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Abstract. In order to understand strengths and weaknesses of opti-
mization algorithms, it is important to have access to different types of
test problems, well defined performance indicators and analysis tools.
Such tools are widely available for testing evolutionary multiobjective
optimization algorithms.

To our knowledge, there do not exist tools for analyzing the per-
formance of interactive multiobjective optimization methods based on
the reference point approach to communicating preference information.
The main barrier to such tools is the involvement of human decision
makers into interactive solution processes, which makes the performance
of interactive methods dependent on the performance of humans using
them. In this research, we aim towards a testing framework where the
human decision maker is replaced with an artificial one and which allows
to repetitively test interactive methods in a controlled environment.

Keywords: Multiobjective optimization · EMO · Testing framework ·
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1 Introduction

Many real-life problems of decision making and support are tackled by multi-
objective optimization. A solution of a multiobjective optimization problem can
be defined as a feasible solution which is the most preferred for a decision maker
(DM). Therefore, multiobjective optimization methods that aim at supporting
a DM rely on information about the DM’s preferences (preference information
for short) and incorporate mechanisms of communication with the DM. In the
methods where such communication is organized in an interactive way (i.e. inter-
active methods), the solution process is carried out in iterations. In each iteration,
the DM provides preference information and, as feedback, obtains information
about Pareto optimal solutions derived based on this preference information
[2,8,9]. Interactive methods are very suitable for solving practical problems due
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to several advantages [2]. First, the DM gets the possibility to learn progres-
sively about the set of Pareto optimal solutions of a complex problem, which
reduces cognitive load. Secondly, applying interactive methods does not necessi-
tate generating many Pareto optimal solutions, which is essential in the case of
computationally complex problems. Instead, only solutions that are interesting
for the DM are generated.

Many interactive methods have been developed so far, see e.g. [2,8,9]. Natu-
rally, the problem of testing and comparing different methods arises [7,8]. Mak-
ing tests and comparisons of interactive multiobjective optimization methods is
hampered by the necessity of involving DMs in tests. First of all, this involve-
ment makes method testing much more costly than testing by computational
means, taking into account that many problems of industry, management, engi-
neering, etc. require DMs being experts in corresponding fields. Secondly, it is
hard to conduct good quality experiments due to various barriers related to
human nature: the difficulty of creating proper motivation of DMs if tested e.g.
by students using artificial problems; the inconsistency of human nature and
variability among humans; difficulties of accounting for improving DM’s capa-
bilities in time due to learning1.

As noted in [7,8], only few interactive multiobjective optimization methods
have been extensively tested, which means that information about the quality of
most of the methods cannot be called reliable. The main sources of such infor-
mation are intuitive conclusions of the authors of the methods and results of
employing the methods for solving limited numbers of real-world or hypothet-
ical problems. In order to overcome the deficiency of tests and comparisons of
interactive methods, one can use artificial DMs understood as techniques of gen-
erating preference information. Because interactive methods vary significantly
in approaches to preference information modeling [9,10], different artificial DMs
should be created for different preference information types.

Compared to the diversity of interactive methods, the number of approaches
to creating artificial DMs is very limited. In [8], some examples of testing meth-
ods by using artificial DMs were described. Since 1999, only few new works have
appeared where actions of DMs have been simulated using artificial mechanisms.
Among them, a DM was represented as an additive value function in [13], and
that representation was used for generating goals in a simulated goal program-
ming problem with a discrete number of alternatives. When generating goals,
judgment errors and biases of the DM were simulated and then effects on the
performance of goal programming algorithms were studied. In [15], a universal
mechanism of generating DM’s preference information was proposed based on
minimizing the distance of the corresponding Pareto optimal solution to a given
“goal solution”. However, that mechanism has a limited application area. The
work in [7] aimed at the same goal as our research, except that a DM was mod-
elled via a value function, which does not allow generating reference point, but

1 Humans learn, therefore, it is not easy to employ the same DMs to test different
methods, as they have learnt about the problem while solving the problem, which
affects the quality of a long series of experiments.
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provides preference information as rankings of given sets of alternatives. Some
mechanisms of modeling the imperfection of humans’ judgments was incorpo-
rated into that model and used for testing the BC-EMOA algorithm [7].

