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Abstract. Decomposition is a well-established mathematical program-
ming technique for dealing with multi-objective optimization problems
(MOPs), which has been found to be efficient and effective when cou-
pled to evolutionary algorithms, as evidenced by MOEA/D. MOEA/D
decomposes a MOP into several single-objective subproblems by means
of well-defined scalarizing functions. It has been shown that MOEA/D is
able to generate a set of evenly distributed solutions for different multi-
objective benchmark functions with a relatively low number of decision
variables (usually no more than 30). In this work, we study the effect of
scalability in MOEA/D and show how its efficacy decreases as the num-
ber of decision variables of the MOP increases. Also, we investigate the
improvements that MOEA/D can achieve when combined with coevo-
lutionary techniques, giving rise to a novel MOEA which decomposes
the MOP both in objective and in decision variables space. This new
algorithm is capable of optimizing large scale MOPs and outperforms
MOEA/D and GDE3 when solving problems with a large number of
decision variables (from 200 up to 1200).

1 Introduction

Although in real-world applications, many MOPs have hundreds or even thou-
sands of decision variables, the effect of the scalability of decision variables space
over modern MOEAs has not been properly addressed. In fact, scalability in deci-
sion variables space is a topic that has been only scarcely studied in the context
of multi-objective optimization using MOEAs. This is perhaps motivated by the
fact that most researchers assume that the currently available MOEAs should
be able to work properly with a large number of decision variables. Nevertheless,
there exists empirical evidence that indicates that most of the currently available
MOEAs significantly decrease their efficacy as the number of decision variables
of a MOP increases [4,5]. The work reported here tries to narrow the gap in this
important topic.

We are interested in improving the MOEA/D [14] framework in order to
make it capable to deal with large scale (in decision variables space) MOPs.
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Thus, we study here the effect of scalability in MOEA/D and we investigate the
improvements that this algorithm can achieve. For this purpose, we propose to
combine the MOEA/D framework with Cooperative Coevolutionary techniques
(which have shown to be very effective for large scale single-objective optimiza-
tion [8,13]), giving rise to a novel MOEA based on a double decomposition (both
in objective and decision variables space).

The remainder of this paper is organized as follows. The previous related
work is discussed in Sect. 2. Section 3 describes our proposed approach and the
experiments carried out to validate it. Finally, our conclusions and some possible
paths for future work are drawn in Sect. 4.

2 Previous Related Work

Regarding studies on scalability in MOEAs, to the authors’ best knowledge,
the most significant ones are those reported by Durillo et al. [4,5], in which
the behavior and effect of decision variables scalability over eight multi-
objective metaheuristics (representatives of the state-of-the-art) are analyzed.
For this sake, the authors adopted a benchmark of scalable problems (the
Zitzler-Deb Thiele (ZDT) [16] test suite) using a number of decision variables
that ranged from 8 up to 2048. The study paid particular attention to the com-
putational effort required by each algorithm for reaching the true Pareto front
of each problem. These papers provide empirical evidence of the decrease in effi-
cacy and efficiency that multi-objective metaheuristics have when dealing with
MOPs with a large number of decision variables, as it is shown in their results.

Another work in this direction is a small study presented in [14], where ZDT1
is solved with up to 100 decision variables using MOEA/D. They analyze how the
computational cost, measured in terms of the number of function evaluations,
increases as the number of decision variables of the problem increases. This
is shown using a number of decision variables that ranges from 10 up to 100
variables. They used as a performance index the average number of function
evaluations spent by MOEA/D for reducing the D-metric [17] and concluded
that the average number of function evaluations linearly scales up, as the number
of decision variables increases. They attribute these results to two facts: (i) the
number of scalar optimization sub-problems in MOEA/D is fixed to be 100,
regardless of the number of decision variables of the problem. (ii) the complexity
of each single-objective optimization could scale linearly with the number of
decision variables. However, this study is too small to show a general behavior
of MOEA/D over large scale (in decision variables space) MOPs.

