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Abstract. Energy consumption is a matter of paramount importance
in nowadays environmentally conscious society. It is also bound to be a
crucial issue in light of the emergent computational environments aris-
ing from the pervasive use of networked handheld devices and wear-
ables. Evolutionary algorithms (EAs) are ideally suited for this kind of
environments due to their intrinsic flexibility and adaptiveness, provided
they operate on viable energy terms. In this work we analyze the energy
requirements of EAs, and particularly one of their main flavours, genetic
programming (GP), on several computational platforms and study the
impact that parametrisation has on these requirements, paving the way
for a future generation of energy-aware EAs. As experimentally demon-
strated, handheld devices and tiny computer models mainly used for
educational purposes may be the most energy efficient ones when look-
ing for solutions by means of EAs.

Keywords: Green computing · Energy-aware computing · Performance
measurements · Evolutionary algorithms

1 Introduction

In the analysis of single or multi-processor algorithm performance, an important
feature is frequently forgotten: energy consumption, which largely correlates with
performances provided by new processors. That is why, in an environment where
raw processor speed is no longer doubling at an accelerated pace, reducing energy
consumption and taking it into account when evaluating algorithms becomes an
issue, to the point that latest HPC benchmarks also include this measurement
in their reports and there are calls for energy-proportional computing [5] and
green computing [10], a term that was born in the last decade to refer to prob-
lems associated to energy consumption in computing environments, particularly
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in large data centers. But this energy-aware and proportional point of view is
equally applicable to desktop computers and any kind of algorithms that may
be run.

When dealing with evolutionary algorithms (EAs), big efforts have been
applied to improve performances while applying parallel and distributed sys-
tems [13]. Improvements have tried to analyze global quality of solutions when
compared with time required to find them. But similarly as the traveler consid-
ering not only speed but also price when selecting means of transport, we should
also consider energy consumption when running an algorithm, and not just the
time to solution.

To the best of our knowledge, the influence of this important parameter has
not been analyzed yet in the context of EAs, although its importance has already
been recognized [6]. This is the main goal of this work, to make a preliminary
analysis of the impact of energy consumption when running a well know EA,
Genetic Programming, on different hardware architectures, so that we may in
the future be aware of the importance, and even design energy-aware EAs; we
will also measure the impact of a particular feature, population size, in the
energy consumption, so that these parameters can be taken into account in an
energy-aware design of evolutionary algorithms.

The rest of the paper is organized as follows: Sect. 2 describes previous works
on the area; Sect. 3 describes the experiments performed and Sect. 4 shows the
results obtained. Finally we summarize our conclusions in Sect. 5.

2 Evolutionary Algorithms and Energy Consumption

Computer science took interest in energy efficiency a number of years ago, and
a new research topic was born, Green Computing [10], together with the energy-
aware [5,14] concept. Even processor makers offered new processors providing
dynamic frequency scaling, which adapts energy consumption as well as heat
dissipation to the need of the processes to be run [1,2,4].

On the other hand, EAs have already been applied as optimization algo-
rithms in the context of energy management. We can thus find optimization
problems associated to HVAC (Energy management of heating, ventilating and
air-conditioning) [8,12]. We can also find EAs applied to energy dispatch [7]. But
any of the above referred problems are only tangentially connected to the prob-
lem we are interested in: how to include energy consumption as one of the main
features of EAs to be considered when looking for solutions, and its relationship
with the main parameters of the algorithm.

The main concept discussed in this paper is the capability of an EA to adapt
to dynamic environments in which energy consumption is one of the main com-
ponents to be optimized [6]. This capability, which is one of the self-� features of
a given algorithm, including EAs [6], has already been considered by researchers
in other kind of algorithms and computer architectures [3], in some cases an
essential part of them [14]. Energy-awareness is considered a key component in
infrastructures of any size, from large data centers to processor architectures for
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mobile devices where battery life must be optimized. Also in this context, EAs
have been employed to design cache hierarchies reducing energy consumption
and heat dissipation [16].

Yet, to the best of our knowledge, EAs have never been studied from the point
of view of their own energy needs. Given their stochastic nature, the number of
parameters regulating the way they perform the search process and the plethora
of hardware platforms available to run them, we consider it of interest to study
the energy consumed when looking for a solution, so that in the future they may
become energy-aware and capable of self-regulating when progressing towards
the solution of the problem faced. This is what we have set out to do in this
paper.

