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Abstract. A number of weight vector-based algorithms have been proposed for
many-objective optimization using the framework of MOEA/D (multi-objective
evolutionary algorithm based on decomposition). Those algorithms are char-
acterized by the use of uniformly distributed normalized weight vectors, which
are also referred to as reference vectors, reference lines and search directions.
Their common idea is to minimize the distance to the ideal point (i.e., con-
vergence) and the distance to the reference line (i.e., uniformity). Each algorithm
has its own mechanism for striking a convergence-uniformity balance. In the
original MOEA/D with the PBI (penalty-based boundary intersection) function,
this balance is handled by a penalty parameter. In this paper, we first discuss
why an appropriate specification of the penalty parameter is difficult. Next we
suggest a desired shape of contour lines of a scalarizing function in MOEA/D.
Then we propose two ideas for modifying the PBI function. The proposed ideas
generate piecewise linear and nonlinear contour lines. Finally we examine the
effectiveness of the proposed ideas on the performance of MOEA/D for
many-objective test problems.
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1 Introduction

In the EMO (evolutionary multi-objective optimization) community, many-objective
optimization has been a hot topic in the last decade [9, 10]. The difficulty of
many-objective optimization for EMO algorithms is explained as follows [9]: When a
Pareto dominance-based EMO algorithm such as NSGA-II [4] and SPEA [14] is
applied to a multi-objective problem with many objectives, all solutions in a population
become non-dominated with each other in a very early stage of evolution. As a result,
no strong selection pressure towards the Pareto front can be generated by its Pareto
dominance-based fitness evaluation mechanism.

Recently a number of weight vector-based algorithms were proposed for
many-objective problems in the framework of MOEA/D [13] such as I-DBEA [1],
RVEA [2], NSGA-III [3] and MOEA/DD [11]. Those algorithms are characterized by
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the use of uniformly distributed normalized weight vectors. They also have similar
fitness evaluation mechanisms. In Fig. 1, we show the angle a between the solution f
(x) and the nearest reference line l, the distance d1 from f(x) to the ideal point z* along
l, and the distance d2 from f(x) to l. Each solution is usually assigned to the nearest
reference line l using the angle a or the distance d2. Then the fitness of the assigned
solution is evaluated by the closeness to the nearest reference line (i.e., a or d2) and the
closeness to the ideal point (i.e., d1).

An important issue is how to strike a balance between the convergence (i.e.,
minimization of d1) and the uniformity (i.e., minimization of d2 or a). In MOEA/D
[13], this balance was handled by the penalty parameter θ for the distance d2 in the
following PBI (penalty-based boundary intersection) function:

Minimize f PBIðxjw; z� Þ ¼ d1 þ hd2; ð1Þ

where the penalty parameter θ is a non-negative real number. This parameter is used to
handle the balance between the convergence d1 and the uniformity d2.

In this paper, we first discuss the difficulty of the penalty parameter specification in
MOEA/D in Sect. 2. We also discuss a desired shape of the contour lines of a
scalarizing function in MOEA/D. Next we propose two ideas for modifying the PBI
function in Sect. 3. One is a piecewise linear function, and the other is a non-linear
function. Then the performance of MOEA/D with each function is examined in Sect. 4.
Finally we conclude this paper in Sect. 5.

2 Parameter Specification in the PBI Function

In Fig. 2, we show the relation between the contour lines of the PBI function and the
optimal solution for a concave Pareto front. When θ is not small, the optimal solution is
on the intersection of the reference line and the Pareto front as shown in Fig. 2(b) and
(c). However, when θ is small, the optimal solution is far from the reference line. For
example, the red circle on the f2 axis in Fig. 2(a) is the optimal solution for the
reference line with the direction (0.8, 0.2). Moreover, when θ is small, it is difficult to
find a solution on the concave region of the Pareto front as shown in Fig. 2(a).
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Fig. 1. The weight vector w, the reference line l, and the solution f(x).
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Well-distributed solutions are obtained from a small value of θ in Fig. 3(a) and a
large value of θ in Fig. 3(c). However, in Fig. 3(b) with θ = 1, the three solutions are
close to each other around the center of the Pareto front (i.e., well-distributed solutions
are not obtained). Thus an intermediate value of θ is not a good choice.

From these discussions, one may think that a large value of θ is a good choice. The
use of a large value of θ is also consistent with the emphasis of the uniformity in the
above-mentioned weight vector-based algorithms. However, a large value of θ
degrades the convergence property of the PBI function in the same manner as the
performance deterioration of Pareto dominance-based EMO algorithms for
many-objective problems [7]. In Fig. 4, we show the region of solutions which are
evaluated as being better than the red circle by the PBI function. When θ is small in
Fig. 4(a), the solution has a large improved region. However, when θ is large in Fig. 4
(c), the improved region is very small. So, it is not likely that a better solution is easily
found by crossover and mutation. The increase in the number of objectives exponen-
tially decreases the ratio of this improved region in the neighborhood of the solution.

