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Abstract. The potential of cooperative coevolutionary algorithms
(CCEAs) as a tool for evolving control for heterogeneous multirobot
teams has been shown in several previous works. The vast majority of
these works have, however, been confined to simulation-based experi-
ments. In this paper, we present one of the first demonstrations of a
real multirobot system, operating outside laboratory conditions, with
controllers synthesised by CCEAs. We evolve control for an aquatic mul-
tirobot system that has to perform a cooperative predator-prey pursuit
task. The evolved controllers are transferred to real hardware, and their
performance is assessed in a non-controlled outdoor environment. Two
approaches are used to evolve control: a standard fitness-driven CCEA,
and novelty-driven coevolution. We find that both approaches are able to
evolve teams that transfer successfully to the real robots. Novelty-driven
coevolution is able to evolve a broad range of successful team behaviours,
which we test on the real multirobot system.

Keywords: Cooperative coevolution - Evolutionary robotics + Novelty
search - Reality gap - Heterogeneous multirobot systems

1 Introduction

Cooperative coevolutionary algorithms (CCEAs) allow for the evolution of solu-
tions that consist of coadapted, interacting components [16,17]. CCEAs are a
natural fit for the evolution of heterogeneous multiagent systems [18], as each
agent can be represented as an independent component of the solution, and can
therefore evolve a specialised behaviour (see for instance [12,18,22]). The classic
CCEA architecture [17] operates with two or more populations, where each agent
evolves in a separate population. Populations are isolated from one another,
meaning that individuals only compete and reproduce with members of their own
population. The individuals in each population are evaluated by forming teams
with representative individuals from the other populations. These teams are
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evaluated in the problem domain, and the individual under evaluation receives
the fitness score obtained by the team as a whole.

Previous works that have applied CCEAs to the evolution of agent behav-
iours can be divided in three main categories [14]: (i) game-theoretic environ-
ments, essentially strategy games where each agent is rewarded according to a
payoff matrix [15,21]; (ii) abstract embodied agents, where the evolved agents
are situated in an environment that they sense and act in, but the agents are
abstract and unrelated to any real robotic platform [7,18,22]; and (iii) simu-
lated robotics tasks, in which the evolved agents are modelled closely after a real
robotic platform and a real task environment [10,11].

One notable category is missing from this list, namely real robotics tasks —
tasks in which behavioural control is evolved in simulation, and then transferred
to a real robot team. While this reality gap has been crossed using other evolu-
tionary algorithms [19], in both single [8] and multirobot systems [3], to the best
of our knowledge, CCEAs have been confined to simulation-based experiments
up until now. The potential of CCEAs to evolve control for robot teams has been
shown in simulation in tasks such as: predator-prey pursuit [7,11], herding [18],
collective construction [13], multirobot foraging [5,12], and keepaway soccer [4].

In this paper, we evolve control for an aquatic surface multirobot system that
must perform a cooperative predator-prey pursuit task. Predator-prey pursuit
is one of the most commonly studied tasks in multiagent coevolution. In the
cooperative version of this task [7,11,22], a team of predators must cooperate
to capture an escaping prey. The predator-prey task is especially interesting in
CCEA studies because behavioural heterogeneity and close cooperation in the
predator team is required to effectively catch the prey [22]. After evolving the
controllers offline in simulation, we transfer the controllers to the real robotic
platform, and systematically evaluate them in an outdoor environment. The
natural unpredictability associated with the aquatic environment (caused by
inaccurate robot motion, waves, and currents) allow us to study transferability
in a realistic scenario, and understand how controllers evolved by CCEAs are
able to cope with noisy and stochastic conditions.

We evolve control using two cooperative coevolution approaches: a stan-
dard fitness-driven CCEA [17], and novelty-driven cooperative coevolution [7] —
a recently proposed algorithm that aims at mitigating the premature conver-
gence issues that commonly plague CCEAs [15,16]. Novelty-driven coevolution
is based on novelty search [9], an evolutionary approach that rewards individuals
displaying novel behaviours, rather than exclusively rewarding the individuals
that display the highest performance with respect to a fitness function. Novelty-
driven coevolution (NS-Team) relies on team-level behaviour characterisations,
and rewards behaviourally novel teams in addition to high-fitness ones, as it is
typically done in CCEAs. The team-level characterisations capture how the team
as a whole behaves, without discriminating between the behaviours of the indi-
vidual agents. Both the fitness and the novelty scores of the teams are used to
reward the individuals, via a multi-objective algorithm. By rewarding agents
that lead to novel team behaviours, an evolutionary pressure towards novel
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equilibrium states is created. Besides the ability to overcome premature con-
vergence, and thus reach higher quality solutions, it has also been shown that
NS-Team can evolve a diverse set of solutions for a given task [4,5,7].

