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Abstract. This paper proposes a first step towards multidisciplinary
design of building spatial designs. Two criteria, total surface area (i.e.
energy performance) and compliance (i.e. structural performance), are
combined in a multicriteria optimisation framework. A new way of rep-
resenting building spatial designs in a mixed integer parameter space
is used within this framework. Two state-of-the-art algorithms, namely
NSGA-II and SMS-EMOA, are used and compared to compute Pareto
front approximations for problems of different size. Moreover, the paper
discusses domain specific search operators, which are compared to generic
operators, and techniques to handle constraints within the mutation. The
results give first insights into the trade-off between energy and structural
performance and the scalability of the approach.

Keywords: Evolutionary algorithms · Super-structure · Mixed inte-
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1 Introduction

When designing buildings many disciplines have to be taken into account. For
example structural design, because a building structure should have optimal
strength, stiffness, and stability. Compliance is a specific measure of the stiff-
ness of the building structure and will be subject to investigation in this paper.
Another example is building physics, for which in this paper specifically climate
control is used as objective, via the minimisation of the building outer surface,
being a pre-cursor for future RC-network modelling obtaining minimal energy
use for heating and cooling. This is an increasingly important objective due to
unpredictable energy prices and climate protection. The built environment is
responsible for about 40 % of the total use of energy and materials [1].
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Traditionally, energy efficiency and structural design objectives are dealt with
in different engineering disciplines, and the same holds for various other objec-
tives (e.g. architectural engineering, construction, etc.). Multidisciplinary opti-
misation aims to combine different disciplines in order to find building designs
that perform well with respect to criteria from various disciplines. It has been
used with great success in areas such as automotive and aerospace engineering
[2], while in the building design domain its development is still somewhat limited.

This paper advances towards multidisciplinary optimisation of building
designs, starting with finding building spatial designs based on criteria from
structural design (compliance) and energy efficiency (total surface area). By
proposing a multicriteria optimisation approach, the problem of conflicting
objectives is discussed. In this case a Pareto front of building designs is com-
puted that can be used in preparation of decision making, to understand design
principles that lead to high performance in one discipline or the other discipline,
and to find valid compromise solutions.

Traditional algorithms in (evolutionary) multicriteria optimisation, such as
SMS-EMOA and NSGA-II, have been formulated for parametric design spaces.
For such spaces they have been extensively tested and show a reliable perfor-
mance. Recently a new super-structure for building spatial design was introduced
by the authors [3,4] and here it is used for multicriteria optimisation for the first
time. The super-structure encodes building spatial designs by means of a mixed
integer representation. By changing discrete variables a large number of alterna-
tives can be encoded. Continuous variables are used to change the dimensioning
of these alternatives. Building spatial designs are viewed as configurations con-
sisting of building spaces that do not overlap with each other. To enforce the
feasibility of the structural designs generated for the building spatial designs,
constraints on the variables are formulated by means of equations, which are
checked before evaluation.

Given these preliminaries, this paper will provide the following research
contributions: (1) first results on multicriteria optimisation of building spatial
designs, including topology choices, (2) discussion of domain specific algorithm
design aspects (search operators, constraint handling), and (3) interpretation
and discussion of the evolved Pareto fronts in the multidisciplinary building
design context. Another aspect discussed in this paper is the scalability of the
approach in terms of the size and complexity of the building spatial design.

The remainder of this paper is structured as follows. Section 2 provides a
brief summary of building design optimisation and the discipline-specific objec-
tives. Then Sect. 3 discusses multicriteria optimisation techniques. The search
space representation, constraints and objective functions are discussed in Sect. 4.
Algorithm details are given in Sect. 5. Thereafter, in Sect. 6 numerical results are
presented and Sect. 7 discusses these results and provides an outlook.