More approaches to creating artificial DMs have been developed for enhanc-
ing existing methods, and they may be adoptable for method testing. The app-
roach in [1] is an example of such a study (see also references therein), where
the DM’s preference model based on a fuzzy inference system was trained dur-
ing the interactive solution process and used for providing additional preference
information on behalf of the DM.

Clearly, each artificial DM created for testing methods should be tailored to
the preference information expected by these methods. A popular way of model-
ing DM’s preferences is via value functions (often referred to as utility functions).
The advantages are a theoretically proved completeness [5], and the simplicity
of representation. From a value function, one can easily obtain such preference
information as pairwise comparisons or rankings of given sets of alternatives (as
e.g. in [7]). Note that methods where the DM can be replaced by a value function
are called non ad hoc methods [8,12,13]. However, in many interactive meth-
ods which are popular in practice, the preference information is provided in the
form of reference points [2,9] representing desirable objective function values.
Such methods are regarded as ad hoc, e.g. methods where the DM cannot be
replaced by a value function [8,12,13]. To our knowledge, there are no artificial
DMs developed for testing methods based on reference points.

In this paper, we develop an artificial DM for testing interactive methods,
which involve preference information as a reference point. It is the first develop-
ment of this kind. We mimic the behavior of a human DM who adjusts prefer-
ences based on obtained information about derived solutions, and demonstrates
randomness in the behavior in responses to the uncertainty about the Pareto
optimal set.

The paper is organized as follows. In Sect. 2, we describe the concept of an
artificial DM and in Sect. 3 incorporate it into a framework for testing interactive
methods. In Sect. 4, we present results of testing two methods: R-NSGA-II [4]
and minimizing an achievement scalarizing function [14]. We conclude in Sect. 5.

2 Artificial Decision Maker

We propose to employ an artificial DM to replace the real DM. Our concept of
an artificial DM and its interaction with an interactive method comprises the
following three components:

– Steady part : the complexity of knowledge possessed by the DM and related
to solving the considered class of problems which does not change during the
solution process. This includes accumulated experience and the core prefer-
ences which do not change in time.

– Current context : the current situation as perceived by the DM, which may
change in time. This includes: the knowledge about the problem accumulated
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by the DM during the solution process, level of tiredness which can affect
concentration, and the probability of making mistakes.

– Preference information: the method-specific information expressed by the DM
during the solution process to guide the method toward solutions that are more
preferred by the DM.

The artificial DM should be defined by the steady part which does not change
in time, a mechanism of representing and updating the current context as the
solution process continues, and the mechanism of generating the preference infor-
mation based on the steady part and the current context. By varying the para-
meters of the steady part, one can obtain different artificial DMs for conducting
multiple experiments.

It is tempting to describe the steady part as a classical model of DM’s pref-
erences (e.g. choice function, binary relation or utility function). However, as
said, there are no studies describing how to generate preference information in
terms of reference points from such models. Therefore, we construct the steady
part in the form of some general preference information which cannot be called
a preference model in the classical sense. We propose a procedure of generating
the current preference information based on the steady preference information
and taking into account the current context. The latter is represented by the
current solution or the set of derived solutions available for the DM.

3 Testing Framework

The aim of this research is to create a framework for comparing different interac-
tive methods with an artificial DM. The proposed framework is compatible with
interactive methods where the DM provides one’s preferences in each iteration
of the method as a reference point. In what follows, we first give basic notions of
multiobjective optimization, then describe the artificial DM used in the frame-
work, and finally proceed with details on how the artificial DM is utilized.

Multiobjective optimization problems are formulated as follows:

minimize f(x) = (f1(x), . . . , fk(x))T

subject to x = (x1, . . . , xn)T ∈ S,

meaning that the DM wishes to simultaneously minimize k (k ≥ 2) objective
functions fi : S → R on the set S of feasible solutions (decision vectors) which
is a nonempty compact subset of R

n. The image of S is denoted by f(S). Its
elements z = f(x) = (f1(x), . . . , fk(x))T in the objective space R

k consisting of
objective (function) values are called objective vectors.

