in continuous domains, where
(i) the T -neighbors of a sub-problem is the whole population with a small prob-
ability δ, or B(i) otherwise, and (ii) a newly generated offspring can replace at
most nr other solutions, where nr and δ are two user-defined parameters. Other
Moea/d variants could be considered as well, but for the sake of analysis, we
only consider the most common and widely-used variant from [8,14].

Ls Move Strategies. Ls is a single solution-based walk that iteratively
improves the current solution by means of local transformations, and then mov-
ing to an improving close-by solution. Those transformations are usually based
on a neighborhood function N : X → 2X , which assigns a set of neighboring solu-
tions N (x) ⊂ X to any solution x ∈ X. It should be clear for the reader that we
differentiate between the T -neighborhood of Moea/d and the neighborhood of
a solution in Ls. In the most simple Ls variant, also referred to as hill-climbing,
the search stops when the current solution is not outperformed by any neigh-
bor. This means that a local optimum is reached. The move strategy, defining
the transition rule to select an improving neighbor, is also a key ingredient in
Ls-based search. Typical strategies are as follows: (i) In a best-improvement
(or steepest descent) move, the neighbor that improves the most is selected at
each iteration. This means that the whole neighborhood is generated, which can
be time-consuming for large neighborhoods. (ii) In a first-improvement move,
the first improving neighbor is immediately selected. This avoids to systemati-
cally generate and evaluate the whole neighborhood. The exploration order of
neighbors can remain unchanged, or instead can be randomly shuffled at each
iteration. Additionally, the neighborhood structure can be used as a an evolu-
tionary mutation operator when some few neighboring solutions are sampled
at random. Hence, (iii) a random strategy can be considered as well, where a
random neighbor is generated and replaces the current solution if there is an
improvement.

434 B. Derbel et al.

3 The MLSD Scheme

Incorporating Ls into Moea/d can be viewed as a natural outcome since several
single-objective sub-problems are to be improved cooperatively. Although the
standard neighborhood exploration mechanisms of Ls might not be very com-
plicated to integrate into Moea/d, still important design technicalities have to
be explicitly and carefully specified, especially when exploring new neighboring
solutions and when performing replacement in original Moea/d.

In the high-level pseudo-code depicted in Algorithm1, we provide a relatively
detailed description of different possible ways of hybridizing Moea/d with Ls
move policies. The proposed scheme is called Mlsd-sr (Multi-objective Local
Search based on Decomposition). One should notice that Mlsd is parametrized
by two elements, namely s (referring to the selection policy) and r (referring to
the replacment policy). This allows us to differentiate between two stages: (i) the
move selection stage (lines 10 to 21), and (ii) the replacement stage (lines 22 to 29).
We thereby obtain four possible variants, as discussed in the following.

Algorithm 1. Mlsd-sr: high-level pseudo-code
Input: μ: population size; T : neighborhood size; δ ∈ [0, 1]; nr ∈ �0, μ�; s ∈ {Best, First,Rnd};

r ∈ {Min,Rnd}.
1
{

λ1, . . . , λμ
}← generate weight vectors w.r.t. μ sub-problems;

2 ∀i ∈ {1, . . . , μ} B(i) ← the T closest sub-problems w.r.t λi;

3 P=
{

x1, . . . , xμ
}← generate the initial population;

4 evaluate P ;
5 (update external archive with P ;) /* optional */
6 set z� from P ;
7 while Stopping Condition do
8 for i ∈ {1, . . . , μ} do
9 if rand {[0, 1]} < δ then Bi ← B(i); else Bi ← P ;

// Stage #1: Move selection
10 k ← rand {Bi};
11 I ← ∅;

/* Check moves and record improved sub-problems */

12 for y ∈ N (xk) do /* By default, s = Best */
13 evaluate y;
14 (update external archive with y;) /* optional */
15 update z� using y;

16 Jy ← {
j ∈ Bi s.t. g(y | λj , z�) < g(xj | λj , z�)

}
;

17 if Jy �= ∅ then
18 cy ← 0;
19 I ← I ∪ {(y, cy, Jy)};
20 if s = First then break;

21 if s = Rnd then break; /* go to line 22 */

// Stage #2: Replacement
22 while ∃j ∈ Bi s.t. (∃(y, cy, Jy) ∈ I s.t. j ∈ Jy and cy < nr) do
23 if r = Min then