2 Building Spatial Design

Usually a building is designed by an architect and several engineers. They dis-
cuss their progress in project meetings, yet each discipline spends much effort on
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solving and optimising (discipline specific problems) at their own office. As such,
fruitful interaction between disciplines is not guaranteed. This inefficiency of sep-
arated disciplines in the built environment gained acknowledgement [5], which
gave rise to tools that allow more direct collaboration between engineers. One
such tool is building information modelling (BIM) [6]. Through the modelling
of data from various disciplines BIM allows information to be shared between
engineers working on different building design aspects. Since choices made dur-
ing the early stages of a design naturally propagate to the later stages, tighter
collaboration by employing such tools may avoid one discipline disproportionally
affecting performances in other disciplines.

An overview of optimisation tools in the built environment is provided by
Palonen et al. [7]. Such tools generally parametrise components of the building
design to enable the optimisation. Often these tools are limited to variation of
the design through alteration of component variables, adding new components is
rarely possible. Advances are made though, for example in the work by Hofmeyer
and Davila Delgado [8], which focuses on optimisation via the simulation of a
co-evolutionary preliminary building design process. Another interesting work is
that of Hopfe et al. [9] where the significance of design variables on the building
physics performance is predicted.

3 Multidisciplinary and Multicriteria Optimisation

Recently it has been recognised [5] that in order to help design teams consisting
of experts from different disciplines in finding solutions, objectives and simula-
tions from different disciplines have to be considered in concert. Multicriteria
optimisation can be an important method in this context, as it allows to deal
with conflicting objectives and can effectively support decision making.

In general, a multicriteria optimisation problem (MOP) is defined by a set
of objective functions fi : X → R, i = 1, . . . ,m to be minimised (or maximised)
for some search space X. Moreover, constraint functions gj(x) are usually con-
sidered, the value of which must be kept within a prescribed range.

For two feasible solutions x and x′, it is said that x (Pareto) dominates x′, if
and only if ∀i = 1, . . . , m: fi(x) ≤ fi(x′) and there exists j = 1, . . . ,m : fj(x) <
fj(x′). The efficient set XE is the subset of X consisting of points that are not
dominated by any point in X. The set {(f1(x), . . . , fm(x))T |x ∈ XE} ⊂ R

m

is called the Pareto front (PF) of the MOP (given it exists). The PF provides
valuable information about the space of all relevant solutions and their trade-
offs. This paper aims to compute the PF for the real world problem of building
spatial design and discuss the trade-offs between discipline specific objectives.

Recently, various powerful black box optimisation algorithms have been pro-
posed for approximating Pareto fronts. Many of these belong to the class of
evolutionary multicriterion optimisation, which use selection and variation (sto-
chastic mutation, recombination) to steer a population of search points close
to the Pareto front. The selection operator needs to take into account Pareto
dominance, but diversity maintenance is also important in order to guarantee
that all parts of the Pareto front are covered.
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Two state-of-the-art evolutionary multicriterion optimisation algorithms,
namely NSGA-II [10] and SMS-EMOA [11] are used as basic strategies in this
paper. These algorithms will be instantiated for a domain specific search space.

4 Formal Problem Specification

4.1 Search Space Representation

The supercube representation, recently proposed by the authors [3,4], serves to
represent the design space by means of continuous and discrete variables. The
goal of the supercube representation was to formulate building design optimisa-
tion as a mixed integer nonlinear programming (MINLP) problem, an approach
that in other domains is typically referred to as super-structure-based optimisa-
tion. Essentially, discrete variables encode the topology of spaces in the building
spatial design and continuous variables determine the dimensioning of the spaces.

h1
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hNh

w1 w2 wNw

d1

d2

dNd

b�
1,1,1
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2,1,3

Fig. 1. Supercube grid representation (left) and building spatial design (right).