Although scalability in decision variables space is a topic that has been only
scarcely studied in the evolutionary multi-objective optimization field, large-
scale optimization has been the focus of an important amount of research in
global (single-objective) optimization using evolutionary algorithms. The cur-
rently available approaches for large-scale global optimization can be roughly
divided in two groups: those that decompose a high-dimensional decision vari-
ables vector into small subcomponents which can then be handled by conven-
tional EAs (see for example [13]) and the ones that approach the problem by
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disturbing the population of the EA or by combining different evolutionary meth-
ods (see for example [9]). From these methods, cooperative coevolution has been
found to be one of the most successful approaches for solving large and complex
problems, through the use of problem decomposition.

3 Our Proposed Approach

The main idea of our proposed approach is to make use of the divide-and-conquer
technique, adopted by the cooperative coevolutionary framework for large scale
single objective optimization, and incorporate such concept into MOEA/D. Our
motivation is that it is very natural to use scalar optimization methods in
MOEA/D, since each solution is associated with a scalar optimization prob-
lem, in contrast with non-decomposition MOEAs where in most cases there is
no easy way for them to take advantage of scalar optimization methods. Next,
we give a brief description of both MOEA/D and cooperative coevolution.

3.1 MOEA/D

The multi-objective evolutionary algorithm based on decomposition (MOEA/D)
[14] has attracted growing interest from the community, due to its simplicity
and to its effectiveness when applied to a broad range of MOPs. MOEA/D
decomposes the MOP into a set of single-objective subproblems and solves these
subproblems simultaneously using an evolutionary algorithm. It adopts a set of
weights each of which corresponds to a single subproblem. Each weight vector is
used as a search direction to define a scalar function. For this sake, the so called
Tchebycheff decomposition is the most widely used approach. Given a weight
vector λ = [λ1, . . . , λn]T the corresponding subproblem is defined as:

minimize gte(x|λ, z∗) = max
1≤i≤n

λi|fi(x) − z∗
i | (1)

where z∗ is the reference point chosen as the minimum of objective function
values found during the evolution. The main advantage of the Tchebycheff app-
roach is that it works regardless of the shape of the Pareto front, while other
decomposition approaches (like the weighted sum approach) only work for con-
vex Pareto fronts. The weights are also used to define neighborhoods of the
subproblems. The neighborhood relations among these subproblems are defined
based on the distances between their aggregation coefficient vectors. At each
generation, a new individual is generated and evaluated using its own neighbor-
hood of weights, with the idea that any information about these closest weight
vectors should be helpful for optimizing the current individual’s subproblem.
Once this new individual is created, it is compared to its parent and in case it is
better, it replaces its parent. Moreover, it is also compared to other individuals
in its neighborhood and is allowed to replace some of them. Therefore, at each
generation, the population is composed of the best solution found so far (i.e.,
since the start of the run of the algorithm) for each subproblem.
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3.2 Cooperative Coevolution

In nature, coevolution is the process of reciprocal genetic change in one species,
or group, in response to another. That is, coevolution refers to a reciprocal
evolutionary change between species that interact with each other [6]. A coevo-
lutionary search involves the use of multiple species as the representation of a
solution to an optimization problem. In the case of cooperative algorithms, which
are the focus of this work, individuals are rewarded when they work well with
other individuals and punished when they perform poorly together [11].

The first framework of cooperative coevolution (CC) utilized within evolu-
tionary algorithms was originally introduced by Potter and De Jong [10], with
their Cooperative Coevolutionary Genetic Algorithm (CCGA). This framework
uses a divide-and-conquer approach to split the decision variables into subpopu-
lations of smaller size, so that each of these subpopulations is optimized with a
separate EA. The main idea was to decompose a high-dimensional problem into
several low-dimensional subcomponents and evolve these subcomponents coop-
eratively. So, instead of evolving a population (global or spatially distributed) of
similar individuals representing a global solution, the cooperative coevolutionary
framework coevolves subpopulations of individuals representing specific parts of
the global solution.

