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Abstract. Learning classifier systems (LCSs) are rule-based evolution-
ary algorithms uniquely suited to classification and data mining in
complex, multi-factorial, and heterogeneous problems. The fitness of indi-
vidual LCS rules is commonly based on accuracy, but this metric alone
is not ideal for assessing global rule ‘value’ in noisy problem domains
and thus impedes effective knowledge extraction. Multi-objective fitness
functions are promising but rely on prior knowledge of how to weigh
objective importance (typically unavailable in real world problems). The
Pareto-front concept offers a multi-objective strategy that is agnostic
to objective importance. We propose a Pareto-inspired multi-objective
rule fitness (PIMORF) for LCS, and combine it with a complimen-
tary rule-compaction approach (SRC). We implemented these strate-
gies in ExSTraCS, a successful supervised LCS and evaluated perfor-
mance over an array of complex simulated noisy and clean problems (i.e.
genetic and multiplexer) that each concurrently model pure interaction
effects and heterogeneity. While evaluation over multiple performance
metrics yielded mixed results, this work represents an important first
step towards efficiently learning complex problem spaces without the
advantage of prior problem knowledge. Overall the results suggest that
PIMORF paired with SRC improved rule set interpretability, particu-
larly with regard to heterogeneous patterns.

Keywords: Data mining - Classifier systems -+ Fitness evaluation -
Multi-objective optimization + Machine learning

1 Introduction

Rule-based machine learning (RBML) algorithms learn a set of ‘IF:THEN’ asso-
ciation rules capturing piece-wise local patterns to map the problem. Learning
classifier systems (LCS) are a well-studied type of RBML predominantly applied
to supervised and reinforcement learning tasks [1]. LCSs evolve a set of rules
that collectively comprise a solution/prediction model. This distributed solution
varies from the standard machine learning paradigm of a single model solution,
which has made LCS particularly well suited to complex, multifactorial, and

© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 514-524, 2016.
DOI: 10.1007/978-3-319-45823-6_48



Pareto Inspired Multi-objective Rule Fitness 515

heterogeneous problems such as the n-bit multiplexer machine learning bench-
marks [2]. While most early LCS research has focused on reinforcement learning,
supervised learning has become a major focus in recent years, particularly with
regards to real-world applications [2-5]. One major area includes biomedical data
mining and prediction. These types of problems are typically characterized as
‘noisy’, can include a large number of variables, and can involve complex under-
lying patterns of association such as epistatic interactions and heterogeneity. In
2015, [2] introduced ExSTraCS 2.0, a more scalable Michigan-style supervised
LCS. This approach was able to detect and characterize epistatic and heteroge-
neous patterns in noisy simulated genetic data, and was the first algorithm to
report solving the 135-bit multiplexer directly. However additional emphasis on
accuracy in the fitness function was necessary to efficiently solve the set of mul-
tiplexer problems (i.e. the v parameter, which controls the influence of accuracy
on fitness, was set to 10 rather than the default of 1). Having prior knowledge
that these problems were ‘clean’ (i.e. the problem could be optimally solved with
100 % prediction accuracy) was an important part of choosing an appropriate
objective weight. In that case, accuracy was overemphasized as the only explicit
objective. The same logic is true for being able to solve noisy problems. In [2,6]
it was found that having v set above 1 reduced performance in noisy domains.
This is because noisy problems can not be solved with 100 % prediction accuracy,
and ‘optimal’ rules for these problems will have an accuracy below 1. Overem-
phasizing accuracy in a noisy problem leads to dramatic over-fitting, and a loss
of generalization, prediction accuracy, and interpretability.