The set of Pareto optimal solutions of the problem (the Pareto optimal set) is
defined by E = {x ∈ S : there is no x′ ∈ S such that fi(x′) ≤ fi(x′) for all i =
1, . . . , k and f(x′) �= f(x′)}.

Let us also introduce an ideal objective vector and a nadir objective vec-
tor defined, respectively, as z� = (z�

1 , . . . , z�
k)T where z�

i = minx∈E fi(x) for
i = 1, . . . , k, and znad = (znad1 , . . . , znadk )T where znadi = maxx∈E fi(x) for
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i = 1, . . . , k. Note that the nadir objective vector is, in general, more difficult to
obtain than the ideal objective vector and, therefore, approximations are often
used (see e.g. [3,8] and references therein).

The current context is defined as follows. We assume that the artificial DM
is aware of the bounds of the objective functions, that is, the objective vectors
z� and znad. These vectors can either be known or estimated [8]. Their compo-
nents give bounds on the aspiration levels which constitute a reference point. In
addition, the set of derived Pareto optimal (or non-dominated) solutions, which
is updated during the solution process, provides the DM with information about
what combinations of objective function values are achievable.

As for the steady part of preference representation, for each objective fi, i =
1, . . . , k, we introduce a “ranking coefficient” wi which determines the priority
of the objective function fi over the other objective functions. That is, the DM
prefers more to obtain smaller values for those objective functions whose wi ∈
(0, 1] is larger. We assume that all objective functions are relevant to the problem
and, therefore, each of them should have a ranking coefficient.

In addition to ranking coefficients, we utilize initial aspiration levels, aspi ∈
(z�

i , znadi ], i = 1, . . . , k, that is, objective values the artificial DM would like to
achieve. If aspi = znadi , we assume that the artificial DM initially does not have
any preferences regarding objective fi.

The probability p ∈ (0, 1] determines how willing the artificial DM is to give
up on the initial preferences. With larger p and larger wi values, the artificial
DM is more probable to consider the fi objective relevant, i.e., to use aspi as
the reference point component (otherwise, it uses the component of the nadir
vector). Alongside with the constant probability p, we introduce the varying
probability pλ which is initialized with p and decreased in the process of consec-
utive consideration of objective functions in the order defined by their priority
(for details, see the scheme of the decision process below). Finally, the preference
information is represented as a reference point ref = (ref1, . . . , refk).

Now we can describe how the artificial DM interplays with a method. This
process has the following parameters: θ – tolerance value which controls when
an objective function value is considered to be acceptable; tmax – maximum
number of iterations; t – iteration counter. Furthermore, we denote a uniformly
distributed random number in the interval [0, 1] by rand.

At the beginning of the solution process, when the set of derived solutions P
is empty, we generate preference information as described below.

1. For each objective function fi:
(a) if aspi is not defined, set aspi = z�

i ;
(b) Set initial components of the reference point refi:

i if rand < p · wi, set refi = aspi,
ii else, set refi = znadi .

Here, if the aspiration level for an objective function is not defined, we set it to
the ideal value of this objective in step (a), as each objective should have the
opportunity to be improved, even if the artificial DM does not have a notion
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of what the values should be. Otherwise, the component of the initial reference
point for each objective function is set at step (b) either as the aspiration level
or the component of the nadir objective vector. The latter choice depends on
the ranking coefficient of the objective function as well as the probability, if the
aspiration level of the objective function should be used, in order to increase the
priority of improving values of those objective functions.

After the artificial DM has been initialized with preference information, it is
utilized with an interactive multiobjective optimization method as follows.

1. Set
pλ = p – the varying probability of using the aspiration level as the compo-
nent of the reference point,
F = ∅ – the current index set of relevant objective functions,
t = 0 – the iteration counter,
P – the set of derived Pareto optimal (non-dominated) solutions,
and generate initial preferences (reference point ref) as described above.

2. t++
3. Provide the interactive method with the current reference point ref to gen-

erate a new Pareto optimal solution x, and add this solution to the set P .
4. For each objective function fi ordered by ranking coefficients wi in a decreas-

ing order:
a. if aspi − fi(x) < θ and rand < p, add i to the set F ,

else, if rand < pλ, add i to the set F .
b. Set pλ = pλ − pλ

i · |F |.
5. If |F | = k, go to step 10.
6. For each objective function fi with i ∈ F :

a. Set the new component of the reference point refi:
refi = aspi − (aspi − fi(x))/2.