After this work, there were many more cooperative coevolutionary
approaches, most of them for large scale global optimization since this showed to
be a good framework for solving high-dimensional problems [8,13]. In general,
the most common cooperative coevolutionary framework for high-dimensional
global (single-objective) optimization can be summarized as follows:

1. Decompose a vector of decision variables into m low dimensional subcompo-
nents.

2. Set j = 1 to start a new cycle.
3. Optimize the jth subcomponent with a certain EA for a predefined number

of fitness evaluations (FEs).
4. If j < m then j + +, and go to Step 3.
5. Stop if the stopping criteria are satisfied; otherwise, go to Step 2 for the next

cycle.

3.3 Description of Our Proposed Approach

If we are to extend the basic computational model of cooperative coevolution
into an approach that already uses a decomposition strategy as the one adopted
by MOEA/D, we must address the issues of a second problem decomposition, as
well as other issues such as the interdependencies among subcomponents, credit
assignment, and the maintenance of diversity. In order to do so and to provide
reasonable opportunities for the success of co-adapted subcomponents and an
increase in efficiency when dealing with large scale MOPs, we can not use the
whole model of cooperative coevolution as we did in our previous work presented
in [1], since it is much more costly (due to the use of multiple subpopulations)
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than the use of MOEA/D as a standalone algorithm. Instead, we only incorporate
into MOEA/D a coevolutionary step where we make use of the divide-and-
conquer technique that splits the MOP to be solved, but in decision variables
space.

Our proposed approach divides the vector of decision variables into S sub-
components (species), each one representing a subset of all the decision variables
at a time rather than taking only one variable per subcomponent. We assign each
decision variable to its corresponding subcomponent in a random way, trying to
increase the chance of optimizing some interacting variables together. However,
it is important to note that the cooperative coevolutionary adaptation presented
here does not work as in the original framework, since we do not intend to use
several subpopulations for each subcomponent of the problem and we will not
need individuals from the other species to assemble a complete solution in order
to perform a fitness evaluation. Here, we only use decision variable decomposition
to make operations (crossover and mutation) more effective and with this, we
can manage in a better way the curse of dimensionality (the performance of an
evolutionary algorithm deteriorates rapidly as the dimensionality of the search
space increases [12]) present in MOEAs. So, individuals will still be represent-
ing a whole solution, but operators will be applied based on the corresponding
species, and not based on the individuals. The algorithm of our proposed MOEA
based on double decomposition (MOEA/D2) works as follows:

m
...

m
...

m
...

D

Vector of decision
variables

Species 1 Species 2 Species S

Species
Subcomponents

Fig. 1. Graphical representation of the subcomponents (species) creation. Here, we
assume a vector of decision variables of dimension D which is divided into S subcom-
ponents of dimension m, created in a random way from the original vector of decision
variables and assigned to the S existing species, where D = m ∗ S.

Input:
– The MOP with k objective functions
– N : The number of subproblems considered in MOEA/D
– S: The number of species for decision variables decomposition
– A set of N uniform spread weight vectors:

λ1, . . . , λN

– T : The neighborhood size
Output:

– PS: the final solutions found during the search
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Step (1) Initialization:
Step (1.1) Set the external population of final solutions PS = ∅.
Step (1.2) Find the T closest weight vectors to each weight vector. For each

i = 1, . . . , N , set B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest
weight vectors to λi.

Step (1.3) Generate an initial population x1, . . . xN randomly or by a
problem-specific method. Set FV i = f(xi).

Step (1.4) Divide the problem into S subcomponents c1, . . . , cS each of
dimension m, created in a random way from the original vector of decision
variables x of dimension D (as shown in Fig. 1), where D = m ∗ S, such
that, for each j = 1, . . . , N , xj = [c1j , . . . , c

S
j ].

Step (1.5) Initialize z = [z1, . . . , zk]T , where zi is the best value found so
far for objective fi.

Step (2) Update:
For i = 1, . . . , N do

Step (2.1) Crossover and Mutation:
For j = 1, . . . , S do

Step (2.1.1) Randomly select two indexes p, q from B(i), and then gen-
erate a new solution yj

c from cjp and cjq using crossover.
Step (2.1.2) Apply a problem-specific repair improvement heuristic on

yj
c to produce y′j

c.
Step (2.2) Assemble y′ from [y′1

c , . . . , y
′S
c ], sorting the subcomponents to

form the original vector of decision variables.
Step (2.3) For each j = 1, . . . , k, if zj > fj(y′), then set zj = fj(y′).
Step (2.4) Update of Neighboring Solutions: For each index j ∈ B(i)

use (1) such that, if gte(y′|λj , z∗) < gte(xj |λj , z∗), then FV j = f(y′).
Step (2.5) Remove from the external population PS all the vectors domi-

nated by f(y′). Add f(y′) to PS if no vectors in PS dominate it.
Step (3) Stopping Criterion: Stop if the termination criterion is satisfied.