2 Experimental Setup

2.1 Cooperative Predator-Prey Task

In our predator-prey pursuit task, a team of three predators must cooperate
to capture one escaping prey. Only the controllers of the team of predators are
evolved, while the prey has a pre-specified fixed behaviour.
In each trial, the three predators are
: placed in the centre of the arena, with ran-
 dom positions and orientations (Fig.1).
: The prey is placed in a random location,
i ranging from 20m to 35m from the cen-
: tre of the arena. A trial ends if a predator
Capture __ i gets closer than 2m from the prey (prey
distance ) 2om  1sm s captured), if the prey escapes the arena,
|
|
|
|
|
|
|
|
|

Prey escape
M. distance

or if the time limit (75s) is reached. The
prey moves in the opposite direction of the
closest predator, if that predator is closer
than 10m, otherwise it does not move.
The prey can move up to the maximum
possible speed of the predators, meaning
that the predators typically cannot out-

Fig. 1. Task setup used for the evolu- run it. Cooperation among the predators
tionary process. is therefore essential to capture the prey.

10m
Predator
placement

Prey placement

Arena boundaries 75m

2.2 Robotic Platform

For our experiments, we use an aquatic multirobot system [1] that has been used
in other evolutionary robotics studies in the past [3]. Each robot is a small (65 cm
in length) differential drive mono-hull robot. The robots can move at speeds of
up to 1.7m/s, turn at a maximum rate of 90°/s, and are equipped with GPS
and compass. The robots broadcast information (such as their position) to their
neighbours up to a range of 40 m using Wi-Fi, which is then used to calculate the
robots’ sensory inputs. The same robotic platform is used for both the predator
robots and prey robot.

Each predator is controlled by an artificial neural network, which receives the
sensory inputs — the distance to other predators and the relative position of the
prey — and has two outputs that control the linear speed and the angular velocity
of the robot. The two output values are converted to left and right motor speeds
and applied to the robot’s motors. The network relies on the following sensory
inputs, which are limited to a range of 40 m, and are normalised to [—1,1]:
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Predator Sensing: Six inputs for detecting the other predators, corresponding
to six equally-sized circular sectors around the robot. Each input returns the
normalised distance to the closest predator in the corresponding sector, or
the maximum value if no predator is present there.

Prey Location: Two inputs returning (i) the relative angle from the predator
to the prey (zero corresponds to straight ahead), and (ii) the normalised
distance from the predator to the prey. If the prey is not within sensing
range, the sensors return an angle of zero and the maximum distance.

2.3 Evolutionary Setup

Both fitness-driven and novelty-driven cooperative coevolution were imple-
mented over the same standard coevolutionary architecture [17]. There are three
coevolving populations, one for each of the predators. Every generation, each
population is evaluated in turn. To evaluate an individual from one popula-
tion, a team is formed with one representative from each other population —
the individual that obtained the highest fitness score in the previous generation,
or a random one in the first generation. Only the individual currently under
evaluation receives the score obtained by the team. Every team is evaluated in
10 simulation trials, with randomized initial conditions. The controllers of each
population are evolved by NEAT [20], a neuroevolution algorithm extensively
used in evolutionary robotics, that evolves both the weights and topology of the
networks. The three coevolving populations use the parameters listed in Table 1.
The fitness function F' is the same as the one used in [7], which rewards the

teams for capturing the prey as soon as possible, or getting close to it:
P {2 T/T . if prey .captured , 1)

max(0, (d; — dy)/size) otherwise

where 7 is the time to capture the prey, T is the maximum trial length, d; and
d; are, respectively, the average initial and final distance from the predators to
the prey, and size is the side length of the arena.

Novelty-driven coevolution is implemented as proposed in [7], using the NS-
Team technique, which computes the individuals’ novelty scores based on the
behavioural novelty displayed by the team in which the individual participated.
To calculate the novelty score of each team, we rely on four features to charac-
terise team behaviour, all normalised to [0,1]: (i) whether the prey was captured

Table 1. Parameters used for NEAT and novelty search (last row).