Building spatial designs consisting of Nspaces spaces are encoded in a cuboid
(3D rectangle) grid of Nw×Nd×Nh cells, these variables respectively refer to the
number of cells in width, depth and height directions. In turn those same direc-
tions employ the indices i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd} and k ∈ {1, . . . , Nk},
to determine their dimensioning with the variables wi, dj and hk. Finally each
cell may be turned on or off as being part of a space � ∈ {1, . . . , Nspaces} by the
binary variable b�

i,j,k. This is referred to as the supercube representation, Fig. 1
shows an example of a supercube and a derived building spatial design.

4.2 Topology Constraints

Four topology constraints are considered to disallow configurations of the super-
cube that are infeasible from an engineering point of view. All of these constraints
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can be described in mathematical form with just sums and products as presented
by the authors in [3,4]. Textual explanations of the constraints and an example
of the mathematical notation follow.

No Overlap ensures each cell is active for at most one space which can be
defined mathematically with Eq. 1. Spaces should have a Cuboid Shape. This
can be checked in two steps. Firstly it is ensured that for every space active cells
appear at the same indices in all distinct rows, columns and beams. Secondly it
is checked there are no gaps between the active cells of a space. Vertical Gaps
between spaces, like archways and cantilevered parts, are disallowed in order
to facilitate the check to determine whether a building stands on the ground
by simple procedures. Finally a Constant Number of Spaces is enforced by
making sure every space consists of at least one cell.

∀i,j,k :
Nspaces∑

�=1

b�
i,j,k ≤ 1 (1)

4.3 Objective Functions

Energy performance is measured as the total outside surface area of the building
spatial design, excluding the floor surface of the ground level. In the future, a
RC-network model is planned to find heating and cooling energy per space.

For structural performance a black box simulator is used (meaning standard
MINLP solvers cannot be used for optimisation) with the following settings.
First the building spatial design is provided with a structural design via a so-
called structural grammar. The grammar used here adds four concrete walls and
a concrete roof (a slab) to every space, both with a thickness t=150 mm. Young’s
modulus of the concrete is set to E=30000 N/mm2 and Poisson’s ratio to v = 0.3.
Live loads of 1.8 kN/m2 are then applied to each slab, and wind loads from eight
directions (N, NW, W, etc.) are applied to the building spatial design (with a
pressure of 1.0 kN/m2, a suction of 0.5 kN/m2 and a shear of 0.4 kN/m2) and
transferred to the structural design. Using a finite element analysis (FEM), the
compliance over all loads is calculated. For more details, see [8].

5 Algorithm Design

5.1 Volume Repair

A fixed volume V0 for the building spatial design will be maintained during
optimisation because otherwise objectives could possibly be optimised largely
by taking extreme values for the continuous variables. The volume is taken as in
Eq. 2 below. To exclude inactive cells bi,j,k is found by: bi,j,k =

∑Nspaces

�=1 b�
i,j,k,

note that Eq. 1 needs to hold.

Nw∑

i=1

Nd∑

j=1

Nh∑

k=1

bi,j,kwidjhk = V0 (2)
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When the volume of a new individual is not within a 1 % deviation of V0 it
is repaired by scaling the continuous variables. After scaling, continuous vari-
ables exceeding the lower bound are set to the lower bound. Variables exceeding
the upper bound are multiplied by 0.95 until their value is within the bound.
Naturally changes to variable values will also change the volume, therefore the
process is repeated until the bound checks succeed without changes to the vari-
ables. Using the desired volume and the current volume Vc a factor α = V0/Vc

may be computed. Multiplying the dimensions of the supercube with the cubic
root of α results in V0. As such the scaling function is described by Eq. 3.