Otherwise, go to Step 2.

Since cjp and cjq in Step 2.1.1 are the current best subcomponent (in deci-
sion variables space) solutions to neighbors of the ith subproblem (in objective
function space) and their dimensions are less than the original vector of decision
variables x, their offspring y′j

c (already improved by mutation) should be a good
contribution to the complete assemble of the new final solution y′. Therefore,
the resultant solution is very likely to have a lower (improved) function value
for the neighbors of the ith subproblem. Also, by using only the decomposition
nature of the cooperative coevolutionary framework, there is no need for extra
function evaluations. Therefore, the efficiency of MOEA/D is not lost.

3.4 Experimental Results

We validated MOEA/D2 comparing its performance with respect to that of
the original MOEA/D and with respect to GDE3 [7]. Although GDE3 is not a
decomposition based algorithm, in the studies presented in [4] this differential
evolution based MOEA obtained the best overall results, which is the reason
why we decided to include it in our comparative study.
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Methodology. For the purposes of this study, we adopted the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [3] with instances of three objectives with a
number of decision variables that ranges from 200 to 1200. In order to assess the
performance of each approach, we selected the hypervolume indicator [15], since
this measure can differentiate between degrees of complete outperformance of
two sets. The hypervolume is defined as the n-dimensional space that is contained
by an n-dimensional set of points. When applied to multi-objective optimization,
the n-dimensional objective values for solutions are treated as points for the
computation of such space. That is, the hypervolume is obtained by computing
the volume (in objective function space) of the nondominated set of solutions Q
that minimize a MOP. For every solution i ∈ Q, a hypercube vi is generated with
a reference point W and the solution i as its diagonal corner of the hypercube:

S = V ol

⎛
⎝

|Q|⋃
i=1

vi

⎞
⎠ (2)

The aim of this study is to identify which of the algorithms being compared
is able to get closer to the true Pareto front using the same number of objective
function evaluations and how they behave as the dimensionality of the MOP
increases.

Parameterization. The parameters of each algorithm used in our study were
chosen in such a way that we could do a fair comparison among them. For
MOEA/D2 and MOEA/D, we adopted SBX and polynomial-based mutation [2]
as the crossover and mutation operators, respectively. The mutation probability
was set to pm = 1/l, where l is the number of decision variables; the distribution
indexes for SBX and the polynomial-based mutation were set as: ηc = 20 and
ηm = 20. For the case of MOEA/D2, different numbers of species were used for
each problem instance, in order to have 2 decision variables per species. So, for
problems with 200 decision variables, 100 species were used, for problems with
400 decision variables, 200 species were used, and so on. The maximum number
of iterations adopted for all problems and MOEAs was set to 1000, regardless of
their dimensionality. The F and CR values for GDE3 were set to 0.5. Finally,
the population size for all algorithms in all problems instances was set to 100.

Discussion of Results. In our experiments, we obtained the hypervolume value
over the 25 independents runs performed. Table 1 shows the average hypervol-
ume of each of the MOEAs being compared for each test problem adopted, as
well as the results of the statistical analysis that we made to validate our exper-
iments, for which we used Wilcoxon’s rank sum. Also, we show the improvement
on the hypervolume value that our approach was able to obtain with respect
to that of the other algorithms. GDE3 presented the poorest performance in
all problem instances. MOEA/D produced competitive results for DTLZ2 and
DTLZ4, although it could not outperform our approach in any problem instance.
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Table 1. Average of the hypervolume indicator. The cells containing the best hypervol-
ume value for each problem have a grey colored background. The improvement columns
show the improvement on the hypervolume value that our approach was able to get
against that of the other MOEAs. The P(H) columns shows the results of Wilcoxon’s
rank sum test. P is the probability of observing the given result (the null hypothesis
is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