24 y
∗ ← argminy s.t. (y,cy,Jy)∈I

{
g(y | λ

j
, z

�
)
}

25 else if r = Rnd then
26 y∗ ← rand {y s.t (y, cy, Jy) ∈ I};
27 xj ← y∗;
28 cy∗ ← cy∗ + 1;
29 Bi ← Bi \ {j};

Multi-objective Local Search Based on Decomposition 435

The Mlsd scheme iteratively loops over sub-problems until a stopping condi-
tion is satisfied. At each iteration w.r.t. sub-problem i, two stages are performed.
The first stage consists in generating some new candidate solutions to be consid-
ered in the second stage. First, a parent solution xk is selected randomly from
the neighborhood of sub-problem i. The selected solution is then locally explored
using the Ls neighborhood structure N . Three different move strategies can be
considered. The first one (s = Best) consists in traversing all solutions y ∈ N (xk)
in an exhaustive manner while checking for any improvement. Notice that vari-
able Jy (line 16) denotes the set of sub-problems improved by an incumbent
solution y, and cy is a counter initialized to 0. The tuple (y, cy, Jy) is then saved
into set I which contains all the records w.r.t any improving solution in N (xk).
In the second strategy (s = First), the exploration of neighbors N (xk) stops as
soon as an improving solution y is found. This strategy guarantees that if N (xk)
contains at least one improving solution, then it is selected and recorded in set I
for the next stage. The last move strategy (s = Rnd) picks a single incumbent
solution y uniformly at random from N (xk), and records the tuple (y, cy, Jy) in
set I only if y is improving at least one neighboring sub-problem.

The second stage consists in replacing the solutions of neighboring
sub-problems. If no improvement was observed, then the replacement stage is
simply skipped. Otherwise, i.e. when |I| ≥ 1, two possible strategies are con-
sidered. In the first one (s = Min), the solution of every sub-problem j in the
T -neighborhood of sub-problem i is replaced by the best improving solution
y� found during the previous stage (if any). In the second one (s = Rnd), an
improving solution (if any) is picked randomly to replace the current solution
of j. Notice that in case the set I contains one single recorded tuple, the two
previous replacement strategies are equivalent. Notice also that if a First or a
Rnd policy is adopted in the selection stage, the designed replacement strategies
are also equivalent. Hence, the two replacement strategies might imply different
variants of Mlsd only when a Best strategy is adopted in the first stage.

Finally, it is important to notice the role of the nr parameter in the replace-
ment stage. In fact, since several candidate improving solutions can be considered
in the case s = Best, each time a solution y is selected for the replacement in
line 27, its associated counter cy is incremented. Consequently, once this counter
reaches the value nr, the corresponding solution cannot be selected anymore to
replace any sub-problem, as specified by the condition of line 22.

4 Experimental Setup

For the sake of studying the behavior of the Mlsd-sr framework, we consider the
Traveling Salesman Problem (TSP) as a baseline benchmark problem. The moti-
vation behind this choice is two fold. First, permutation-based optimization prob-
lems, like TSP, are of choice when evaluating the behavior of Ls-based algorithms.
Second, the TSP is a fundamental problem that appears at the bottleneck of many
real-world applications and is representative of a wide range of more complex com-
binatorial optimization problems. We emphasize that this choice is to be under-
stood from a purely benchmarking perspective. In particular, it is worth noticing

436 B. Derbel et al.

that the multi-objective TSP has attracted a lot of interest in recent years and one
can report several state-of-the-art algorithms, see e.g. [5,9,10,12]. This paper does
not propose yet another algorithm for TSP, and we shall not consider to compare
the Mlsd-sr with those algorithms. Besides, designing TSP-specific algorithms
is a whole piece of research that we are not targeting in this experimental study.
Accordingly, we shall only focus on analyzing the relative performance of the dif-
ferent move strategies described previously.

Multi-objective TSP with Correlated Objectives. Given a complete graph
G = (V,E) with n nodes and non-negative edge costs, the symmetric single-
objective TSP seeks a cyclic permutation that contains each node exactly once
and such that the total cost is minimized. A solution can be represented as a
permutation π of size n. Since multiple costs like distance or travel time can
be considered, a multi-objective variant of the TSP can be formulated. Let
{v1, v2, . . . , vn} be the set of nodes, and {[vi, vj] | vi, vj ∈ V } the set of edges. In
the m-objective case, we have m cost matrices such that each edge [vi, vj] ∈ E
is assigned a cost ck

ij for each objective function k ∈ {1, . . . ,m}. The objective
functions can then be defined as follows: fk(π) = ck

π(n)π(1) +
∑n−1

i=1 ck
π(i)π(i+1).