Only a handful of studies have explored a multi-objective fitness functions in
LCS. Implicit and explicit multi-objective learning approaches for Michigan and
Pittsburgh-style LCS algorithms were reviewed in [7]. Multi-objective research
in Pittsburgh-style LCSs has focused on balancing rule-set accuracy with parsi-
mony [8,9]. The MOLeCS algorithm was introduced as the first explicitly multi-
objective Pittsburgh LCS [10], applying competing objectives of rule-accuracy
and coverage, where coverage refers to the number of training instances that
were matched, and thus ‘covered’ by the rule. MOLeCS was the first LCS to
consider a Pareto-front based rule fitness. Two different Pareto-front approaches
were proposed in [10] to determine rule fitness ranking each generation of the
genetic algorithm. Each involved the formation of a non-dominated rule-fitness
front from rules in the current population. The first strategy gave all rules on the
front the same ‘best’ fitness score, and all beneath, the same lower fitness score.
The second strategy gave all rules on the front the best set of overall scores but
rules on the non-dominated front with the highest accuracy also had the high-
est fitness. These approaches are not applicable to Michigan-style LCSs, which
perform online rather than batch learning. Seeking to improve performance in
noisy problems, a weighted-sum approach to multi-objective fitness function for
Michigan-style LCS rules was recently proposed in ExSTraCS 2.1 [11] to avoid
the overfitting issues that persist even when v was set to 1 as seen in ExSTraCS
2.0 [2]. This new fitness function improved the interpretability and power to
automatically characterize underlying complex patterns in the evolved rule set
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without sacrificing accuracy [11]. However this approach relies on the assump-
tion that the data is noisy. Case in point, ExSTraCS 2.1 was no longer able to
solve clean multiplexer problems beyond the 20-bit version since accuracy was
now being undervalued.

In this study we present preliminary results for a Pareto-inspired multi-
objective rule fitness (PIMORF). Our goal was to see if we could implement
a Pareto-based Michigan-style LCS and determine whether we could identify
Pareto-front properties that could be used to switch the objective weighting in
favor of accuracy (in clean problems), and coverage (in noisy ones), without the
advantage of prior knowledge. Also, building off work in [12], we introduce a
fast rule compaction strategy that takes advantage of the multi-objective fit-
ness function to globally rank rules for efficient rule set reduction that preserves
performance. This proposed PIMORF was implemented and tested within the
ExSTraCS 2.1 algorithm and evaluated over the 6-bit to 135-bit multiplexer
problems, as well as a spectrum of complex, noisy simulated genetic datasets
concurrently modeling epistatic and heterogeneous patterns of association. We
expect that this work will (1) demonstrate the feasibility of adapting the Pareto-
front concept to the Michigan-style LCS architecture, (2) improve knowledge
extraction, and (3) pave the way for other data-driven fitness function adap-
tations to encourage assumption-free automated machine learning and data
mining.

2 Methods

In this section we briefly (1) introduce the ExSTraCS algorithm, (2) describe how
the PIMORF is updated and applied, (3) describe our proposed rule compaction
strategy, and (4) outline the evaluation strategy.

2.1 Algorithm

The ExSTraCS algorithm [2] is a Michigan-style LCS algorithm, that has been
expanded and adapted to better suit the needs of real-world supervised learn-
ing problems wherein classification, prediction, data mining, and/or knowledge
discovery is the goal. Most recently in version 2.1, it was expanded to include a
multi-objective fitness function that utilized a balanced weighting for the accu-
racy and coverage objectives. The accuracy and coverage metrics used in the
present study were calculated as described in [11]. In short, the accuracy objec-
tive is the accuracy above what would be expected by random chance (based
on the ratio cases to controls), transformed with an exponential function so
that accuracy improvement beyond random chance were highly valued, but less
emphasis was being placed on achieving 100 % accuracy. The coverage metric
is a state-frequency adjusted measure of the proportion of instances correctly
(i.e. accurately) covered by the given rule. For rules that have not yet seen all
of the training instances (i.e. so called ‘Not Epoch Complete’ (NEC) rules),
we extrapolate this proportion up to the expected correct coverage once all
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Fig.1. Pareto front illustrations: (A) General representation of a 2-objective
Pareto-front. (B) Application of the Pareto front concept to the calculation of rule-
fitness in PIMORF.

data has been observed. For a detailed description of the ExSTraCS algorithm
see [2,11]. For comparison we also evaluate ExSTraCS 2.0.1.2, which employs
the typical accuracy-based LCS fitness [2]. All implementations are available on
sourceforge.com or by request.