Population size 150 | Target species count | 5 Crossover prob 20 %
Recurrency allowed | true | Mutation prob 25% | Prob. add link 5%
Prob. add node 3% | Prob. mutate bias |30% | Num. generations | 250
Novelty k-nearest |15 | Add archive prob 2.5% | Max. archive size | 2000
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or not; (i) average final distance of the predators to the prey; (iii) average dis-
tance of each predator to the other predators over the trial; and (iv) trial length.
The novelty search algorithm was configured according to [6], see Table1 (last
row). The novelty score of each individual is combined with its fitness score using
the NSGA-II [2] multiobjective ranking, as advocated in previous works [6,7].

2.4 Simulation

For the evolutionary process, we used a two-dimensional simulation environment,
where the robots are abstracted as circular objects with a certain heading and
position'. The robot motion model was implemented based on simple measure-
ments taken on the real robots, and did not include complex physics simulation
or fluid dynamics. In order to facilitate the transfer from simulation to reality
and promote general behaviours, noise was applied to the sensors and actua-
tors [3,8] based on measurements taken from real robots, and the initial task
conditions were varied in every simulation trial. The following parameters were
varied during the simulated trials:

Set for Each Trial: random individual motor speed offsets of up to 10 % of
maximum speed; compass offset up to +9°; the prey’s escape speed varied
between [75 %,100 %] of the predators’s maximum speed; and the initial posi-
tions and orientations of all robots were varied according to Sect. 2.1.

Set at Each Time Step: GPS error up to 1.8 m; compass error up to +10°;
motor output varied up to 5%; and the prey’s escape direction randomly
varied up to 50 % from the optimal direction.

3 Evolving and Identifying Diverse Behaviours

For both fitness-driven (F'it) and novelty-driven cooperative coevolution (NS-
Team), we followed a methodology that allowed us to identify a set of diverse and
high-quality solutions, that were then evaluated in the real multirobot system.

Evolutionary Process: Each evolutionary approach was repeated in ten inde-
pendent evolutionary runs. To obtain a more accurate estimate of the evolved
teams’ quality and behaviour, all the best-of-generation teams (the teams that
obtained the highest fitness score in each generation, in each evolutionary run)
were re-evaluated a posteriori in 50 simulation trials. On average, the evolution-
ary runs of Fit achieved a highest fitness score of 1.09 + 0.10, and NS-Team
achieved 0.96 + 0.20. While this difference is significant (p = 0.043, Mann-
Whitney U test), both approaches managed to evolve high-quality solutions.

Behaviour Mapping: To visualise the diversity of behaviours evolved by
each evolutionary approach, we mapped the best-of-generation teams accord-
ing to their behaviour characterisation vector (see Sect. 2.3), as done in previous
works [7]. The four dimensions of the behaviour characterisation were reduced

! https://github.com/BioMachinesLab/drones/tree/master/JBot Aquatic.
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Fig. 2. Left: trained Kohonen map, where each node represents a region of the team
behaviour space. Middle and right: team behaviour exploration by the two evolutionary
approaches. The darker a region, the more of the evolved teams belonged to it.

to two dimensions using a Kohonen self-organising map in order to obtain a
visual representation of the team behaviour space exploration, see Fig. 2 (left).
The teams evolved by each evolutionary approach were then mapped: each team
is assigned to the node (map region) with the closest weight vector, see Fig. 2.
The results show that NS-Team explored the behaviour space much more uni-
formly, and could reach behaviour regions that were never reached by Fit, which
is consistent with the results reported in previous works [7].

Selection of Solutions: We then proceeded to select a diverse set of solutions
to be tested in the real robots. We selected different regions of the behaviour
space where the prey capture rate was high, and identified the team belonging
to each of those regions that obtained the highest fitness score, see Fig.2. We
chose one team evolved by Fit, as all the high-quality teams were found in the
bottom-right corner of the map, and four solutions evolved by NS-Team, from
different regions of the map with high prey capture values.

4 Transferring the Teams to Real Robots

The selected teams were then evaluated in the real multirobot system. The
experiments were performed in a semi-enclosed water body, see Fig. 3. The task
setup was similar to the simulation setup (see Sect.2.1): the three predator
robots were placed close to the centre of the arena, and the prey was placed
at approximately 25, 30, and 35m away from the centre, in each of the three
trials that were used to assess the performance of the teams. Each trial lasted
for at most 100s, the arena boundaries were 100x100 m, and the prey moved at
the maximum speed. To compare the results of the real-robot experiments with
simulation, the chosen teams were re-evaluated in 500 simulation trials, using
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Predators -

Fig. 3. Photo of the real-robot experiments, at Parque das Nagoes, Lisbon, Portugal,
in a semi-enclosed area in the margin of the Tagus river.
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Fig. 4. Comparison of the fitness score and behaviour features obtained in the real-
robot experiments (asterisks) and in simulation (violin plots) in similar conditions.

the same initial conditions as the real-robot experiments. The fitness scores and
behaviour features of the teams operating in the real environment were computed
using logged GPS data.