The multi-objective TSP is known to be NP-hard and intractable [10]. In this
paper, we consider two-objective symmetric TSP instances (m = 2) with cor-
related random distance matrices. Following [12], edge costs are chosen from a
uniform distribution in [0, 4473]. However, we additionally define a correlation
coefficient ρ ∈ [−1, 1] between the data contained in both cost matrices. The
generation of correlated data follows a multivariate uniform distribution [13].
The positive (resp. negative) data correlation allows to decrease (resp. increase)
the degree of conflict between the objective function values with a high accuracy.
Notice than when ρ = 0, our instances are the same as [12].

Parameter Setting. We consider
the 2-opt exchange operator as the
neighborhood N for TSP, i.e. given a
candidate solution π, the sequence of
nodes located between π(i) and π(j)
is reversed. The neighborhood size is hence n·(n−1)

2 . We experiment instances
of size n = 100 and correlation values: ρ ∈ {-0.8, -0.4, 0.0, 0.4, 0.8}. We con-
sider a broad range for the other parameters, namely population size μ ∈
{50, 100, 150, 200}, T -neighborhood size T ∈ {5, 10, 15, 20}, nr ∈ {1, 2,∞}, and
δ ∈ {0.0, 0.1}. For every parameter combination, we consider the four variants
of Mlsd-sr as summarized in the table below, thus ending up with 1 920 config-
urations, each one independently executed 20 times. For s = First, neighboring
solutions are explored in a random order. The stopping condition is a maximum
budget of 108 function evaluations. The initial population is generated randomly
and the weight vectors are generated as in [14].

Multi-objective Local Search Based on Decomposition 437

5 Experimental Analysis

We follow the performance assessment protocol proposed in [7] by using the hyper-
volume relative deviation (Ihv) and the additive epsilon (I+ε) indicators. The
hypervolume reference point is set to the worst objective-value, and the reference
set is the best-found approximation over all tested configurations. Notice that we
use an external archive recording all non-dominated solutions found so far.

High Budget Setting. We first report the descriptive statistics on the
indicator-values, together with a Mann-Whitney non-parametric statistical test
with a p-value of 0.05 and using a Bonferroni correction, for the highest budget
of 108 calls of the evaluation function. In Table 1, we show the rank of different
Mlsd-sr variants with the rank being the number of variants that statistically
outperform the one under consideration for each instance. The lower the rank,
the better the algorithm. Both indicators agree that the best performing variant
of Mlsd over all considered instances is when a Best move strategy is adopted
together with a Min replacement strategy. The objective correlation of consid-
ered instances appear to have a crucial impact. The gap between Mlsd-BM
and the other variants is substantial in the case of conflicting objectives whereas
we found no significant differences for highly correlated objectives. Overall, the
considered Mlsd variants can be ranked as follows: Mlsd-BM > Mlsd-BR ≈
Mlsd-FM > Mlsd-RM. It is important to remark that combining a Best move
strategy with an elitist replacement strategy is crucial, otherwise a First move
strategy would be more appropriate. Notice that at this stage of the analysis,
the Mlsd-RM variant is overall the worst performing one, and the relative per-
formance gap between different T -neighborhoods are not statistically significant.
In the following, we shall show that these preliminary conclusions can only hold
for a high computational budget.

Anytime Analysis. When analyzing the quality of the approximation with
different budgets, we basically find that the relative performance of the consid-
ered variants is deeply impacted, independently of the parameter setting. This is
illustrated in Fig. 1 for a particular parameter setting. Interestingly, the Mlsd-
BM and Mlsd-BR variants can only outperform the other variants for a high
budget. Mlsd-RM, which was shown to be the worst-performing approach in
such a setting, now appears to be the best anytime strategy. This might be
surprising at a first glance. However, in the early stages of the search process,
it is more likely that among few random samples, an improving solution for
different sub-problems is found. In contrast, Mlsd-BM would anyway explore
all neighboring solutions (quadratic in n) and consider at most one solution for
replacement. Hence, Mlsd-RM is likely to progress faster and to save a sig-
nificant number of evaluations. As the quality of the population gets better,
it becomes more unlikely to find improving neighbors using random sampling.
This can explain why Mlsd-RM gets stuck and cannot improve the quality of the
population anymore. It is also interesting to remark that Mlsd-FM provides an
intermediate trade-off, since it is relatively competitive against Mlsd-RM while
being able to catch Mlsd-BM again on the latest stages. Interestingly, these

438 B. Derbel et al.

Table 1. Algorithm rank summary using 108 function evaluations, μ = 100, nr = 2
and δ = 0.1. The number in brackets stands for the average indicator-value.