MOEA/D2 MOEA/D MOEA/D2-MOEA/D MOEA/D2-MOEA/D GDE3 MOEAD2-GDE3 MOEAD2-GDE3

Function No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ1 200 124999991998953.0000 124999970289543.0000 21709410.2344 0.000000 (1) 124923656113375.0000 76335885578.2031 0.000000 (1)

400 124999755014274.0000 124999298073533.0000 456940740.9063 0.000000 (1) 124181465622337.0000 818289391936.5000 0.000000 (1)

600 124998478272908.0000 124996030413092.0000 2447859816.0625 0.000000 (1) 122039040800943.0000 2959437471964.5000 0.000000 (1)

800 124995060011719.0000 124985536236730.0000 9523774988.8594 0.000000 (1) 117702084444497.0000 7292975567222.5300 0.000000 (1)

1000 124986970597954.0000 124955356063479.0000 31614534475.2500 0.000000 (1) 110256296271387.0000 14730674326567.2000 0.000000 (1)

1200 124970550659900.0000 124894718579624.0000 75832080276.4531 0.000000 (1) 99191612716078.9000 25778937943821.2000 0.000000 (1)

DTLZ2 200 728999.3904 728999.3862 0.0043 0.712386 (0) 728989.2937 10.0967 0.000000 (1)

400 728999.3808 728999.3680 0.0128 0.043602 (1) 728321.7458 677.6350 0.000000 (1)

600 728999.3605 728999.3085 0.0520 0.000000 (1) 721831.2296 7168.1309 0.000000 (1)

800 728999.2870 728999.1289 0.1581 0.000000 (1) 698874.5807 30124.7063 0.000000 (1)

1000 728999.0954 728998.4267 0.6687 0.000000 (1) 653788.8012 75210.2941 0.000000 (1)

1200 728998.4393 728994.9746 3.4647 0.000000 (1) 571671.4472 157326.9921 0.000000 (1)

DTLZ3 200 1727999970755560.0000 1727999849624200.0000 121131355.7500 0.000000 (1) 1727222040269000.0000 777930486563.2500 0.000000 (1)

400 1727996400439630.0000 1727991944817710.0000 4455621923.0000 0.000000 (1) 1716392835963730.0000 11603564475898.3000 0.000000 (1)

600 1727970985655110.0000 1727945403715830.0000 25581939288.2500 0.000000 (1) 1679379508439150.0000 48591477215964.8000 0.000000 (1)

800 1727890440027340.0000 1727805158813020.0000 85281214323.2500 0.000000 (1) 1597662758376130.0000 130227681651214.0000 0.000000 (1)

1000 1727715593620590.0000 1727460212199730.0000 255381420857.2500 0.000000 (1) 1463152563598520.0000 264563030022069.0000 0.000000 (1)

1200 1727363193497010.0000 1726773363259150.0000 589830237867.0000 0.000000 (1) 1259639566256750.0000 467723627240265.0000 0.000000 (1)

DTLZ4 200 728999.4140 728999.4078 0.0062 0.277231 (0) 728991.3901 8.0240 0.000000 (1)

400 728999.4065 728999.3896 0.1154 0.000000 (1) 728201.9349 434.6057 0.000000 (1)

600 728999.3788 728999.3464 0.0324 0.000000 (1) 720704.2965 8295.0824 0.000000 (1)

800 728999.3150 728999.1945 0.1206 0.000000 (1) 696046.7161 32952.5989 0.000000 (1)

1000 728999.1477 728998.6192 0.5285 0.000000 (1) 644641.3868 84357.7609 0.000000 (1)

1200 728998.5780 728994.9171 3.6609 0.000000 (1) 559363.2154 169635.3626 0.000000 (1)

DTLZ5 200 1727866.0538 1727865.9384 0.1154 0.013007 (1) 1727431.4481 434.6057 0.000000 (1)

400 1727865.5061 1727864.6278 0.8784 0.000000 (1) 1721336.0150 6529.4911 0.000000 (1)