Fig. 2. Relation between the contour lines of the PBI function for three directions ((w = (0.2,
0.8), (0.5, 0.5), (0.8, 0.2)) and the optimal solution for the case of a concave Pareto front. (Color
figure online)

Fig. 3. Relation between the contour lines of the PBI function for three directions ((w = (0.2,
0.8), (0.5, 0.5), (0.8, 0.2)) and the optimal solution for the case of a convex Pareto front.
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This exponential decrease explains poor performance of the PBI function with a large
value of θ for many-objective knapsack problems [7]. Similar discussions were given
about the specification of p in the weighted Lp scalarizing function in [12].

These discussions, however, are not consistent with experimental results in our
former study [8] where good results were obtained from a large value of θ for
many-objective DTLZ1 and DTLZ2 problems. This inconsistency can be explained by
the special features of DTLZ 1-4 [5]. In DTLZ 1-4, the decision variable vector x is
separable into the distance variable vector xM and the position variable vector xpos. The
objective vector f(x) is written as f(x) = (1 + g(xM))h(xpos). Pareto optimal solutions
are obtained by minimizing the scalar function g(xM) to g(xM) = 0. Thus, the con-
vergence improvement can be viewed as separate single-objective optimization.

In Fig. 5, we show 100 solutions generated by the polynomial mutation with the
distribution index 20 to a randomly selected single variable from each of three solutions
(open circles). When a distance variable in xM is mutated, only the distance from the
ideal point z* is decreased or increased without changing any value of h(xpos). Thus
improved solutions are obtained on the line between the ideal solution z* and the

Fig. 4. Improved region for a solution (red circle) with respect to the PBI function. (Color figure
online)

Fig. 5. 100 solutions generated by polynomial mutation of a randomly selected variable [8].
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current solution in Fig. 5. If the current solution is on the reference line, those solutions
are evaluated as being better than the current solution by the PBI function independent
of the value of θ. When the mutation is applied to a position variable in xpos, the
location of the solution is changed without changing the value of g(xM) as shown in
Fig. 5. Thus the uniformity can be improved separately from the convergence. Thanks
to these special features, good experimental results were reported when a large value of
θ was used for many-objective DTLZ 1-4 test problems. WFG 4-9 test problems [6]
also have similar special features.

Discussions on the specification of θ in this section are summarized as follows.

(a) Small values of θ: The PBI function has high convergence ability even for
many-objective problems. Its main difficulty is the handling of concave Pareto
fronts.

(b) Values between (a) and (c): The diversity of solutions can be very small for values
around θ = 1 when the shape of the Pareto front is convex.

(c) Large values of θ: Uniformly distributed solutions are likely to be obtained.
However, the convergence is degraded by the increase in the number of objectives.

These discussions may suggest two directions for improving the PBI function. One
is to improve the uniformity for the PBI function with a small value of θ. This direction
is illustrated in Fig. 6(a). The other is to improve the convergence for the PBI function
with a large value of θ as illustrated in Fig. 6(b). The contour lines after the modifi-
cation are similar between Fig. 6(a) and (b). That is, the convergence is emphasized
only when a solution is close to the reference line. The uniformity is emphasized when
a solution is far from the reference line.

3 Modifications of the PBI Functions

The PBI function after the modifications in Fig. 6 can be formulated using two penalty
parameters θ1 and θ2 as the following two-level PBI function:

Fig. 6. Modifications of the contour lines of the PBI function.
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Minimize f PBI2�Levelðxjw; z� Þ ¼ d1 þ h1d2; if d2 � d�;
d1 þ h1d� þ h2ðd2 � d�Þ; if d2 [ d�;

�
ð2Þ

where θ1 < θ2 and d
* is a parameter to switch the penalty value between θ1 and θ2. If d2

is smaller than d*, a small penalty value θ1 is used. If d2 is larger than d*, a large
penalty value θ2 is used for the amount of the violation: d2 - d*. In this paper, we
specify the two penalty parameters θ1 and θ2 as θ1 = 0.1 and θ2 = 10.

The value of d* is specified by solutions in the current population as follows:

d� ¼ a
1
H

1
m

Xm
i¼1

ðf Max
i ðxÞ � f Min

i ðxÞÞ; ð3Þ

where α is a parameter, H is an integer parameter used for generating uniformly
distributed weight vectors in MOEA/D, m is the number of objectives, and f Max

i ðxÞ and
f Min
i ðxÞ are the maximum and minimum values of the ith objective in the current
population, respectively. In (3), the average width of the domain of each objective is
divided by H to obtain a rough estimation for the distance between adjacent solutions.
The parameter α is used to examine the validity of the formulation (3) through com-
putational experiments with various values of α.

Our idea in (2) is to use a small penalty value only when a solution is close to the
reference line. This idea can be also implemented as the following quadratic function.