In Fig.4 (Fitness), we compare the fitness scores obtained by the teams
in simulation and in the real robots. We additionally explore the diversity of
team behaviours by comparing the controllers’ performance in reality and in
simulation according to the behaviour features that were used in novelty-driven
coevolution (Sect. 2.3). The results show that all teams except NS2 were able to
capture the prey in the majority of the trials. The fitness scores obtained in the
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Fig. 5. Traces of one experimental trial (out of three) for each of the teams evaluated
in the real robots. Traces and videos of all real-robot experiments are available online.?

real experiments are similar to the scores obtained in simulation, fitting in the
distribution obtained in simulation. These results are a first indication that the
evolved controllers were generally able to cross the reality gap successfully.

The effectiveness of the team behaviours was confirmed by analysing the
traces of the real-robot experiments, shown in Fig.5. The Fit! and NS teams
displayed a behaviour where the three predators would initially spread and move
towards the prey, each approaching the prey from a different direction. The
behaviour of NS2 was similar to Fit1 and NS1, but the predator team dispersed
more. The teams NS3 and NS4 displayed a significantly different behaviour:
only two predators chased the prey, approaching it from opposite directions,
while the remaining predator would move away from the group. The observed
robot traces are consistent with the measured behavioural features (Fig.4), and
confirm that novelty-driven coevolution was able to achieve a wide diversity
of team behaviours. For instance, it is possible to observe that NS3 and NS4
display a higher dispersion and final distance to prey, which is explained by the
fact that in these teams, only two predators chase the prey. The differences and
similarities between the team behaviours observed in the real-robot experiments
are consistent with the behaviour map obtained in simulation (Fig.2).
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Overall, despite the stochastic conditions of the aquatic environment, the
predators displayed effective cooperation, and were consistently able to solve
the task. The team of predators would often fail to capture the prey in the
first attempt, but the team would then spread out and try to encircle the prey
again. Moreover, robots sometimes displayed temporary motor failures (see sup-
plementary videos?), which did not compromise the effectiveness of the team.
These behaviours suggest that the teams were not overfitted to the simulation
environment, and could effectively adapt to different scenarios.

5 Conclusion

In this paper, we employed cooperative coevolutionary algorithms (CCEAs) to
evolve control for an aquatic multirobot system. Our experiments relied on a
cooperative predator-prey task, where a heterogeneous team of three predators
was evolved to capture one reactive prey. Two evolutionary approaches were
applied: traditional fitness-driven cooperative coevolution, and novelty-driven
cooperative coevolution. The evolutionary processes were conducted exclusively
in simulation, and a number of high-fitness teams were then systematically eval-
uated in real robots operating in a non-controlled outdoor environment.

The evolved teams generally transferred well to the real robots, successfully
crossing the reality gap. Out of the five teams tested, four teams could consis-
tently capture the prey, and obtained fitness scores very similar to those obtained
in simulation. The cooperation between robots that was exhibited in simulation
was also observed in real robots, and the teams displayed robust behaviours that
did not appear to be overfitted to the simulation environment. The successful
transfer is especially notable given that we used low-fidelity simulator during
evolution, and given the stochastic nature of the real task environment. We
encouraged the evolution of robust and transferable controllers by introducing
conservative amounts of noise and variations in the sensors and actuators of the
robots in simulation, and by using multiple trials to evaluate each solution, with
different initial conditions.

Novelty-driven cooperative coevolution was able to produce a good diversity
of high-quality team behaviours for solving the task, which were identified fol-
lowing a systematic approach. The diversity of behaviours that was observed in
simulation was also present in the real multirobot system.

In summary, we demonstrated that CCEAs can be successfully used to syn-
thesise control for a real multirobot system, operating in an environment outside
controlled laboratory conditions. Despite the large number of previous works
that have showed the potential of CCEAs for evolving heterogeneous multirobot
systems, our work stands amongst the first to demonstrate this potential in real
robots and in a realistic environment. Our experiments also validated, for the
first time, the potential of novelty-driven cooperative coevolution in real robots,
and confirmed it as a valuable approach to evolve diverse team behaviours.

2 Videos and logs of the experiments: http://dx.doi.org/10.5281 /zenodo.49582.
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