3 Methodology

This preliminary study tries to measure energy consumption for the Genetic
Programming (GP) algorithm. In the following subsections both the algorithm
setting (Sect. 3.1) and computational platforms (Sect. 3.2) are presented.

3.1 Algorithmic Setting

Given the stochastic nature of this kind of algorithms, we firstly decided to run
each of the experiment 30 times so that the average can be computed as an esti-
mation of the algorithm behavior. In order to establish a fair comparison among
the different hardware platforms considered, these runs are done with the same
30 random seeds so that all of the runs are exactly the same in every platform,
when considering high level operations defined in the high level programming
language.

On the other hand, and given the influence of computing time in the total
amount of energy consumed by the algorithm, we configured the main loop of
the algorithm to finish when the optimal solution is found. We are thus mainly
interested in the average computing time for the 30 runs, together with the
energy consumed along that time. The only differences that may arise are due
to hardware differences: instruction set architecture, processor speed and oper-
ating system; features that are not the focus of this work. Nevertheless, these
differences may influence future decision on the preferred hardware and operat-
ing system for the algorithms.

We must also mention the interest in studying some of the main parameters
of the algorithm: they have a well-known impact on the time to find solutions,
and may thus also directly, or indirectly influence the energy consumed to reach
that solution. In this preliminary study we have focused on population size and
have tested several values for the problem selected. Although we are working
with GP and a well-known problem, this first analysis will be helpful to see that
energy consumption is an important issue when working with EAs.
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Table 1. Main GP parameters for multiplexer 6.

Max number of generations 500

Population sizes 100, 200, 400, 500, 1000

Crossover probability 0.9

Mutation probability 0.1

Table 2. Devices

Device Processor Cores RAM OS

raspberry pi Cortex-A7 900MHz 4 1GB Raspbian GNU/Linux 7

tablet Samsung Galaxy Tab 3
SM-T311, Exynos 4212
1.5GHz

2 1.5GB Android 4.4.2 (kernel 3.0.31)

laptop Intel(R) Core(TM) i5-2450M
2.5GHz

4 8GB Ubuntu 12.04.5 LTS

iMac Intel(R) Core(TM) i5 2.7GHz 4 4GB OSX 10.11.4

blade Virtual Machine (on IBM
8CPUs x 2GHz Intel Xeon
CPUE5504 @ 2.00GHz (x2),
16Gb RAM)

4 4GB Debian 6.0, 64 bits

In order to ease the compilation processes in every hardware platform, we
have selected a well known implementation of GP in the C programming lan-
guage: lilgp1. Regarding the problem selected for the experimental stage, we have
selected one of the test problems provided by lilgp: the multiplexer problem. To
be precise, we have set up to work with 6 bits. The main parameters of the
algorithm are described in Table 1. Function and terminal sets are the standard
ones as described by Koza [11].

3.2 Computational Platforms

Several computational platforms have been tested, i.e., raspberry pi, tablet, lap-
top, iMac and blade. Table 2 provides the details for the hardware architectures
and operating systems used. Given the differences among hardware devices, we
have employed different ways for measuring energy consumed by each of the
algorithms.

Laptop and Raspberry Pi. Regarding the laptop and raspberry pi, we have
employed a multimeter for measuring total power delivered to the device in
two different scenarios: (i) when the algorithm is not running and (ii) when
the algorithm is running. Starting with an initial measurement at rest (first
scenario) in both cases, our multimeter is able to measure the watts delivered,

1 http://garage.cse.msu.edu/software/lil-gp/.

http://garage.cse.msu.edu/software/lil-gp/
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which remains constant in the case of raspberry pi while the algorithm is running.
So we can obtain watts delivered by the algorithm (second scenario) by simply
subtracting both values. In the laptop the watts delivered vary continuously, so
we record a video in order to register all possible values and how long it lasted
each one. Once all data are collected, we analyze how long each value stays with
respect to the total execution time. Thus, we can accurately compute the average
power delivered and, finally by subtracting the initial value, we get the power
delivered by the algorithm.