2.2 PIMOREF for LCS

The Pareto-front is part of the Pareto-optimization approach popularized for
multi-objective learning in genetic algorithms [13]. Figure 1A illustrates compo-
nents of a general Pareto-front as it might be applied to any evolutionary mod-
eling approach. Typically, a population of models are generated and objective
performance is evaluated (often accuracy and parsimony). Each model appears
as a point in the objective space (see Fig.1A). The ‘front’ (i.e. non-dominated
front) is the set of all non-dominated points. A point is non-dominated if at
least one of its objective values is the maximum observed given the value of the
second objective. Next, the set of non-dominated points/models are chosen as
the parents for the next generation of models, while dominated models can be
discarded. Over multiple generations, the goal is to evolve the front closer to
the theoretical optimum. The benefit of this approach is that evolution takes
both objectives into account without making any assumptions about objective
weighting (i.e. all points on the non-dominated front are treated with equal
priority). Our Pareto adaptation to Michigan-style supervised LCS algorithms,
(PIMORF) is differently designed to calculate rule-front-relative multi-objective
rule fitness values. Instead of points representing models in the multi-objective
front space, they represent LCS rules, that are each only part of the overall LCS
‘model’. In PIMOREF, the rule-fitness front is updated during the course of learn-
ing i.e. every time a new rule is generated and added to the rule-population, we
check to see if the rule is non-dominated. If it is, the rule-fitness front is updated
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accordingly. The PIMORF rule-front constitutes the current standard for opti-
mal multi-objective rule fitness, and rules that do not fall on the front (i.e.
dominated rules) can be preserved since they might be important contributors
to the overall solution despite not possessing a non-dominated combination of
objective values. Implementation of PIMORF involves the following: (1) Scal-
ing the ‘correct coverage’ objective using the maximum observed rule coverage
[11]. (2) Learning and updating two separate rule-fitness fronts: one for ‘epoch
complete’ (EC) rules that have been around long enough to have trained on the
entire dataset, and another for NEC rules which have seen at least 1000 instances
in the training set. To allow for a fair coverage comparison, NEC rule coverage
values are extrapolated as described in [11] up to the total training set size. (3) In
the first 1000 learning iterations, prior to either front being established, accu-
racy alone is applied as a surrogate for multi-objective fitness. (4) Rule-fitness
is calculated as the relative distance between the origin (where accuracy and
coverage objectives are both 0) and the rule point vs. the origin and the inter-
cept point on the rule-fitness front (see Fig. 1B). This is an agnostic approach to
multi-objective fitness weighting since any rule on the front has the maximum
fitness value. We also explored averaging this agnostic fitness value with a linear
accuracy or coverage bias, to be applied in the case that we wanted to apply
prior knowledge assuming a clean or noisy problem, or utilize characteristics of
the rule-fitness front to detect this automatically. This PIMORF implementa-
tion, combining the relative parato distance with a coverage gradient bias will
be referred to as ExSTraCS 2.1.1.