Hypervolume relative deviation (Ihv · 10−2) Additive epsilon indicator (I+
ε · 102)

s = B Mlsd-FM Mlsd-RM s = B Mlsd-FM Mlsd-RM

ρ T Mlsd-BM Mlsd-BR Mlsd-BM Mlsd-BR

−0.8 5 0 (1.41) 4 (2.07) 4 (1.95) 12 (2.61) 0 (49.45) 5 (75.43) 4 (66.89) 5 (78.23)

10 0 (1.38) 4 (2.05) 4 (2.02) 12 (2.57) 0 (51.21) 5 (85.53) 5 (86.38) 5 (76.68)

15 0 (1.33) 4 (1.98) 6 (2.17) 12 (2.57) 0 (52.27) 5 (82.10) 10 (91.86) 5 (76.72)

20 0 (1.39) 4 (2.04) 10 (2.28) 12 (2.47) 0 (53.95) 6 (86.20) 14 (103.3) 5 (77.53)

−0.4 5 0 (1.83) 1 (1.95) 8 (2.22) 12 (2.64) 0 (50.63) 2 (58.36) 4 (66.92) 8 (72.60)

10 0 (1.78) 0 (1.84) 2 (2.03) 12 (2.50) 0 (50.92) 2 (60.35) 4 (65.97) 6 (68.70)

15 0 (1.70) 0 (1.92) 5 (2.08) 12 (2.56) 0 (49.39) 2 (58.69) 6 (68.77) 8 (71.54)

20 0 (1.78) 1 (1.95) 5 (2.06) 12 (2.51) 0 (52.14) 3 (60.60) 6 (69.52) 7 (69.94)

0.0 5 0 (2.42) 0 (2.30) 5 (2.67) 1 (2.69) 0 (45.08) 0 (41.62) 4 (51.59) 4 (52.27)

10 0 (2.23) 0 (2.28) 0 (2.44) 5 (2.85) 0 (39.84) 0 (41.71) 0 (47.41) 6 (52.98)

15 0 (2.32) 0 (2.25) 0 (2.52) 7 (2.71) 0 (42.15) 0 (42.22) 0 (49.12) 7 (50.31)

20 0 (2.39) 0 (2.26) 0 (2.49) 7 (2.80) 0 (43.79) 0 (41.02) 0 (47.95) 7 (53.25)

0.4 5 0 (2.66) 0 (2.33) 0 (2.61) 0 (2.47) 1 (44.82) 0 (38.06) 0 (42.65) 0 (40.59)

10 0 (2.51) 0 (2.43) 0 (2.44) 0 (2.50) 0 (42.17) 0 (39.45) 0 (38.80) 0 (39.44)

15 0 (2.59) 0 (2.34) 0 (2.54) 0 (2.64) 0 (39.49) 0 (37.86) 0 (42.62) 0 (42.86)

20 0 (2.54) 0 (2.30) 0 (2.68) 0 (2.52) 0 (39.23) 0 (38.48) 0 (42.14) 0 (41.33)

0.8 5 0 (2.54) 0 (2.15) 0 (2.08) 0 (2.10) 0 (33.76) 0 (29.78) 0 (28.00) 0 (28.25)

10 0 (2.49) 0 (2.21) 0 (2.05) 0 (2.36) 0 (32.83) 0 (30.17) 0 (28.21) 0 (31.87)

15 0 (2.56) 0 (2.22) 0 (2.14) 0 (2.31) 0 (32.78) 0 (28.68) 0 (27.56) 0 (30.62)

20 0 (2.39) 0 (2.40) 0 (2.23) 0 (2.16) 0 (31.57) 0 (31.39) 0 (29.60) 0 (28.54)

results suggest that there is much room for future improvements in the anytime
behavior of Mlsd by considering hybrid move strategies.