Tablet. In order to collect data about energy consumption to Android devices,
such as smartphones or tablets,PowerTutor2 [15] has been used. This app is a diag-
nostic tool for analyzing system and app energy consumption. In order to obtain
energy measurements of the EA, PowerTutor runs in the background and logs data
on energy utilization for each app, summarizing the info in an intuitive user inter-
face (reporting the number of Joules the app has consumed during the run).

iMac. Data collection in the iMac was done using HardwareMonitor3. This
application suite includes a command-line tool that provides readings of the
internal hardware sensors built on the computer. In order to obtain power mea-
surements, a shell script is run in parallel to each run of the EA. This script
gathers sensor data periodically (we use a sampling frequency of 1s) and goes to
sleep state between measurements. During the experimentation, no other appli-
cation is run, apart from background processes under OS control. To gauge the
data, the same data-collection process is run for 100 s before each batch of runs,
thus providing an indication of the system basal consumption at that moment
which is in turn used to compute the excess power delivered due to the EA (and
hence accounting for eventual hysteretic phenomena).

Blade. Ecosystems such as clusters are often used to process big data sets. This
kind of systems allow us to optimize, by sharing, resources like Ethernet, storage
devices, power supply, etc. The ecosystem we use employs VMWare Esxi 5.04 (see
Table 2) whose hypervisor provides us with information about energy consumed
by both the hardware platform as well as any of the virtual machines running
on it. Thus we can obtain specific data for the virtual machine running the
algorithm, and thus we can compute the difference between energy consumption
when the algorithm is running and when it is not running.

4 Results

As described in the previous section, computational times and power deliv-
ered for each of the devices are reported in Table 3; algorithms tested using
2 http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html.
3 http://www.bresink.com/osx/HardwareMonitor.html.
4 https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=

ESXI50.

http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html
http://www.bresink.com/osx/HardwareMonitor.html
https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=ESXI50
https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=ESXI50
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Table 3. Time (in seconds) for lilgp-multiplexer-6 run on each system depending on
the population size. The numbers denote the mean and the standard error of the mean
for the 30 runs performed.

population size

System 100 200 400 500 1000

raspberry pi 7.77 ± 1.31 19.91 ± 2.41 46.22 ± 4.01 61.10 ± 7.19 116.80 ± 13.55

laptop 1.73 ± 0.31 4.43 ± 0.54 10.60 ± 0.97 13.89 ± 1.68 27.13 ± 3.36

iMac 1.38 ± 0.28 3.69 ± 0.48 8.98 ± 0.84 11.74 ± 1.44 22.95 ± 2.85

tablet 4.43 ± 0.75 4.85 ± 0.78 35.68 ± 4.15 36.17 ± 4.17 68.70 ± 7.89

blade 2.59 ± 0.53 6.88 ± 0.91 16.78 ± 1.59 22.28 ± 2.77 43.53 ± 5.48
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Fig. 1. (a) Average power delivered in each run. (b) Energy consumption per run. In
both cases the bars (corresponding to raspberry pi, tablet, laptop, iMac and blade from
left to right in each group) indicate mean values and the error bars span the standard
error of the mean. Notice the logarithmic scale in the Y axis.

different population sizes for each of the experiments are shown in Fig. 1a. The
first thing that may be noticed is the difference in computing time among devices
analyzed, which corresponds with expectations: small devices (raspberry pi and
tablet) require quite a long time to reach solutions and this is typically the rea-
son why they are not frequently used as the hardware platform to run EAs –
although they are useful when non-standard distributed models are analyzed
(such as pool-based models, [9]).

Nevertheless, we are considering a different point of view, and will not just
focus on computing time. Different features can thus be analyzed: (i) device
behavior when considering energy consumed or power delivered by the algo-
rithm per unit of time; (ii) total energy required to find a solution and (iii) the
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Fig. 2. (a) Distribution of fitness values attained for each population size (platform
independent). (b) Trade-off between fitness attained and energy consumption. The
data points mark mean values and the error bars indicate the standard error of the
mean. A fit to a power-law E ∝ fk is also included (in the case of the blade system,
we have omitted the last point since it is an outlier). Notice the logarithmic scale in
the Y axis.

way population size influences the energy needs when looking for a solution. If
we focus firstly on the energy required by lilgp to be run in every device (see
Fig. 1b), we notice that handheld devices (raspberry pi and tablet) are the least
demanding ones, requiring an order of magnitude less energy to run the same
algorithm when compared with more standard computers: iMac, laptop and blade
system. Secondly, when considering the total energy required to reach the solu-
tion for the problem, the tablet running Android is the device that provides the
cheapest solution, according to energy consumed, while blade and laptop are the
most expensive ones in every case. Yet, if we only focus on computing time, the
opposite is the case, and iMac, laptop and blade would be the preferred ones. But
given that we are looking for energy-efficient ways of finding solutions by means
of EAs, then raspberry pi and tablet might be preferred. Of course, this may look
as a somewhat expected result a posteriori but it is nevertheless important to
have obtained experimental confirmation of this fact, since different devices do
not necessarily have to yield analogous trade-offs between energy consumption
and speed.