2.3 Rule Compaction

Rule compaction is a form of post-processing applied to the evolved LCS pop-
ulation following training. Its goal is to remove poor or redundant rules from
the population and yield a more compact rule-set that is easier to interpret (i.e.
extract knowledge), and ideally that preserves or improves power and predictive
accuracy. In previous work, a variety of LCS rule compaction strategies were
implemented and compared [12]. These strategies relied on an accuracy-based
fitness function, and therefore has the drawback of being poor for globally rank-
ing rules in the context of noisy problems. This is because highly accurate rules
in the population consistently over-fit the training data. In this study, we intro-
duce a simple rule compaction (SRC) scheme which we contrast with QRC, a
rapid scheme from [12], that preserves or improves performance, but minimally
reduces the overall rule-set size by removing clearly poor or inexperienced rules.
SRC complements PIMORF which yields a more globally reliable rule-ranking
metric than accuracy or rule-numerosity (i.e. the number of copies of a rule in
the population). Numerosity had previously been applied as a rough estimator
of global rule-value with mixed success [12]. SRC is implemented as follows:
(1) Rank all rules in the population by PIMORF'. (2) Progress through the rule
set by descending PIMORF. (3) For each rule, identify and remove any instances
in the training data that the rule correctly covers. If no remaining instances can
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be correctly covered, or the rule has an accuracy below the probability of ran-
domly selecting the class specified by the rule, or the rule has not yet had the
opportunity to train on the whole dataset (i.e. a NEC rule), this rule is excluded
from the final rule-set. SRC stops once the training set is empty (i.e. it has been
completely covered), or it has gone through the entire rule set.

2.4 Evaluation

In the present study we compare and evaluate ExSTraCS with and without
the proposed PIMORF as well as compare QRF to SRC in the case where
PIMOREF is applied. Both implementations were run over the same set of 960
noisy (i.e. heritabilities of 0.1, 0.2, or 0.4), complex simulated genetic datasets
with 20 discrete-valued attributes that were described and applied in [11] and
generated using GAMETES [14]. Each dataset concurrently modeled patterns
of epistasis and heterogeneity concurrently where four of the attributes were
predictive and 16 were non-predictive. 20 replicates of each dataset were ana-
lyzed and 10-fold cross validation (CV) was employed to measure average testing
accuracy and account for over-fitting. ExSTraCS was run up to 200,000 learn-
ing iterations. Pair-wise statistical comparisons were made using the Wilcoxon
signed-rank tests. All statistical evaluations were completed using R. Compar-
isons were considered to be significant at p < 0.05. All analyses were performed
using ‘Discovery’, a 2400 core Linux cluster available to the Dartmouth Col-
lege research community. These comparisons are performed over a set of key
performance metrics [2]. Both accuracy metrics were calculated as a respective
‘balanced accuracy’ to account for imbalanced datasets as the default output of
ExSTraCS. ‘Both Power’ is the ability to correctly identify both two-locus het-
erogeneous models. ‘Single Power’ is the ability to have found at least one. ‘Both
Co-occur. Power’ indicates the ability to detect both correct heterogeneous pat-
terns, while ‘Single Co-occur. Power’ is to detect at least one. Macro Population
refers to the number of unique classifiers in the classifier population. Addition-
ally we generated 18 toy simulated genetic datsets each with 20 attributes and
1600 training instances. These included datasets with either (1) a single locus
linear model, (2) a two-locus XOR interaction model, or (3) a three-locus XOR
interaction model each with varying degrees of noise (0-100 %). Another 6 clean
datasets with increasing sample sizes were generated for respective multiplexer
benchmarks of (6-bit through 135-bit) [2]. This secondary analysis was designed
to explore rule front properties that may serve as a ‘switch’ to automatically
direct ExSTraCS to adopt an accuracy or coverage objective bias in a problem
dependent manner.

3 Results and Discussion

Table 1 summarizes the statistical results comparing ExSTraCS with a multi-
objective fitness function (v2.1) to ExSTraCS with a simpler accuracy based
fitness (v2.0.2.1), as well as to our proposed implementation of PIMORF in
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Table 1. Average performance over all 960 datasets.

Rule population performance after 200,000 iterations

Performance ExSTraCS

Statistics v2.1 v2.0.2.1 | p v2.1.1 | p +QRF | p +SRC | p
Training Accuracy 1472 | 7975 T**¥].7519 |7 %% | 7485 | | * |.7648 |1 **
Test Accuracy .6215 | .6177 1 **].6123 | | **].6130 |- 6192 |1 *
Both Power 14104 | .4031 - 3895 | | **.3901 |- 0.3875 | | *
Single Power 7802 | .7542 L **].7635 | | **| 7710 |17 * | .7740 |1 **
Both Co-Occur. Power |.2292 |.0333 | *¥*%1.2656 | T **|.2675 |- 3542 | T **
Single Co-Occur. Power | .8271 | .7688 | *¥*1.8260 |- .8266 |- 8375 | T **
Macro Population 1248.5 | 1351.5 | 1 ** | 875.6 | | **|810.2 || **|192.7 || **
Run Time (min) 52.57 | 50.56 | **135.56 | | **|35.61 |- 35.58 |-