600 1727863.4153 1727859.1967 4.2187 0.000000 (1) 1697620.6971 30242.7183 0.000000 (1)

800 1727857.2346 1727840.7092 16.5255 0.000000 (1) 1635056.7976 92800.4370 0.000000 (1)

1000 1727837.7148 1727760.3047 77.4101 0.000000 (1) 1510727.5139 217110.2010 0.000000 (1)

1200 1727773.5677 1727524.1382 249.4296 0.000000 (1) 1313095.5122 414678.0555 0.000000 (1)

DTLZ6 200 999967922.4861 999899450.4162 68472.0699 0.000000 (1) 999330750.1795 637172.3066 0.000000 (1)

400 998891441.7157 996820925.0570 2070516.6587 0.000000 (1) 987305237.5147 11586204.2010 0.000000 (1)

600 990768252.6193 981381295.3432 9386957.2761 0.000000 (1) 948509739.2585 42258513.3608 0.000000 (1)

800 964064335.0353 937687686.8457 26376648.1896 0.000000 (1) 874883514.5826 89180820.4527 0.000000 (1)

1000 906131328.8124 855654049.3429 50477279.4695 0.000000 (1) 744576613.9787 161554714.8337 0.000000 (1)

1200 803763312.2166 712087777.8538 91675534.3628 0.000000 (1) 551828946.6234 251934365.5932 0.000000 (1)

DTLZ7 200 2203.4849 2203.4656 0.0193 0.000000 (1) 2055.0598 148.4252 0.000000 (1)

400 2193.4627 2192.7324 0.7303 0.000000 (1) 1699.4438 494.0190 0.000000 (1)

600 2090.3379 2067.9036 22.4343 0.000413 (1) 1338.1314 752.2065 0.000000 (1)

800 1842.2642 1815.7768 26.4875 0.013007 (1) 1059.6383 782.6260 0.000000 (1)

1000 1605.8489 1526.3840 79.4649 0.000001 (1) 855.6279 750.2210 0.000000 (1)

1200 1398.8865 1352.2878 46.5987 0.006223 (1) 718.3771 680.5094 0.000000 (1)
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According to Wilcoxon’s test, we cannot reject the null hypothesis in only two
cases when comparing our approach to MOEA/D, in DTLZ2 and DTLZ4 with
200 decision variables, which means that in these cases both algorithms have
a similar behavior. This shows that our approach has a similar performance
to MOEA/D in multi-frontal problems. The best overall performance of our
approach was in DTLZ1, DTLZ3 and DTLZ6, where our approach significantly
outperformed MOEA/D and GDE3, and as the results show, as the dimension-
ality of the problems grows, the improvement obtained by our approach on the
hypervolume value increases. So, we can confirm that our approach can handle
in a better way problems with degenerate Pareto optimal fronts, as is the case
of DTLZ6. Decomposition is very effective when solving non-separable problems
such as DTLZ1 and DTLZ3. For DTLZ5 and DTLZ7, the improvement was
more remarkable as the dimensionality of the problems increased. However, our
approach was also able to outperform both MOEA/D and GDE3 in all instances.
Based on the results of Wilcoxon’s test, we can confirm that the null hypothesis
can be rejected, so MOEA/D2 produced the best overall results.

4 Conclusions and Future Work

Here, we developed a novel decomposition-based MOEA called MOEA/D2,
which adopts decomposition based techniques used by cooperative coevolution-
ary algorithms. MOEA/D2 uses a double decomposition of the MOP, one in
objective functions space, as done by MOEA/D, and another one in decision
variables space. Our experimental results indicate that MOEA/D2 clearly out-
performs MOEA/D and GDE3 in MOPs having from 200 up to 1200 decision
variables. Our approach was able to deal with all the difficulties presented in the
DTLZ test suite, even in high dimensionality. The results confirmed that our
proposed approach is very effective and efficient in tackling large scale MOPs.
As part of our future work, we intend to study other decomposition techniques
for decision variable space. We are also interested in studying the possible use of
other (computationally inexpensive) methods to generate a set of weight vectors
more uniformly distributed for MOEA/D2.
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