In addition to absolute energy consumption values, it is also interesting to
analyze how the energy requirements vary for a given device when the parame-
terization is changed. In this case, we have focused on population sizes for two
reasons: firstly, it is an essential parameter that greatly influences the search
process and can have an energy impact due to both the different behavior of
the algorithm and memory management issues that might appear; secondly, its
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use in conjunction with a stopping condition based on generations influences the
total work done as well as the quality of the solutions attained. This fact is used
as a proxy to study energy consumption as a function of the attained quality of
solutions in devices in which online energy measurements are not possible (and
hence only the total energy consumed in a run can be measured).

We see in Fig. 1b that there is a general trend of increasing energy cost for
increasing population sizes5 which has a twofold cause: the longer computa-
tional time needed to complete the runs and the slightly larger power delivered
in each case (i.e., energy spent per unit time is influenced by the population
size). The latter effect can be due to issues related to memory management and
is most remarkable in non-handheld devices (quite interestingly, no change is
found for raspberry pi and quite small changes for the tablet). This increased
energy toll does not always pay off as we can see by inspecting Fig. 2a; except
for the largest population size, there does not seem to be a significant differ-
ence between the median fitness for a certain size and the immediately smaller
size. A more focused perspective on this issue is shown in Fig. 2b in which we
depict the energy required by each device to attain a certain fitness. The order
of growth of this cost can be modeled as a power law as a first approximation.
Such a power law is consistent with the superlinear cost of obtaining increasingly
better approximations to the optimal solution and –while the fit can be obvi-
ously improved– it provides the means for a first comparison of these different
devices. Thus, we can see how the general trends are not dramatically different
for raspberry pi, tablet, laptop and iMac except for the offset of order of mag-
nitude between the two former and the two latter. The blade system provides
a more stable energy profile and can be preferred to laptop and iMac if a tight
approximation to the optimum is sought. However, the smaller devices remain
the best option in terms of absolute energy cost.

5 Conclusions

We have presented a preliminary study on the energy consumed by a well known
EA: the Genetic Programming algorithm. We have analyzed the behavior of a
benchmark GP problem, the multiplexer-6, and have run it using lilgp on
different hardware devices running a number of operating systems, from blade
systems using different Linux distributions to tablet devices running Android.

One of the first things we have learned is that although devices with better
processors can run the algorithm faster, they spend larger amounts of energy,
and the total energy required to find a solution is also larger. This means that
although the standard preference for better hardware platforms and processors
allows to find solutions more quickly, it incurs in waste of energy that should be
considered: it is much more energy efficient to run the algorithm on a Raspberry

5 In the case of the blade, we can observe that a population with 1000 individuals
consumes less energy than with 500 individuals. This phenomenon is due to the
processor frequency decreases because more memory is needed.
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Pi or a tablet device. Of course, it is expected that some very computationally-
expensive problems could not be fully solved in one of these devices. Then again,
they can provide a valuable, energy-efficient contribution to the collective resolu-
tion of such problems when used within a larger ephemeral network of computing
devices [6].

Secondly, we have seen the influence of one of the main parameters of the
algorithm may have on the energy consumed: changing population sizes auto-
matically produce a change in the amount of energy required to reach solutions,
and this is a hint on future analysis. We should thus carefully consider how each
of the parameters of the algorithm may also influence the amount of energy
consumed when looking for solutions.

As a future line of work, it would be interesting to consider different devices
in the same class exploring the space of solutions in a multiobjective way: which
devices manage to find the solution faster for the least amount of energy? In
principle the analysis is generic and does not rely on any feature that could be
said to be GP-specific, so we believe the conclusions extracted are applicable
to any EA. This said, it would be also interesting to further confirm this. We
will thus expand the study to other evolutionary algorithms to check whether
these energy profiles are exclusive of GP or there are variations among them.
Energy profiling the algorithms will also allow us to find out where the energy
expenses actually come from, allowing us to optimize the algorithm itself making
it energy-aware.
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