∀i : wi = 3
√

αwi ∀j : dj = 3
√

αdj ∀k : hk = 3
√

αhk (3)

5.2 Optimisation and Constraint Checking

NSGA-II and SMS-EMOA are used with typical settings in the experiments
below. In most cases they use the same settings and operators; otherwise it
is indicated. A lower bound lb = 3 and upper bound ub = 19.8 are used for
the continuous variables. Selection strategies are (20 + 20) for NSGA-II and
(50 + 1) for SMS-EMOA. For the ease of notation Ncells := Nw × Nd × Nh is
defined. Binary variables have a probability of 1/Ncells to be initialised to one,
or zero otherwise. Continuous variables are set to a value from lb+(ub− lb)×U ,
where U is drawn uniformly at random from ]0, 1]. Moreover, a fixed step size
0.05 × (ub − lb) is used for the continuous variables. Following the initialisation
the volume of the parent population is repaired as described in the previous
subsection with a desired volume V0 = 43 × Ncells. Each individual is evaluated
as follows. If any constraint is violated a penalty value pen is returned based
on the number of violations CV such that pen = 999, 999, 999 + CV − 1. Here
CV is an integer from one to five to indicate the number of violations. The five
constraints relate to the four previously described constraints. The two parts of
the cuboid shape constraint are counted separately. The objective functions are
only evaluated when no constraints are violated. An evaluation budget of 2500
is used in the experiments. Note that constraint checks are not considered as
evaluations here.

Each offspring is created by applying crossover and mutation. For crossover
a parent P1 is selected uniformly at random from the population. A second par-
ent P2 is then selected uniformly at random with a probability of 0.5, otherwise
P2 = P1. Parents are either recombined with a probability of 0.5, or copied to
the different children C1 and C2. Each binary variable is recombined as C1 = P1
and C2 = P2 with probability 0.5, or as C1 = P2 and C2 = P1 otherwise. Sim-
ulated binary crossover is applied to the continuous variables. When a variable
exceeds a bound it is set to lb or ub as applicable. Finally either of the children is
selected with probability 0.5. Mutation is applied with a probability of 1/Ndims,
where Ndims := Ncells ×Nspaces +Nw +Nd +Nh is the total number of variables.
Binary variables are mutated by bit flips. Polynomial mutation is applied to con-
tinuous variables above the lower bound, variables exactly at the boundary are
reinitialised (as previously described). Following mutation variables exceeding
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their bounds are set to their appropriate boundary values. The volume of the
produced offspring is repaired as previously described. NSGA-II then applies
non dominated/crowding distance sorting to the population of size μ + λ before
selecting the first μ individuals for the next parent population. SMS-EMOA
selects based on the hypervolume contribution (reference point (1.1e9, 1.1e9)).

5.3 Smart Mutation

The general mutation and recombination operators used in NSGA-II and SMS-
EMOA have difficulties navigating heavily constrained objective landscapes, such
as considered here. A smart mutation operator is proposed which only produces
mutants that do not violate the problem specific constraints. Since the algorithms
have similar performance only SMS-EMOA is considered with smart mutation.

The smart mutation method works by extending or reducing spaces by either
adding or removing a surface of cells. This is done by selecting one of the following
faces of the space to make either an outward or an inward move: left, right, top,
bottom, front or back. All moves are applied to all cells along the selected face
of a space, such that the space remains cuboid when adding and removing cells.
These moves are of size one, meaning that the width, depth or height (depending
on the selected face) of a space grows or shrinks by a single cell. Whenever an
outward move adds a cell to a space A that is already part of a space B the cell
is set to inactive for space B. From all mutation steps that do not result in a
constraint violation one is chosen uniformly at random.

A new offspring individual is then created as follows. A parent is selected
uniformly at random. Smart mutation is applied with a 0.25 probability, other-
wise a continuous variable that is relevant to at least one active cell is selected
uniformly at random and mutated by polynomial mutation. No crossover is used.

Initialisation of binary variables is changed to ensure the initial population
consists solely of valid individuals. For every space a non-fully occupied pillar
is selected uniformly at random from the supercube and the first cell from the
bottom that does not belong to any previously initialised space is set active for
this space. To increase diversity in the initial population twenty smart mutations
are applied to the initial individuals of single cell spaces.

Penalty values are no longer used since all offspring are now guaranteed to
be valid. The remaining procedures are the same as in Subsect. 5.2.