7. For each objective function fl with l �∈ F :
a. Construct predictl using a decision tree trained with previously obtained

Pareto optimal solutions;
b. set refl = min(predictl, z

nad
l ).

8. If the new reference point is identical to the previous one, go to step 10.
9. If t < tmax go to step 2.

10. STOP. Select x as the solution to the problem.

In the beginning of the solution process, the interactive method is used to
generate a new objective vector using the current reference point ref. Then we
select and add to set F those objective functions which are considered to be
relevant during this iteration. Firstly, if the objective vector value has achieved
the desired aspiration level, it is selected with a high probability (but not equal
to one), as we are assuming that the DM is not certain that the aspiration level
is the best possible which could be achieved.

On the other hand, if the component of the objective vector has not achieved
the desirable value, it is selected with a lower probability. This selection proba-
bility is then decreased based on the number of objective functions selected so
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far. The described scheme gives a strong preference on selecting most preferred
objectives that have achieved desired values, while decreasing chances to select
less desired objective functions. When all objective functions are selected to be
relevant, the current Pareto optimal solution is considered to be the final solu-
tion of the problem. This means that it is possible that the artificial DM will
end the solution process prematurely.

Next, in step 4. a new reference point ref is created. In order to take into
account that the aspiration level might not be reachable, the reference point com-
ponents for the selected objectives are set between the current objective function
value and the aspiration level. Then the remaining reference point components
are set either to the nadir value or to the value predicted by a decision tree
[11] trained with previously obtained Pareto optimal solutions. A decision tree
is built for each objective, using the values of the other objectives as a training
data for predicting which values should be selected for other objectives in order
to obtain the preferred value for the considered objective function.

The solution is finally accepted either when all initial aspiration levels have
been achieved, artificial DM could not create a new reference point or after the
maximum number of iterations has been conducted.

4 Numerical Experiments

Next we give some computational results to demonstrate application of the
artificial DM. For this demonstration, we use two different methods for gen-
erating new Pareto optimal solutions: R-NSGA-II algorithm [4] and minimizing
the achievement scalarizing function (ASF) of a reference point method [14] to
project a reference point to the Pareto optimal set, where the differential evo-
lution algorithm is used to minimize the ASF. As the latter method produces
only a single Pareto optimal solution, while R-NSGA-II produces several ones,
among the Pareto optimal (nondominated) solutions generated by R-NSGA-II,
the one nearest to the reference point is selected. The R-NSGA-II algorithm had
the population size 100 and was allowed to have maximum of 200 generations
totaling to maximum of 20000 evaluations. The differential evolution method
had the stopping criterion of maximum of 20000 evaluations.

Each method was used to solve four different problems: DTLZ1 – DTLZ4
[6] with the number of objectives (k) ranging from 2 to 6, totaling 24 different
problems. Each problem was solved ten times using both methods, with ten dif-
ferent, randomly generated sets of initial preference information. The maximum
number of iterations was set to 11.

Examples of two test runs when solving the ZDLT2 problem with three objec-
tive functions with both R-NSGA-II and the ASF methods can be seen in Figs. 1
and 2, respectively. In these figures, the search path taken by the artificial DM is
shown as a continuous line, with x marking as each reference point constructed
by the artificial DM. The diamond represents the initial reference point and the
square represents the final reference point of the solution process. In Fig. 1, it can
be seen that the artificial DM constructed seven reference points in the case of
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Fig. 1. R-NSGA-II: search path with
the artificial DM

Fig. 2. ASF method: search path with
the artificial DM

R-NSGA-II and nine for the ASF method (Fig. 2). The circle outside the search
path shows the aspiration level, aspi, i = 1, . . . , k, that the artificial DM was
aiming at. The Pareto optimal solutions generated during the test runs are not
shown here.

At the beginning of each test run, the artificial DM does not have any knowl-
edge of the Pareto optimal set of the problem being solved and as described in
Sect. 3, the first steps taken are random. This means that all search paths are
different for each test run, and the first steps can lead away from the aspiration
levels. But as can be seen in figures, after the artificial DM has accumulated
enough knowledge of the problem, the solution process converges towards the
aspiration levels.