— No significant change

* p < 0.05 (Direction of change given by arrows)

** p < 6.94 x 107% (Cutoff assumes Bonferroni multiple test correction based
on 72 comparisons)

ExSTraCS (v2.1.1). This table further presents statistical comparisons between
v2.1.1 following the application of QRF rule compaction, and differently with
the application of the proposed SRC approach. As expected, preliminary testing
applying SRC to ExSTraCS with accuracy-based fitness yielded a much smaller
rule-set but with large performance losses (not shown). As can be reiterated
from this table, a multi-objective fitness function (in v2.1) globally improved
or maintained average performance measures when compared to accuracy based
fitness (in v2.0.2.1) over a spectrum of noisy datasets. Closer inspection of these
results, replicating findings in [11], suggest some data set specific trade offs for
accuracy and power metrics, enforcing the suboptimality of a multi-objective
fitness function with constant equal objective weights. With the substitution of
PIMORF as the fitness metric in ExSTraCS (in v2.1.1), we do observe signifi-
cant performance losses in testing accuracy, Both Power and Single Power, but
on the other hand observe a significant increase in Both Co-Occurence Power,
which reflects the ability of the algorithm to accurately detect and interpret
both underlying heterogeneous models, a critical advantage of LCS algorithms
in comparison to other machine learning approaches. Closer inspection of the
v2.1.1 results yielded similar dataset specific trade offs in performance, suggest-
ing that when averaged over all datasets this new implementation was not ideal
in terms of some key performance metrics, but universal performance metric
improvements could be expected if the dataset could be paired to the proper
objective weights. Furthermore, v2.1.1 significantly and dramatically reduced
the macro-population size (i.e. number of unique rules in the final population),
and significantly reduced algorithm run time. While PIMORF performance is not
yet optimal without proper objective weighting, the results are promising and
support the importance of a multi-objective fitness in noisy rule-based machine
learning. Next we examine the effect of our proposed rule compaction strategy
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Fig. 2. Pareto inspired rule front comparisons. Each box gives the respective rule-
fitness front, with accuracy and coverage axes each scaled between 0 and 1. Points
represent rules in the final rule population. The background shading under the curve
represents a basic illustration of underlying relative rule-fitness. Note that points found
above the front are NEC rules with likely overestimates of objectives. The large black
box groups all analyses involving noisy data.

(SRC) in comparison with no rule compaction and QRF. The results for v2.1.1
in Table 1 represent no rule compaction, and the following two columns present
the results of QRF and SRC being independently applied to the same rule popu-
lations summarized in the column for v2.1.1. This comparison reveals that while
QRF does indeed further reduce the rule population size while preserving if
not slighly improving some performance metrics, SRC, benefiting from multi-
objective fitness that better captures a global sense of rule value, significantly
improves testing accuracy as well as all other power metrics with the excep-
tion of Both Power which yields a relatively small loss. Using SRC, we observe
the largest significant increase in Both Co-Occurrence Power observed for any
implementation of LCS or ExSTraCS on this array of simulated genetic bench-
marks [2,5,6,11]. This performance metric has been by far the most difficult to
improve. Given that SRC dramatically reduces the population size, while simul-
taneously improving performance relative the population without compaction,
this strategy is an improvement over QRF and other strategies evaluated in [12].