6 Numerical Results

Problem configurations are denoted by four numbers. The first three indicate
the dimensions of the supercube and the last indicates the number of building
spaces that are considered. For example 2225 indicates a problem with a 2 ×
2 × 2 supercube and five spaces. Every experiment averages over five runs using
average Pareto fronts (median attainment curves [12]). Tests were done for 222
and 333 configurations both with one, three and five spaces.
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Fig. 2. Average hypervolume growth over five runs, reference point (35000, 2500), for
one, three and five spaces in 222 (left) and 333 (right) configurations.

The various problem configurations show a quick convergence to a relatively
stable hypervolume (taken with log(1 + compliance), surface area) in Fig. 2,
with more complicated configurations naturally taking move evaluations before
stabilising. NSGA-II and SMS-EMOA produce similar attainment curves as may
be observed in Fig. 3. This indicates the considered process works and results in a
Pareto front approximation. The standard deviations of the hypervolume at the
final generation are relatively small for most problem configurations and do not
change the numerical result. Only for the 3335 configuration large deviations
occur for the generic methods, but even their highest hypervolume solutions
do not outperform the smallest hypervolume found by the method with smart
mutation. A one sided Wilcoxon test between NSGA-II and SMS-EMOA results
in W = −1, indicating there is no significant difference. Moreover, applying the
one sided Wilcoxon test between either of those methods and smart SMS-EMOA
results in W = 15, indicating the method with smart mutation is better with a
statistical significance of 0.05.

Fig. 3. Median attainment curves from five runs for one, three and five spaces in a 222
configuration (left) and a 333 configuration (right).

Smart SMS-EMOA produces similar results to the other two approaches for
single space problems as can be observed in Fig. 2. For the problems with three
spaces the method with smart mutation improves over the other two by a decent
margin, and for five spaces it is clearly better both in terms of convergence speed
and the final solution. The same behaviour can be observed in Fig. 3, where
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Fig. 4. Best spatial designs found with smart SMS-EMOA for the 3335 configuration.
Minimal compliance (left), knee point (center) and minimal surface area (right).

differences in performance become more pronounced with larger problem sizes.
Clearly, smart mutation produces a better Pareto front approximation.

Figure 4 shows the best found spatial designs in terms of each objective as well
as a compromise solution at the knee point of the median attainment curve. As
can be expected the optimal spatial design in terms of minimal surface area has a
cuboid shape. The knee point solution is largely similar, but has a slightly lower
structure and as a result is stretched in both width and depth to maintain the
volume. Finally the minimal compliance solution has an L-shaped and elongated
structure. The lower structure can be explained since it results in less strain on
the structural elements, reducing the compliance.

Table 1. Average runtime over five runs, rounded to the closest whole minute.

Problem configuration 2221 2223 2225 3331 3333 3335

CPU time (minutes) 42 342 888 42 620 1008

Table 1 shows the CPU time used with smart mutation. The other methods
performed similarly because the compliance computations used by far the most
CPU time. Each experiment used a single core of an i7-3770 CPU @ 3.40 GHz
processor and with 16 GiB DIMM DDR3 Synchronous 1600 MHz memory.

7 Discussion

Multicriteria optimisation algorithms for a building spatial design have been
developed and tested for moderate size problems. The problem has been for-
mulated as a mixed integer program. Moreover, the problem is characterised
by a large number of constraints and a specific constraint handling mutation
operator has been proposed. Pareto front approximations have been obtained.
They always have a convex shape which makes it possible to find compromise
solutions in knee points. The results show that smart mutations can be benefi-
cial for exploring larger and more dense regions. However, in order to scale up
the problem size further research in this direction is needed, including recom-
bination operators. Moreover, surrogate modelling may allow for a more effi-
cient exploration of the objective landscape. Finally, while statistical significant
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improvement was shown when using the method with smart mutation, parame-
ter tuning should be applied in future work to compare the methods with their
optimal parameter settings.
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