Minimize f PBIQuadraticðxjw; z� Þ ¼ d1 þ hd2
d2
d�

; ð4Þ

where d* is the same parameter as in (2), which is calculated by (3). The effect of the
penalty parameter θ is decreased by the factor (d2/d

*) when d2 is small (i.e., d2 < d*)
and increased by (d2/d

*) when d2 is large (i.e., d2 > d*). When d2 = d*, this formulation
is the same as the PBI function in (1). The value of θ is specified as θ = 1 in (4).

4 Computational Experiments

4.1 Experimental Results of the PBI Function

We applied MOEA/D with the PBI function to DTLZ 1-2 with four and eight objec-
tives. Various values of θ between 0.01 and 100 were examined. The total number of
examined solutions was used as the termination condition: m� 10;000 solutions for
m-objective problems. We examined various settings of the population size. The
neighborhood size in MOEA/D was specified as 10 % of the population size. The
number of decision variables (n) was 5 + m − 1 (DTLZ1) and 10 + m − 1 (DTLZ2).
We used the SBX crossover with the distribution index 15 and the crossover proba-
bility 0.8, and the polynomial mutation with the distribution index 20 and the mutation
probability 1/n. The average hypervolume was calculated over 50 runs for the reference
point (0.6, …, 0.6) of DTLZ1 and (1.1, …, 1.1) of DTLZ2.
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In the same manner, we applied MOEA/D to 500-item 0/1 knapsack problems with
four and eight objectives [7] except for the following settings: 400,000 solution
evaluations, uniform crossover with the probability 0.8, bit-flip mutation with the
probability 2/500, the reference point (0, …, 0) for the hypervolume calculation, and
the reference point z* for the PBI function as z�i ¼ 1:1�maxffiðxÞg for i = 1,
2, …, m where max{fi(x)} is the maximum value of fi(x) among all the examined
solutions [7].

The average hypervolume value over 50 runs is shown in Figs. 7, 8 and 9. Each
circle shows the average result from the corresponding setting of the population size
(e.g., 56) and the value of θ (e.g., 0.01). The range of appropriate values of θ in each
figure are as follows: 5 ≤ θ ≤ 20 in Fig. 7, 2 ≤ θ ≤ 100 in Fig. 8, and 0.01 ≤ θ ≤ 0.1
in Fig. 9. The PBI function with a small values of θ cannot handle the concave Pareto
front of DTLZ2 in Fig. 8. Large values for θ deteriorate the convergence performance
of the PBI function for many-objective knapsack problems in Fig. 9(b). Clear per-
formance deterioration is also observed around θ = 1 in Figs. 7 and 9. Figures 7, 8 and
9 show the difficulty and the importance of an appropriate parameter specification of θ.

Fig. 7. Results of the PBI function on DTLZ1 (Linear Pareto front).

Fig. 8. Results of the PBI function on DTLZ2 (Concave Pareto front).
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4.2 Experimental Results of the Two-Level PBI Function

Experimental results of the two-level PBI function are shown in Figs. 10, 11 and 12
where the horizontal axis is 1/α. At the leftmost (rightmost) point of each figure with a
small (large) value of 1/α, θ1 = 0.1 (θ2 = 10) is mainly used. Thus the obtained results
at the leftmost (rightmost) point of each figure are almost the same as those by θ = 0.1
(θ = 10) in Subsect. 4.1. Only for the knapsack problems, we use larger values of α
(see the horizontal axis of each figure in Figs. 10, 11 and 12).

Fig. 9. Results of the PBI function on the knapsack problems (Convex Pareto front).

Fig. 10. Results of the two-level PBI function on DTLZ1.

Fig. 11. Results of the two-level PBI function on DTLZ2.
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4.3 Experimental Results of the Quadratic PBI Function

Experimental results of the quadratic PBI function are shown in Figs. 13, 14 and 15.
The obtained results at the leftmost (rightmost) point of each figure are similar to those
by θ = 0.01 (θ = 100) in Subsect. 4.1. This is because the penalty value is very small
(very large) on average at the leftmost (rightmost) point in Figs. 13, 14 and 15. We can

Fig. 12. Results of the two-level PBI function on the knapsack problems.

Fig. 14. Experimental results of the quadratic PBI function on DTLZ2.

Fig. 13. Experimental results of the quadratic PBI function on DTLZ1.
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also observe some similarity among the obtained results on each test problem in the
three subsections such as the V-shape results in Figs. 9(a), 12(a) and 15(a).

5 Conclusions

We first explained why the specification of the penalty value θ is difficult in the PBI
function of MOEA/D. Then we proposed an idea of modifying the shape of the contour
lines of the PBI function to strike a convergence-uniformity balance. This idea was
implemented as two-level and quadratic PBI functions. By the proposed idea, we
obtained interpolative results between small and large penalty value cases in Figs. 11
and 14 for the DTLZ2 problems. In Figs. 11(a) and 14(a), improvement was observed
by the proposed idea from the interpolative results when 0.1 < 1/α < 1. However, for
the DTLZ1 and knapsack problems, clear performance deterioration was observed from
the interpolative results, which was similar to the performance deterioration by θ
around 1.0 in the original PBI function.
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