In a related analysis, we sought to characterize evolved rule-fitness fronts
learned under different conditions of problem complexity and noise. The goal
was to see if properties of the front could be applied to appropriately adapt
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the fitness function to include a more appropriate objective bias without prior
problem knowledge. Figure 2 organizes a series of PIMORF rule-fronts learned
on an array of benchmark datasets modeling main effects, pure 2-way, or 3-way
interactions, or clean multiplexer benchmark problems of increasing complex-
ity. We summarize some interesting observations, but concede that preliminary
analyses seeking to apply these characteristics to predict whether the underlying
problem was clean or noisy during learning, suggest that none of these trends
can be universally applied as a reliable discriminator of clean vs. noisy prob-
lems. Relatively ‘simple’ patterns in the data such as main effects or relatively
complex clean data patterns tend to yield a single point rule front (1, 2, and 3
locus models without noise). In such problems, objective weighting likely makes
little to no difference, since optimal rules will be perfectly accurate and correctly
cover the largest number of training instances. As clean problems become more
complex (e.g. 4, 5, or 6 locus interactions), or include heterogeneity, we would
not expect optimal rules to also cover the most instances. This is because over-
general rules, with sub-optimal accuracy, can correctly cover a larger number of
instances than an optimally accurate rule in complex problem spaces.

For each front with multiple points, consider the points at the ends of the
front. Let’s call the far right point the ‘CoverMaz’ or the accuracy observed
at the largest coverage. The point on the far left we will call the ‘Accuracy-
Maz’, or the largest coverage observed at the maximum rule accuracy. One
interesting trend is that in partially noisy problems, CoverMaz tends to be
not only large, but larger than AccuracyMax. A more general way to view this
trend is to notice that partially noisy problems tend to have a shallow over-
all slope. Alternatively, in clean, complex problems, such as the set of increas-
ingly complex multiplexer problems, AccuracyMaz tends to be both large and
larger than CoverMazx, or more generally, the slope of these fronts are steep.
Unfortunately, these trends become unreliable indicators when (A) there is insuf-
ficient signal, or (B) problem complexity increases but the noise level fixed, or
(C) the complexity/dimensionality of a problem become so great that the magni-
tude of AccuracyMaz maxes it difficult to distinguish a complex clean rule-front
from a completely noisy signal. This makes the implementation of an automated
‘switch’, shifting from accuracy to coverage bias problematic. In a clean but
complex problem, until at least one optimal rule is found, the characteristics of
the front might suggest that the problem is noisy and add a coverage bias. The
addition of the wrong bias makes it even more unlikely that optimal rules will
be identified, and that the rule front will be correctly updated to an accurately
characteristic shape. One final observation for the multiplexer problems, is that
we can see clusters of rules forming linear patterns. These groups turned out
to correspond with the number of attributes specified in respective rules. Here
we can effectively observe the different linear relationships between the accuracy
and coverage within candidate rules that have not specified all of the necessary
attributes to correctly cover the underlying multiplexer problem (e.g. in the 135-
bit problem the 5 clearly identifiable groups correspond to 1-5 attributes having
been specified in those rules.
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4 Conclusions

The initial results presented in this paper demonstrate the potential benefits of a
Pareto-front inspired LCS rule-fitness and support taking an agnostic approach
to objective weighting in the likely absence signal to noise ratio prior knowledge
in real-world problems. Therefore to promote effective modeling (i.e. accurate
prediction and interpretable solutions) in problem domains that are not known to
be 100 % signal, a key goal should be to identify or properly estimate the signal to
noise ratio, and apply this information to correctly weight accuracy and coverage
objectives in the rule fitness function. Despite observing some interesting trends
comparing simulated datasets with clean to noisy signals, we have not identified
a reliable ‘switch’ that could be employed to automatically adapt the algorithm
to employ the proper objective bias. Future work will explore a purely agnostic
Pareto-based rule-fitness to evolve rules and rely on a rule compaction scheme
to test different objective weight ratios, and select the best one as the final rule-
set. While this work focuses on the adaptation of rule-based machine learning
to problems with unknown noise properties, multi-objective fitness could still
benefit performance on clean problems, where a small explicit generalization
pressure, has the potential to speed up learning beyond the underlying implicit
generalization pressures and the use of subsumption.
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