The obtained results are detailed in Table 1 for R-NSGA-II and in Table 2
for the ASF method, where for brevity we limit to the cases k ∈ {2, 4, 6}. In
the tables, we give the name of the problem, the number of objectives (k), the
mean and minimum distances to the initial aspiration levels and the standard
deviation of the distances. Finally, the tables report how many iterations the
artificial DM used the on average during the test runs.

As can be seen, a distinction between the two methods can be drawn, while
both methods behave in a somewhat similar manner. The ASF method could
find final solutions that are consistently closer to the initial preferences, i.e.,
mean values and deviations of distances are smaller than with R-NSGA-II. The
ASF method was also able to achieve the initial aspiration levels, even though
this did not happen in all runs. For problems with four and more objectives,
the differences in the performance were slightly smaller, as the ASF method did
not achieve initial aspiration levels consistently, but it should be noted that the
performance of R-NSGA-II also deteriorated.

The latter result can be considered as somewhat surprising, taking into
account that the NSGA-II algorithm underlying the R-NSGA-II algorithm does
not typically perform well with problems having more than three objective
functions, and it could be expected that the performance of R-NGSA-II would
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Table 1. R-NSGA-II results

Problem k mean dev min iter

DTLZ1 2 0.709 0.447 0.000 10

DTLZ2 2 0.040 0.044 0.002 11

DTLZ3 2 2.427 1.600 0.863 5

DTLZ4 2 0.237 0.278 0.006 9

DTLZ1 4 0.224 0.185 0.012 11

DTLZ2 4 0.273 0.185 0.061 11

DTLZ3 4 3.579 0.954 1.671 5

DTLZ4 4 0.439 0.355 0.038 11

DTLZ1 6 0.432 0.270 0.148 11

DTLZ2 6 0.365 0.192 0.024 11

DTLZ3 6 6.000 2.238 3.865 11

DTLZ4 6 0.411 0.269 0.026 11

Table 2. ASF method results

Problem k mean dev min iter

DTLZ1 2 0.606 0.327 0.000 10

DTLZ2 2 0.002 0.002 0.000 11

DTLZ3 2 2.112 1.870 0.000 4

DTLZ4 2 0.002 0.002 0.000 11

DTLZ1 4 0.239 0.257 0.000 11

DTLZ2 4 0.004 0.002 0.001 11

DTLZ3 4 1.819 1.340 0.000 6

DTLZ4 4 0.069 0.147 0.001 11

DTLZ1 6 0.386 0.247 0.001 10

DTLZ2 6 0.102 0.207 0.001 10

DTLZ3 6 1.725 1.287 0.005 8

DTLZ4 6 0.115 0.155 0.001 11

deteriorate more. However, it should be noted that the aim of the interactive
solution processes is not to obtain best possible coverage of the Pareto fron-
tier, but to concentrate on the area which is the most interesting for the DM.
As R-NSGA-II generates several solutions in that area in contrast to a single
solution obtained by the ASF method, the former algorithm provides the arti-
ficial DM more information, i.e., Pareto optimal solutions to construct more
suitable reference points. This implies that the comparison of population based
and non-population based methods should be made fair by paying attention to
the amount of information the artificial DM is trained with.

5 Conclusions

In this research, we proposed to build an automated framework for testing inter-
active multiobjective optimization methods, without utilizing a value function
to represent the DM’s preferences. This was achieved by replacing the human
DM with an artificial DM constructed from two distinct parts: the steady part
and the current context. With the steady part the artificial DM tries to maintain
the search towards its preferences, while at the same time the current context
allows changing the direction as well as ending the solution process prematurely,
mimicking actions of a human DM. With the proposed framework, it is possible
to carry out repeatable tests of interactive methods in a controlled environment.

The numerical experiments performed with the proposed testing framework
indicate that the algorithm can identify differences between different interac-
tive methods. In the experiments, two interactive methods were compared solely
based on the distance between the final solution and the steady preference infor-
mation. In addition to this distance, it would be interesting to construct new
performance metrics specific for interactive methods, such as characteristics of
the trajectory of the solution process in the objective space.
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