Impact of the Population Size (μ). In Fig. 2, we show a subset of results
on the impact of different population sizes on Mlsd-BM and Mlsd-RM (since
no significant impact was found for Mlsd-FM). The larger the population size,
the better the final approximation set, independently of the considered strategy.

Fig. 1. Runtime analysis of the different algorithm variants. Error bars indicate 95 %
confidence intervals. δ = 0, T = 10, nr = ∞ and μ = 100. Notice the log-scales.

Multi-objective Local Search Based on Decomposition 439

Fig. 2. Runtime analysis for different population sizes. δ = 0, T = 10, nr = ∞.

Fig. 3. Runtime analysis for different T−values. δ = 0, nr = ∞ and μ = 100.

However, smaller population sizes are better for smaller budgets, especially for
instances with correlated objectives. We attribute this to the fact that a larger
population size impacts the population diversity, and is thus more critical when
the Pareto front is larger, which is the case for conflicting objectives.

Diversity Issues (T , nr and δ). We are able to report a significant impact of
the T -neighborhood size only for the Mlsd-BM variant, for highly correlated
objectives and a small budget, as illustrated in Fig. 3. As for parameter nr, we
found a significant impact only for Mlsd-FM and Mlsd-RM, as illustrated in
Fig. 4. We recall that a larger nr−value allows a high-quality solution, possibly
improving multiple sub-problems simultaneously, to replace all those solutions
at once. Intuitively, the surviving solution has then more chance to improve the
overall population quality in subsequent iterations, but at the price of decreasing
diversity. we can see that smaller nr−values are better for convergence purposes,

440 B. Derbel et al.

Fig. 4. Runtime analysis for different nr−values. δ = 0, T = 10 and μ = 100.

whereas a larger nr−value provides a better performance for small budgets. Inter-
estingly, this observation holds only for highly-correlated objectives. As for para-
meter δ, the impact on performance was only significant when usingMlsd-BM for
correlated objectives with a small T -neighborhood size, but it was not helpful for
improving the relative anytime performance. These empirical observations suggest
that, contrary to the continuous case, the δ parameter might not be of great help
when tackling combinatorial problems with conflicting objectives.

6 Conclusion

This paper investigates the foundations of the design of cooperative scalariz-
ing local search approaches within decomposition-based algorithms for multi-
objective combinatorial optimization. Our results revealed strong evidence on the
need of adaptive algorithms that would enable to mix different move strategies
and to better combine the neighborhood exploration with the replacement stage in
order to properly balance the exploration/exploitation trade-off. It is our hope that
our empirical study can enlighten our current understandings of decomposition-
based approaches for multi-objective combinatorial optimization, and can stimu-
late new research paths towards the design of more powerful multi-objective ran-
domized search heuristics based on local search and decomposition.

References

1. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling
problems. In: CEC, pp. 1433–1438 (2008)

2. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, Burlington (2004)

Multi-objective Local Search Based on Decomposition 441

3. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Trans. Cyber. 28(3), 392–403 (1998)

4. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization.
EJOR 137(1), 50–71 (2002)

5. Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algo-
rithm using decomposition and ant colony. IEEE Trans. Cyber. 43(6), 1845–1859
(2013)

6. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for
multiobjective optimization. IEEE Trans. Cyber. 44(10), 1808–1820 (2014)

7. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of sto-
chastic multiobjective optimizers. TIK report 214, Zurich, Switzerland (2006)

8. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE TEC 13(2), 284–302 (2009)

9. Liefooghe, A., Mesmoudi, S., Humeau, J., Jourdan, L., Talbi, E.G.: On dominance-
based local search. J. Heuristics 18(2), 317–352 (2012)

10. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling
salesman problem. J. Heuristics 16(3), 475–510 (2010)

11. Palacios Alonso, J.J., Derbel, B.: On maintaining diversity in MOEA/D: application
to a biobjective combinatorial FJSP. In: GECCO, pp. 719–726 (2015)

12. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the mul-
tiobjective traveling salesman problem. COR 36(9), 2619–2631 (2009)

13. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multi-
objective combinatorial search space: MNK-landscapes with correlated objectives.
Eur. J. Oper. Res. 227(2), 331–342 (2013)

14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE TEC 11(6), 712–731 (2007)

	Multi-objective Local Search Based on Decomposition
	1 Introduction
	2 Background
	3 The MLSD Scheme
	4 Experimental Setup
	5 Experimental Analysis
	6 Conclusion
	References

